1
|
Dafni MF, Shih M, Manoel AZ, Yousif MYE, Spathi S, Harshal C, Bhatt G, Chodnekar SY, Chune NS, Rasool W, Umar TP, Moustakas DC, Achkar R, Kumar H, Naz S, Acuña-Chavez LM, Evgenikos K, Gulraiz S, Ali ESM, Elaagib A, Uggh IHP. Empowering cancer prevention with AI: unlocking new frontiers in prediction, diagnosis, and intervention. Cancer Causes Control 2025; 36:353-367. [PMID: 39672997 DOI: 10.1007/s10552-024-01942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
Artificial intelligence is rapidly changing our world at an exponential rate and its transformative power has extensively reached important sectors like healthcare. In the fight against cancer, AI proved to be a novel and powerful tool, offering new hope for prevention and early detection. In this review, we will comprehensively explore the medical applications of AI, including early cancer detection through pathological and imaging analysis, risk stratification, patient triage, and the development of personalized prevention approaches. However, despite the successful impact AI has contributed to, we will also discuss the myriad of challenges that we have faced so far toward optimal AI implementation. There are problems when it comes to the best way in which we can use AI systemically. Having the correct data that can be understood easily must remain one of the most significant concerns in all its uses including sharing information. Another challenge that exists is how to interpret AI models because they are too complicated for people to follow through examples used in their developments which may affect trust, especially among medical professionals. Other considerations like data privacy, algorithm bias, and equitable access to AI tools have also arisen. Finally, we will evaluate possible future directions for this promising field that highlight AI's capacity to transform preventative cancer care.
Collapse
Affiliation(s)
- Marianna-Foteini Dafni
- School of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle Univerisity of Thessaloniki, Thessaloniki, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Mohamed Shih
- School of Medicine, Newgiza University, Giza, Egypt.
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece.
| | - Agnes Zanotto Manoel
- Faculty of Medicine, Federal University of Rio Grande, Rio Grande do Sul, Brazil
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Mohamed Yousif Elamin Yousif
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Stavroula Spathi
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Chorya Harshal
- Faculty of Medicine, Medical College Baroda, Vadodara, India
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Gaurang Bhatt
- All India Institute of Medical Sciences, Rishikesh, India
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Swarali Yatin Chodnekar
- Faculty of Medicine, Teaching University Geomedi LLC, Tbilisi, Georgia
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Nicholas Stam Chune
- Faculty of Medicine, University of Nairobi, Nairobi, Kenya
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Warda Rasool
- Faculty of Medicine, King Edward Medical University, Lahore, Pakistan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Tungki Pratama Umar
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Dimitrios C Moustakas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Robert Achkar
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Harendra Kumar
- Dow University of Health Sciences, Karachi, Pakistan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Suhaila Naz
- Tbilisi State Medical University, Tbilisi, Georgia
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Luis M Acuña-Chavez
- Facultad de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Konstantinos Evgenikos
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Shaina Gulraiz
- Royal Bournemouth Hospital (University Hospitals Dorset), Bournemouth, UK
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Eslam Salih Musa Ali
- University of Dongola Faculty of Medicine and Health Science, Dongola, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Amna Elaagib
- Faculty of Medicine AlMughtaribeen University, Khartoum, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Innocent H Peter Uggh
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| |
Collapse
|
2
|
Chang TG, Park S, Schäffer AA, Jiang P, Ruppin E. Hallmarks of artificial intelligence contributions to precision oncology. NATURE CANCER 2025; 6:417-431. [PMID: 40055572 PMCID: PMC11957836 DOI: 10.1038/s43018-025-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/21/2025] [Indexed: 03/29/2025]
Abstract
The integration of artificial intelligence (AI) into oncology promises to revolutionize cancer care. In this Review, we discuss ten AI hallmarks in precision oncology, organized into three groups: (1) cancer prevention and diagnosis, encompassing cancer screening, detection and profiling; (2) optimizing current treatments, including patient outcome prediction, treatment planning and monitoring, clinical trial design and matching, and developing response biomarkers; and (3) advancing new treatments by identifying treatment combinations, discovering cancer vulnerabilities and designing drugs. We also survey AI applications in interventional clinical trials and address key challenges to broader clinical adoption of AI: data quality and quantity, model accuracy, clinical relevance and patient benefit, proposing actionable solutions for each.
