1
|
Jiang X, Cao D, Xu B, Yuan X, Xiang Y, Wu T, Zhang Y. Essential Oils and their Active Constituents Effective against Non-growing Mycobacterium intracellulare. BMC Complement Med Ther 2025; 25:122. [PMID: 40165207 PMCID: PMC11956417 DOI: 10.1186/s12906-025-04855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Mycobacterium intracellulare (M. intracellulare) is a common, slow-growing opportunistic pathogen that can cause chronic pulmonary and extrapulmonary infections. Despite its rising incidence, standard treatments are often ineffective in eradicating M. intracellulare, leading to prolonged treatment and high recurrence rates, likely due to persistence of non-growing bacteria. Although essential oils are known for their antimicrobial properties, their effects on M. intracellulare, particularly in its non-growing phase, have not been well studied. METHODS We screened 151 essential oils to assess their antimicrobial activity against stationary-phase non-growing M. intracellulare. Essential oils with significant activity were further evaluated at different concentrations by MIC and drug exposure tests. RESULTS Thirty-four essential oils were found to have activity at 5000 µg/mL, with 18 showing effectiveness at 1250 µg/mL. Six essential oils, Ajwain, Oregano, Palmarosa, Thyme, Mountain Savory, and Litsea Cubeba had the highest activity, achieving 100% bacterial clearance after one day exposure. Carvacrol, the key active component of Ajwain, Oregano, Thyme, Mountain Savory, eradicated stationary-phase bacteria at 310 µg/mL concentration within one day, while citronellol, the active component of Palmarosa, at 630 µg/mL achieved complete clearance after three day exposure. CONCLUSIONS We have newly identified several essential oils, including Ajwain, Oregano, Thyme, Mountain Savory, Palmarosa, and Litsea Cubeba and their active components such as carvacrol and citronellol, to have promising activity against M. intracellulare, and these findings may have implications for developing improved treatments for M. intracellulare infections.
Collapse
Affiliation(s)
- Xiuzhi Jiang
- State Key Laboratory for Diagnosisand, Treatment of Infectious Diseasesaq, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Dan Cao
- State Key Laboratory for Diagnosisand, Treatment of Infectious Diseasesaq, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bihan Xu
- State Key Laboratory for Diagnosisand, Treatment of Infectious Diseasesaq, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xin Yuan
- State Key Laboratory for Diagnosisand, Treatment of Infectious Diseasesaq, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosisand, Treatment of Infectious Diseasesaq, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tiantian Wu
- State Key Laboratory for Diagnosisand, Treatment of Infectious Diseasesaq, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ying Zhang
- State Key Laboratory for Diagnosisand, Treatment of Infectious Diseasesaq, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
2
|
Kaushik H, Sharma R, Kumar A. Natural products against resistant bacterial infections: A systematic literature review. THE MICROBE 2025; 6:100247. [DOI: 10.1016/j.microb.2025.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
3
|
Ansari MA, Shoaib S, Alomary MN, Ather H, Ansari SMA, Hani U, Jamous YF, Alyahya SA, Alharbi JN, Imran MA, Wahab S, Ahmad W, Islam N. Deciphering the emerging role of phytocompounds: Implications in the management of drug-resistant tuberculosis and ATDs-induced hepatic damage. J Infect Public Health 2023; 16:1443-1459. [PMID: 37523915 DOI: 10.1016/j.jiph.2023.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Tuberculosis is a disease of poverty, discrimination, and socioeconomic burden. Epidemiological studies suggest that the mortality and incidence of tuberculosis are unacceptably higher worldwide. Genomic mutations in embCAB, embR, katG, inhA, ahpC, rpoB, pncA, rrs, rpsL, gyrA, gyrB, and ethR contribute to drug resistance reducing the susceptibility of Mycobacterium tuberculosis to many antibiotics. Additionally, treating tuberculosis with antibiotics also poses a serious risk of hepatotoxicity in the patient's body. Emerging data on drug-induced liver injury showed that anti-tuberculosis drugs remarkably altered levels of hepatotoxicity biomarkers. The review is an attempt to explore the anti-mycobacterial potential of selected, commonly available, and well-known phytocompounds and extracts of medicinal plants against strains of Mycobacterium tuberculosis. Many studies have demonstrated that phytocompounds such as flavonoids, alkaloids, terpenoids, and phenolic compounds have antibacterial action against Mycobacterium species, inhibiting the bacteria's growth and replication, and sometimes, causing cell death. Phytocompounds act by disrupting bacterial cell walls and membranes, reducing enzyme activity, and interfering with essential metabolic processes. The combination of these processes reduces the overall survivability of the bacteria. Moreover, several phytochemicals have synergistic effects with antibiotics routinely used to treat TB, improving their efficacy and decreasing the risk of resistance development. Interestingly, phytocompounds have been presented to reduce isoniazid- and ethambutol-induced hepatotoxicity by reversing serum levels of AST, ALP, ALT, bilirubin, MDA, urea, creatinine, and albumin to their normal range, leading to attenuation of inflammation and hepatic necrosis. As a result, phytochemicals represent a promising field of research for the development of new TB medicines.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia.
| | - Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | | | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Jameela Naif Alharbi
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 120752, Republic of Korea
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
4
|
Lewtak K, Czaplewska P, Wydrych J, Keller R, Nowicka A, Skrzypiec K, Fiołka MJ. Antimycobacterial Activity of Sida hermaphrodita (L.) Rusby (Malvaceae) Seed Extract. Cells 2023; 12:397. [PMID: 36766739 PMCID: PMC9913413 DOI: 10.3390/cells12030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The current prevalence of such lifestyle diseases as mycobacteriosis and tuberculosis is a result of the growing resistance of microorganisms to the available antibiotics and their significant toxicity. Therefore, plants can successfully become a source of new therapeutic agents. The aim of this study was to investigate the effect of protein extract from Sida hermaphrodita seeds on the morphology, structure, and viability of Mycobacterium smegmatis and to carry out proteomic characterization of the protein extract. The analyses were carried out using fluorescence and transmission microscopy, atomic force microscopy, and spectroscopy. The proteomic studies were performed using liquid chromatography coupled to tandem mass spectrometry. The studies showed that the seed extract applied at concentrations of 50-150 µg/mL exerted a statistically significant effect on M. smegmatis cells, that is, a reduction of the viability of the bacteria and induction of changes in the structure of the mycobacterial cell wall. Additionally, the SEM analysis confirmed that the extract did not have a cytotoxic or cytopathic effect on fibroblast cells. The proteomic analysis revealed the presence of structural, storage, and enzymatic proteins and peptides in the extract, which are typical for seeds. Proteins and peptides with antimicrobial activity identified as vicillins and lipid-transporting proteins were also determined in the protein profile of the extract.
Collapse
Affiliation(s)
- Kinga Lewtak
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Radosław Keller
- Analytical Laboratory, Institute of Chemical Sciences, Department of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 2, 20-031 Lublin, Poland
| | - Aldona Nowicka
- Analytical Laboratory, Institute of Chemical Sciences, Department of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 2, 20-031 Lublin, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Institute of Chemical Sciences, Department of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 2, 20-031 Lublin, Poland
| | - Marta Julia Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
5
|
Jugreet BS, Lall N, Anina Lambrechts I, Reid AM, Maphutha J, Nel M, Hassan AH, Khalid A, Abdalla AN, Van BL, Mahomoodally MF. In Vitro and In Silico Pharmacological and Cosmeceutical Potential of Ten Essential Oils from Aromatic Medicinal Plants from the Mascarene Islands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248705. [PMID: 36557842 PMCID: PMC9788324 DOI: 10.3390/molecules27248705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
In this study, 10 essential oils (EOs), from nine plants (Cinnamomum camphora, Curcuma longa, Citrus aurantium, Morinda citrifolia, Petroselinum crispum, Plectranthus amboinicus, Pittosporum senacia, Syzygium coriaceum, and Syzygium samarangense) were assessed for their antimicrobial, antiaging and antiproliferative properties. While only S. coriaceum, P. amboinicus (MIC: 0.50 mg/mL) and M. citrifolia (MIC: 2 mg/mL) EOs showed activity against Cutibacterium acnes, all EOs except S. samarangense EO demonstrated activity against Mycobacterium smegmatis (MIC: 0.125-0.50 mg/mL). The EOs were either fungistatic or fungicidal against one or both tested Candida species with minimum inhibitory/fungicidal concentrations of 0.016-32 mg/mL. The EOs also inhibited one or both key enzymes involved in skin aging, elastase and collagenase (IC50: 89.22-459.2 µg/mL; 0.17-0.18 mg/mL, respectively). Turmerone, previously identified in the C. longa EO, showed the highest binding affinity with the enzymes (binding energy: -5.11 and -6.64 kcal/mol). Only C. aurantium leaf, C. longa, P. amboinicus, P. senacia, S. coriaceum, and S. samarangense EOs were cytotoxic to the human malignant melanoma cells, UCT-MEL1 (IC50: 88.91-277.25 µg/mL). All the EOs, except M. citrifolia EO, were also cytotoxic to the human keratinocytes non-tumorigenic cells, HaCat (IC50: 33.73-250.90 µg/mL). Altogether, some interesting therapeutic properties of the EOs of pharmacological/cosmeceutical interests were observed, which warrants further investigations.
