1
|
Mohammadi K, Faramarzi S, Yaribash S, Valizadeh Z, Rajabi E, Ghavam M, Samiee R, Karim B, Salehi M, Seifi A, Shafaati M. Human metapneumovirus (hMPV) in 2025: emerging trends and insights from community and hospital-based respiratory panel analyses-a comprehensive review. Virol J 2025; 22:150. [PMID: 40394641 PMCID: PMC12090560 DOI: 10.1186/s12985-025-02782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
Human metapneumovirus (hMPV) is a significant respiratory pathogen, primarily impacting young, elderly, and immunocompromised populations. While the clinical presentations are similar to those of other respiratory viruses such as respiratory syncytial virus (RSV), influenza, and SARS-CoV-2, they can still lead to serious complications. The virus primarily transmits via respiratory droplets, with outbreaks peaking during winter and spring. In resource-limited settings, administration of multiplex PCR assays is essential for precise diagnosis, yet it presents significant challenges. Recent studies indicate a 6.24% infection rate in hospitalized patients presenting with acute respiratory infections (ARIs). Enhanced surveillance and prevention are essential given the morbidity and mortality rates of hMPV, which are comparable to those of influenza and RSV. Effective management requires enhanced diagnostic tools, improved public health strategies, and continuous research into antiviral therapies and vaccines. This study highlighted the growing importance of hMPV as a respiratory pathogen, focusing on its seasonal patterns, clinical manifestations in at-risk populations, transmission dynamics, and diagnostic challenges compared to other respiratory viruses.
Collapse
Affiliation(s)
- Keyhan Mohammadi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Samireh Faramarzi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Shakila Yaribash
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Valizadeh
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Erta Rajabi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghavam
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Samiee
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bardia Karim
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Seifi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Center for Communicable Disease Control, IPC/AMR Office, Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Shafaati
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Communicable Disease Control, IPC/AMR Office, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Parida P, N S, E R S, Jagadesh A, Marate S, Govindakaranavar A. The emergence of human metapneumovirus G gene duplication in hospitalized patients with respiratory tract infection, India, 2016-2018. Mol Biol Rep 2023; 50:1109-1116. [PMID: 36399244 PMCID: PMC9889522 DOI: 10.1007/s11033-022-08092-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Human metapneumovirus (HMPV) belongs to the family Pneumoviridae. It is one of the emerging respiratory viruses causing both upper and lower respiratory tract illnesses. HMPV has two genotypes: A and B. These genotypes are classified into lineage A1, A2, B1 and B2. Lineage-A2 is further classified as A2a, A2b and A2c. Similarly, B2 is classified as B2a and B2b. Studies have shown the circulation of A2b, B1 and B2 lineages in India. However, a limited amount of data is available on the current circulating genotypes of HMPV in India. METHODS Throat swab samples positive for HMPV by real-time RT- PCR, archived at Manipal Institute of Virology as a part of a hospital-based acute febrile illness surveillance study, was used from April 2016 to August 2018 by purposive sampling method. We performed the conventional reverse transcriptase-polymerase chain reaction for twenty samples targeting the G gene and then subjected them to sequencing. Phylogenetic analysis was done using MEGA X software by the Maximum Likelihood method. RESULTS All the twenty sequences belonged to the A2c subgroup. Phylogenetic analysis showed that strains from the study have genetic relation with circulating strains in Japan, China and Croatia. Seven out of the twenty sequences showed 180-nucleotide duplication and eleven sequences showed 111-nucleotide duplication. Two sequences did not show any duplications. CONCLUSION In the current study, we report that A2c is the sub-lineage in India from April 2016 to August 2018. This study is the first retrospective study reporting the circulation of the A2c sub-lineage among adults in India with 180- and 111-nucleotide duplications in the G gene of human metapneumovirus.
Collapse
Affiliation(s)
- Preetiparna Parida
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Sudheesh N
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Sanjay E R
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Anitha Jagadesh
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Srilatha Marate
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Arunkumar Govindakaranavar
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
- , 2-49, Vaikathu, Maratithota Road, MooduAthradi, Athradi PO, Udupi, Karnataka, 576107, India.
| |
Collapse
|
3
|
Global Extension and Predominance of Human Metapneumovirus A2 Genotype with Partial G Gene Duplication. Viruses 2022; 14:v14051058. [PMID: 35632799 PMCID: PMC9146545 DOI: 10.3390/v14051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important respiratory pathogen and is divided in two main groups (A and B). HMPV strains with partial duplications (111-nt and 180-nt duplication) of the G gene have been reported in recent years. Since the initial reports, viruses with these characteristics have been reported in several countries. We analyzed all complete HMPV G gene ectodomain sequences available at GenBank to determine if viruses with 111-nt or 180-nt duplication have become the leading HMPV strains worldwide, and to describe their temporal and geographic distribution. We identified 1462 sequences that fulfilled study criteria (764 HMPV A and 698 HMPV B) reported from 37 countries. The most frequent HMPV A genotype was A2b2 (n = 366), and the most frequent B genotype was B2 (n = 374). A total of 84 sequences contained the 111-nt duplication, and 90 sequences contained the 180-nt duplication. Since 2016, viruses with a partial duplication comprise the most frequent HMPV A sequences globally and have displaced other HMPV A viruses in Asia, Europe, and South America; no sequences of viruses with partial duplication have been reported in North America or Africa so far. Continued surveillance of HMPV is required to identify the emergence and spread of epidemiologically relevant variants.