Collapse
Affiliation(s)
- Tian-Gen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Seongyong Park
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Jiang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Pathak KA, Kafle P, Vikram A. Deep learning-based defect detection in film-coated tablets using a convolutional neural network. Int J Pharm 2025; 671:125220. [PMID: 39832574 DOI: 10.1016/j.ijpharm.2025.125220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Film-coating is a critical step in pharmaceutical manufacturing. Traditional visual inspections for film-coated tablet defect assessment are subjective, inefficient, and labor-intensive. We propose a novel approach utilizing machine learning and image analysis to address these limitations. Here, defects of four types- chipping, breaking, color non-uniformity and speckling, were manually induced in red-orange film-coated placebo tablets. Utilizing a 3-D printed tray and a unique segmentation approach, images of good and defective tablets were collected. A convolutional neural network (CNN) was employed to quantitatively analyze the defects. The model was trained on a comprehensive dataset of 25,200 images of tablets, augmented through various transformations to improve robustness. The CNN's performance was evaluated using metrics such as accuracy, precision, recall, and F1-score. The multi-class classification model demonstrated an accuracy of 99.7% in detection of defects in film-coated tablets, clearly outperforming static rule-based method which had 45%, 45% and 70% error in detecting dimensions- major axis, minor axis, and surface area of the tablets, respectively. This work demonstrates a valuable tool for pharmaceutical manufacturers, providing a standardized, objective, and efficient method for defect detection in tablets and presents a promising solution for ensuring product quality and accelerating the development of new pharmaceutical products.
Collapse
Affiliation(s)
- Kabir A Pathak
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ, USA
| | - Prapti Kafle
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ, USA.
| | - Ajit Vikram
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
4
|
Abdullah KA, Marziali S, Nanaa M, Escudero Sánchez L, Payne NR, Gilbert FJ. Deep learning-based breast cancer diagnosis in breast MRI: systematic review and meta-analysis. Eur Radiol 2025:10.1007/s00330-025-11406-6. [PMID: 39907762 DOI: 10.1007/s00330-025-11406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVES The aim of this work is to evaluate the performance of deep learning (DL) models for breast cancer diagnosis with MRI. MATERIALS AND METHODS A literature search was conducted on Web of Science, PubMed, and IEEE Xplore for relevant studies published from January 2015 to February 2024. The study was registered with the PROSPERO International Prospective Register of Systematic Reviews (protocol no. CRD42024485371). The quality assessment of diagnostic accuracy studies-2 (QUADAS2) tool and the Must AI Criteria-10 (MAIC-10) checklist were used to assess quality and risk of bias. The meta-analysis included studies reporting DL for breast cancer diagnosis and their performance, from which pooled summary estimates for the area under the curve (AUC), sensitivity, and specificity were calculated. RESULTS A total of 40 studies were included, of which only 21 were eligible for quantitative analysis. Convolutional neural networks (CNNs) were used in 62.5% (25/40) of the implemented models, with the remaining 37.5% (15/40) hybrid composite models (HCMs). The pooled estimates of AUC, sensitivity, and specificity were 0.90 (95% CI: 0.87, 0.93), 88% (95% CI: 86, 91%), and 90% (95% CI: 87, 93%), respectively. CONCLUSIONS DL models used for breast cancer diagnosis on MRI achieve high performance. However, there is considerable inherent variability in this analysis. Therefore, continuous evaluation and refinement of DL models is essential to ensure their practicality in the clinical setting. KEY POINTS Question Can DL models improve diagnostic accuracy in breast MRI, addressing challenges like overfitting and heterogeneity in study designs and imaging sequences? Findings DL achieved high diagnostic accuracy (AUC 0.90, sensitivity 88%, specificity 90%) in breast MRI, with training size significantly impacting performance metrics (p < 0.001). Clinical relevance DL models demonstrate high accuracy in breast cancer diagnosis using MRI, showing the potential to enhance diagnostic confidence and reduce radiologist workload, especially with larger datasets minimizing overfitting and improving clinical reliability.