Collapse
Affiliation(s)
- Bibi Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Isa Anina Lambrechts
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Anna-Mari Reid
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Jacqueline Maphutha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Marizé Nel
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Abdallah H. Hassan
- Chemistry Department, College of Education, Salahaddin University, Erbil 44002, Iraq
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum P.O. Box 2404, Sudan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bao Le Van
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence:
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Chennai 600077, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
6
|
Arrigoni R, Ballini A, Topi S, Bottalico L, Jirillo E, Santacroce L. Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. Antibiotics (Basel) 2022; 11:antibiotics11101431. [PMID: 36290089 PMCID: PMC9598247 DOI: 10.3390/antibiotics11101431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). TB treatment is based on the administration of three major antibiotics: isoniazid, rifampicin, and pyrazinamide. However, multi-drug resistant (MDR) Mtb strains are increasing around the world, thus, allowing TB to spread around the world. The stringent response is demonstrated by Mtb strains in order to survive under hostile circumstances, even including exposure to antibiotics. The stringent response is mediated by alarmones, which regulate bacterial replication, transcription and translation. Moreover, the Mtb cell wall contributes to the mechanism of antibiotic resistance along with efflux pump activation and biofilm formation. Immunity over the course of TB is managed by M1-macrophages and M2-macrophages, which regulate the immune response against Mtb infection, with the former exerting inflammatory reactions and the latter promoting an anti-inflammatory profile. T helper 1 cells via secretion of interferon (IFN)-gamma, play a protective role in the course of TB, while T regulatory cells secreting interleukin 10, are anti-inflammatory. Alternative therapeutic options against TB require further discussion. In view of the increasing number of MDR Mtb strains, attempts to replace antibiotics with natural and biological products have been object of intensive investigation. Therefore, in this review the anti-Mtb effects exerted by probiotics, polyphenols, antimicrobial peptides and IFN-gamma will be discussed. All the above cited compounds are endowed either with direct antibacterial activity or with anti-inflammatory and immunomodulating characteristics.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
- Correspondence:
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
7
|
Vidya Raj CK, Venugopal J, Muthaiah M, Chadha VK, Brammacharry U, Swappna M, Sangeetha AV, Dhandapani SP, Kareedhi VR, Calivarathan L, Karthick M, Jayapal K. In-vitro anti-Mycobacterium tuberculosis effect of Eugenol. Indian J Tuberc 2022; 69:647-654. [PMID: 36460403 DOI: 10.1016/j.ijtb.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND/OBJECTIVES Mycobacterium tuberculosis, the causative agent of tuberculosis has developed resistance to most of the available antimicrobials. Therefore research on the detection of new antimicrobials against Mycobacterium tuberculosis is needed urgently. Essential oils extracted from plants have been shown to have anti-Mycobacterium tuberculosis effect in in-vitro experiments. Essential oil contains many chemicals and any one or more than one chemical may have the anti-Mycobacterium tuberculosis effect. Eugenol is one such chemical in the essential oil and the anti-Mycobacterium tuberculosis effect of eugenol is investigated. METHODS The anti-Mycobacterium tuberculosis effect of eugenol was evaluated against H37Rv and twelve clinical isolates of Mycobacterium tuberculosis in the BD BACTEC MGIT instrument using different volumes of eugenol. RESULTS H37Rv and all the twelve clinical isolates of Mycobacterium tuberculosis were inhibited by eugenol. The minimal inhibitory concentration of H37Rv was 2.5 μl (2.67 mg) and those of the clinical isolates of Mycobacterium tuberculosis ranged from to 2.5 μl (2.67 mg) to 10 μl (10.68 mg). CONCLUSION Eugenol has anti-Mycobacterium tuberculosis effect in the in-vitro BD BACTEC MGIT method.