Collapse
|
4
|
Kenmoe S, Vernet MA, Penlap Beng V, Vabret A, Njouom R. Phylogenetic variability of Human Metapneumovirus in patients with acute respiratory infections in Cameroon, 2011-2014. J Infect Public Health 2020; 13:606-612. [PMID: 31530440 DOI: 10.1016/j.jiph.2019.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Identified in 2001, Human Metapneumovirus (HMPV) is a Pneumovirus associated with acute lower and upper respiratory infections in all age groups and especially in newborns, elderly and immunocompromised subjects. Data are still limited in sub-Saharan African countries genetic characterization of this respiratory virus. This study reports the genetic variability of HMPV strains in Cameroonian children for 3 consecutive epidemic seasons (September 2011-October 2014). METHODS A prospective surveillance was conducted to identify inpatient and outpatient children less than 15 years with respiratory symptoms ≤5 days. The nasopharyngeal samples were tested for HMPV using a multiplex polymerase chain reaction. Viral distribution and demographic data were analyzed statistically. Positive samples for HMPV were amplified by semi-nested polymerize chain reaction and then partially sequenced at the G gene. Phylogenetic analyzes were performed on the partial nucleotide and protein sequences of the G gene. RESULTS From September 2011 to October 2014, 822 children under 15 years were enrolled in the study. HMPV was identified in each of 3.9% (32/822) of children. HMPV were detected throughout the year. HMPV-A (73.3%; 11/15) was predominant compared to HMPV-B (26.7; 4/15). Cameroonian HMPV strains are grouped among the members of genotype A2b (for HMPV-A), B1 and B2 (for HMPV-B). CONCLUSION This study suggests that about 4% of ARI recorded in children in Cameroon are caused by HMPV. The present study is also the first report on the genetic variability of the G gene of HMPV strains in the region. Although this work partially fills gaps for some information, additional studies are required to clarify the molecular epidemiology and evolutionary pattern of HMPV in sub-Saharan Africa in general and more particularly in Cameroon.
Collapse
Affiliation(s)
- Sebastien Kenmoe
- Virology Department, "Centre Pasteur du Cameroun", P.O. Box 1274, Yaounde, Cameroon; Département de Biochimie, Université de Yaoundé 1, BP 812 Yaounde, Cameroon; Normandie Université, 14032 Caen, France; UNICAEN, UNIROUEN, GRAM, 14000 Caen, France; University Hospital of Caen, Department of Virology, 14000 Caen, France.
| | - Marie-Astrid Vernet
- Virology Department, "Centre Pasteur du Cameroun", P.O. Box 1274, Yaounde, Cameroon.
| | | | - Astrid Vabret
- Normandie Université, 14032 Caen, France; UNICAEN, UNIROUEN, GRAM, 14000 Caen, France; University Hospital of Caen, Department of Virology, 14000 Caen, France.
| | - Richard Njouom
- Virology Department, "Centre Pasteur du Cameroun", P.O. Box 1274, Yaounde, Cameroon.
| |
Collapse
|
5
|
Oong XY, Chook JB, Ng KT, Chow WZ, Chan KG, Hanafi NS, Pang YK, Chan YF, Kamarulzaman A, Tee KK. The role of human Metapneumovirus genetic diversity and nasopharyngeal viral load on symptom severity in adults. Virol J 2018; 15:91. [PMID: 29792212 PMCID: PMC5966857 DOI: 10.1186/s12985-018-1005-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/16/2018] [Indexed: 11/21/2022] Open
Abstract
Background Human metapneumovirus (HMPV) is established as one of the causative agents of respiratory tract infections. To date, there are limited reports that describe the effect of HMPV genotypes and/or viral load on disease pathogenesis in adults. This study aims to determine the role of HMPV genetic diversity and nasopharyngeal viral load on symptom severity in outpatient adults with acute respiratory tract infections. Methods Severity of common cold symptoms of patients from a teaching hospital was assessed by a four-category scale and summed to obtain the total symptom severity score (TSSS). Association between the fusion and glycoprotein genes diversity, viral load (quantified using an improved RT-qPCR assay), and symptom severity were analyzed using bivariate and linear regression analyses. Results Among 81/3706 HMPV-positive patients, there were no significant differences in terms of demographics, number of days elapsed between symptom onset and clinic visit, respiratory symptoms manifestation and severity between different HMPV genotypes/sub-lineages. Surprisingly, elderly patients (≥65 years old) had lower severity of symptoms (indicated by TSSS) than young and middle age adults (p = 0.008). Nasopharyngeal viral load did not correlate with nor predict symptom severity of HMPV infection. Interestingly, at 3–5 days after symptom onset, genotype A-infected patients had higher viral load compared to genotype B (4.4 vs. 3.3 log10 RNA copies/μl) (p = 0.003). Conclusions Overall, HMPV genetic diversity and viral load did not impact symptom severity in adults with acute respiratory tract infections. Differences in viral load dynamics over time between genotypes may have important implications on viral transmission. Electronic supplementary material The online version of this article (10.1186/s12985-018-1005-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Yong Oong
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jack Bee Chook
- School of Healthcare and Medical Sciences, Sunway University, 47500, Kuala Lumpur, Selangor, Malaysia
| | - Kim Tien Ng
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wei Zhen Chow
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nik Sherina Hanafi
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yong Kek Pang
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- School of Healthcare and Medical Sciences, Sunway University, 47500, Kuala Lumpur, Selangor, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|