Collapse
Affiliation(s)
- C K Vidya Raj
- State TB Training & Demonstration Center, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, 605006, India
| | - Jayapal Venugopal
- Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth University (Grade A), Pillaiyar Kuppam, Puducherry, Tamil Nadu, 607 402, India.
| | - Muthuraj Muthaiah
- State TB Training & Demonstration Center, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, 605006, India
| | | | - Usharani Brammacharry
- Department of Genetics, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Tharamani, Chennai, 600113, India
| | - M Swappna
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | - A V Sangeetha
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | - Senthil Pragash Dhandapani
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | | | | | | | | |
Collapse
|
8
|
Assaggaf HM, Naceiri Mrabti H, Rajab BS, Attar AA, Hamed M, Sheikh RA, Omari NE, Menyiy NE, Belmehdi O, Mahmud S, Alshahrani MM, Park MN, Kim B, Zengin G, Bouyahya A. Singular and Combined Effects of Essential Oil and Honey of Eucalyptus Globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and In Vivo Findings. Molecules 2022; 27:molecules27165121. [PMID: 36014359 PMCID: PMC9415335 DOI: 10.3390/molecules27165121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/22/2023] Open
Abstract
Eucalyptus globulus is a plant widely used by the world population, including Morocco, in the treatment of several pathologies. The aim of this work is to evaluate the antioxidant, anti-inflammatory, dermatoprotective, and antimicrobial effects of essential oil and honey from E. globulus, as well as their combination. Chemical composition was determined by GC-MS analysis. The antioxidant activity was evaluated by three tests, namely, DPPH, reducing power, and the β-carotene/linoleic acid assay. The anti-inflammatory activity was investigated in vitro (5-lipoxygenase inhibition) and in vivo (carrageenan-induced paw edema model), while the dermatoprotective activity was tested in vitro (tyrosinase inhibition). Moreover, the antibacterial activity was assessed using agar well diffusion and microdilution methods. The results showed that eucalyptol presents the main compound of the essential oil of E. globulus (90.14%). The mixture of essential oil with honey showed the best antioxidant effects for all the tests used (0.07 < IC50 < 0.19 mg/mL), while the essential oil was the most active against tyrosinase (IC50 = 38.21 ± 0.13 μg/mL) and 5-lipoxygenase (IC50 = 0.88 ± 0.01 μg/mL), which corroborated the in vivo test. Additionally, the essential oil showed the best bactericidal effects against all strains tested, with inhibition diameter values ranging from 12.8 to 21.6 mm. The findings of this work showed that the combination of the essential oil with honey showed important results in terms of biological activity, but the determination of the underlying mechanisms of action remains a major prospect to be determined.
Collapse
Affiliation(s)
- Hamza M. Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat BP 6203, Morocco
| | - Bodour S. Rajab
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar A. Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat BP 6203, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taouanate 34025, Morocco
| | - Omar Belmehdi
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan 93000, Morocco
| | - Shafi Mahmud
- Division of Cancer and Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
- Correspondence:
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat BP 6203, Morocco
| |
Collapse
|
9
|
Hasib RA, Ali MC, Rahman MS, Rahman MM, Ahmed FF, Mashud MAA, Islam MA, Jamal MAHM. A computational biology approach for the identification of potential SARS-CoV-2 main protease inhibitors from natural essential oil compounds. F1000Res 2021. [DOI: 10.12688/f1000research.73999.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fomented a climate of fear worldwide due to its rapidly spreading nature, and high mortality rate. The World Health Organization (WHO) declared it as a global pandemic on 11th March, 2020. Many endeavors have been made to find appropriate medications to restrain the SARS CoV-2 infection from spreading but there is no specific antiviral therapy to date. However, a computer-aided drug design approach can be an alternative to identify probable drug candidates within a short time. SARS-CoV-2 main protease is a proven drug target, and it plays a pivotal role in viral replication and transcription. Methods: In this study, we identified a total of 114 essential oil compounds as a feasible anti-SARS-CoV-2 agent from several online reservoirs. These compounds were screened by incorporating ADMET profiling, molecular docking, and 50 ns of molecular dynamics simulation to identify potential drug candidates against the SARS-CoV-2 main protease. The crystallized SARS-CoV-2 main protease structure was collected from the RCSB PDB database (PDB ID 6LU7). Results: According to the results of the ADMET study, none of the compounds have any side effects that could reduce their druglikeness or pharmacokinetic properties. Out of 114 compounds, we selected bisabololoxide B, eremanthin, and leptospermone as our top drug candidates based on their higher binding affinity scores, and strong interaction with the Cys 145-His 41 catalytic dyad. Finally, the molecular dynamics simulation was implemented to evaluate the structural stability of the ligand-receptor complex. MD simulations disclosed that all the hits showed conformational stability compared to the positive control α-ketoamide. Conclusions: Our study showed that the top three hits might work as potential anti-SARS-CoV-2 agents, which can pave the way for discovering new drugs, but for experimental validation, they will require more in vivo trials.
Collapse
|
10
|
Jayapal V, Vidya Raj CK, Muthaiah M, Chadha VK, Brammacharry U, Selvaraj S, Easow JM. In-vitro anti-Mycobacterium tuberculosis effect of essential oil of Ocimum sanctum L. (Tulsi/Basil) leaves. Indian J Tuberc 2021; 68:470-473. [PMID: 34752315 DOI: 10.1016/j.ijtb.2021.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND/OBJECTIVES Mycobacterium tuberculosis, the causative agent of tuberculosis has developed resistance to most of the available antimicrobials. Consequently, it is difficult to cure all the patients with tuberculosis and in future, the incidence of tuberculosis by drug resistant M. tuberculosis is likely to increase, worldwide. Therefore detection and development of new antimicrobials against M. tuberculosis is needed urgently. METHODS Essential oil from the leaves of Ocimum sanctum L (Tulsi/Basil) was obtained by hydro distillation. The anti-mycobacterial effect of essential oil was evaluated against H37Rv and nine clinical isolates of M. tuberculosis in the BD BACTEC MGIT instrument using different volumes of essential oil. RESULTS The essential oil inhibited the growth of H37Rv and all the nine clinical isolates of M. tuberculosis. The minimal inhibitory concentration of H37Rv was 3 μl (2.931 μg) and those of the clinical isolates of M. tuberculosis ranged from 1.5 μl (1.4655 μg) to 6 μl (5.862 μg). CONCLUSION The Essential oil from the leaves of O. sanctum L.(Tulsi/Basil) has anti-M. tuberculosis effect in the in-vitro BD BACTEC MGIT method.
Collapse
Affiliation(s)
- Venugopal Jayapal
- Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth University (Grade A), Pillaiyar Kuppam, Puducherry, Tamilnadu, 607 402, India.
| | - C K Vidya Raj
- State TB Training & Demonstration Center, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, 605006, India
| | - Muthuraj Muthaiah
- State TB Training & Demonstration Center, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, 605006, India
| | - Vineet Kumar Chadha
- Central Leprosy Teaching & Research Institute, Chengalpet, Tamilnadu, 603 001, India
| | - Usharani Brammacharry
- Department of Genetics, Dr.ALM.Post Graduate Institute of Basic Medical Sciences, Tharamani, Chennai, Tamilnadu, 600113, India
| | - Stephen Selvaraj
- Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth University (Grade A), Pillaiyar Kuppam, Puducherry, Tamilnadu, 607 402, India
| | - Joshy M Easow
- Department of Microbiology, Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth University (Grade A), Pillaiyar Kuppam, Puducherry, Tamilnadu, 607 402, India
| |
Collapse
|
11
|
Kulkarni SA, Nagarajan SK, Ramesh V, Palaniyandi V, Selvam SP, Madhavan T. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. J Mol Struct 2020; 1221:128823. [PMID: 32834111 PMCID: PMC7334662 DOI: 10.1016/j.molstruc.2020.128823] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
COVID-19, caused by SARS-CoV-2 has recently emerged as a global pandemic. Intense efforts are ongoing to find a vaccine or a drug to control the disease across the globe. Meanwhile, alternative therapies are also being explored to manage the disease. Phytochemicals present in essential oils are promising candidates which have been known to possess wide range of therapeutic activities. In this study, major components of several essential oils which are known for their antimicrobial properties have been docked against the S1 receptor binding domain of the spike (S) glycoprotein, which is the key target for novel antiviral drugs, to ascertain their inhibitory effects based on their binding affinities. It has been found that some monoterpenes, terpenoid phenols and phenyl propanoids such as anethole, cinnamaldehyde, carvacrol, geraniol, cinnamyl acetate, L-4-terpineol, thymol and pulegone from essential oils extracted from plants belonging to families such as Lamiaceae, Lauraceae, Myrtaceae, Apiaceae, Geraniaceae and Fabaceae are effective antiviral agents that have potential to inhibit the viral spikeprotein.
Collapse
Affiliation(s)
- Seema A Kulkarni
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Santhosh Kumar Nagarajan
- Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Veena Ramesh
- StemOnc R&D Private Ltd, Kilpauk, Chennai, Tamilnadu, India, 600010
| | - Velusamy Palaniyandi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - S Periyar Selvam
- Department of Food and Process Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Thirumurthy Madhavan
- Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
12
|
Stabel JR, Turner A, Walker M. An eco-friendly decontaminant to kill Mycobacterium avium subsp. paratuberculosis. J Microbiol Methods 2020; 176:106001. [PMID: 32653399 DOI: 10.1016/j.mimet.2020.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Mycobacteria are difficult to kill due to the complexity of their cell wall. Further, Mycobacterium avium subsp. paratuberculosis (MAP) has one of the more elaborate cell wall compositions of all the mycobacteria. As a working pathogen within a research laboratory setting or as an environmental contaminant shed in the manure from infected animals, MAP is highly resistant to typical disinfectants. In the past, the most successful disinfectants to kill mycobacteria were based upon phenolics, harsh compounds that can break down the lipids within the cell wall. New disinfectants have been developed that are less toxic to the environment, however, it is unknown how well they perform compared to more traditional disinfectants. In the present study, we present comparative data on the utility of a commercial eco-friendly disinfectant, Benefect®, compared to Amphyl®, a phenolic-based disinfectant, and Lysol®, a quaternary ammonium-based disinfectant, to kill MAP in pure culture, tissues, and manure. Results demonstrated that Benefect was highly effective with up to 100% kill of MAP within 30 min in all experiments, paralleling results obtained with Amphyl. Lysol performed the most poorly, requiring longer contact times to kill MAP. These results suggest that natural, nontoxic ingredients can be used to disinfect even hearty pathogens such as MAP effectively, both within the laboratory and on-farm.
Collapse
Affiliation(s)
- J R Stabel
- USDA-ARS-National Animal Disease Center, Ames, IA 50010, United States of America.
| | - A Turner
- USDA-ARS-National Animal Disease Center, Ames, IA 50010, United States of America
| | - M Walker
- USDA-ARS-National Animal Disease Center, Ames, IA 50010, United States of America
| |
Collapse
|
13
|
Muñoz-Egea MC, Carrasco-Antón N, Esteban J. State-of-the-art treatment strategies for nontuberculous mycobacteria infections. Expert Opin Pharmacother 2020; 21:969-981. [PMID: 32200657 DOI: 10.1080/14656566.2020.1740205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Non-tuberculous Mycobacteria (NTM) are a group of organisms whose importance in medicine seems to be increasing in recent times. The increasing number of patients susceptible to these diseases make it necessary to expand our knowledge of therapeutic options and to explore future possibilities for the development of a therapeutic arsenal. AREAS COVERED In this review, the authors provide a brief introduction about the present importance of NTM and describe the present recommendations of the available guidelines for their treatment. They include a description of the future options for the management of these patients, especially focusing on new antibiotics. The authors also look at possibilities for future therapeutic options, such as antibiofilm strategies. EXPERT OPINION No actual changes have been made to the current recommendations for the management of most NTM infections (except perhaps the availability of nebulized amikacin). However, it is also true that we have increased the number of available antibiotic treatment options with good in vitro activity against NTM. The use of these drugs in selected cases could increase the therapeutic possibilities. However, some problems are still present, such as the knowledge of the actual meaning of a NTM isolate, and will probably be a key part of future research.
Collapse
Affiliation(s)
| | | | - Jaime Esteban
- Departments of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM , Madrid, Spain
| |
Collapse
|