Collapse
Affiliation(s)
- Kamarul Amin Abdullah
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Sara Marziali
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Department of Radiology and Radiotherapy, Istituto Nazionale dei Tumori, Milan, Italy
| | - Muzna Nanaa
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Lorena Escudero Sánchez
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, Cambridge, UK
| | - Nicholas R Payne
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
5
|
Rai HM, Yoo J, Dashkevych S. Transformative Advances in AI for Precise Cancer Detection: A Comprehensive Review of Non-Invasive Techniques. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING 2025. [DOI: 10.1007/s11831-024-10219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/07/2024] [Indexed: 03/02/2025]
|
6
|
Abimouloud ML, Bensid K, Elleuch M, Ammar MB, Kherallah M. Advancing breast cancer diagnosis: token vision transformers for faster and accurate classification of histopathology images. Vis Comput Ind Biomed Art 2025; 8:1. [PMID: 39775534 PMCID: PMC11711433 DOI: 10.1186/s42492-024-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The vision transformer (ViT) architecture, with its attention mechanism based on multi-head attention layers, has been widely adopted in various computer-aided diagnosis tasks due to its effectiveness in processing medical image information. ViTs are notably recognized for their complex architecture, which requires high-performance GPUs or CPUs for efficient model training and deployment in real-world medical diagnostic devices. This renders them more intricate than convolutional neural networks (CNNs). This difficulty is also challenging in the context of histopathology image analysis, where the images are both limited and complex. In response to these challenges, this study proposes a TokenMixer hybrid-architecture that combines the strengths of CNNs and ViTs. This hybrid architecture aims to enhance feature extraction and classification accuracy with shorter training time and fewer parameters by minimizing the number of input patches employed during training, while incorporating tokenization of input patches using convolutional layers and encoder transformer layers to process patches across all network layers for fast and accurate breast cancer tumor subtype classification. The TokenMixer mechanism is inspired by the ConvMixer and TokenLearner models. First, the ConvMixer model dynamically generates spatial attention maps using convolutional layers, enabling the extraction of patches from input images to minimize the number of input patches used in training. Second, the TokenLearner model extracts relevant regions from the selected input patches, tokenizes them to improve feature extraction, and trains all tokenized patches in an encoder transformer network. We evaluated the TokenMixer model on the BreakHis public dataset, comparing it with ViT-based and other state-of-the-art methods. Our approach achieved impressive results for both binary and multi-classification of breast cancer subtypes across various magnification levels (40×, 100×, 200×, 400×). The model demonstrated accuracies of 97.02% for binary classification and 93.29% for multi-classification, with decision times of 391.71 and 1173.56 s, respectively. These results highlight the potential of our hybrid deep ViT-CNN architecture for advancing tumor classification in histopathological images. The source code is accessible: https://github.com/abimouloud/TokenMixer .
Collapse
Affiliation(s)
- Mouhamed Laid Abimouloud
- National Engineering School of Sfax, University of Sfax, Sfax, Tunisia.
- Advanced Technologies for Environment and Smart Cities (ATES Unit), Sfax University, Sfax, Tunisia.
| | - Khaled Bensid
- Laboratory of Electrical Engineering (LAGE), University of KASDI Merbah Ouargla, 30000, Ouargla, Algeria
| | - Mohamed Elleuch
- National School of Computer Science (ENSI), University of Manouba, Manouba, Tunisia
- Advanced Technologies for Environment and Smart Cities (ATES Unit), Sfax University, Sfax, Tunisia
| | - Mohamed Ben Ammar
- Department of Information Systems, Faculty of Computing and Information Technology, Northern Border University, Rafha, Saudi Arabia
| | - Monji Kherallah
- Faculty of Sciences, Sfax, Tunisia
- Advanced Technologies for Environment and Smart Cities (ATES Unit), Sfax University, Sfax, Tunisia
| |
Collapse
|
7
|
Sait ARW, AlBalawi E, Nagaraj R. Ensemble learning driven Kolmogorov-Arnold Networks-based Lung Cancer classification. PLoS One 2024; 19:e0313386. [PMID: 39739892 DOI: 10.1371/journal.pone.0313386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/22/2024] [Indexed: 01/02/2025] Open
Abstract
Early Lung Cancer (LC) detection is essential for reducing the global mortality rate. The limitations of traditional diagnostic techniques cause challenges in identifying LC using medical imaging data. In this study, we aim to develop a robust LC detection model. Positron Emission Tomography / Computed Tomography (PET / CT) images are utilized to comprehend the metabolic and anatomical data, leading to optimal LC diagnosis. In order to extract multiple LC features, we enhance MobileNet V3 and LeViT models. The weighted sum feature fusion technique is used to generate unique LC features. The extracted features are classified using spline functions, including linear, cubic, and B-spline of Kolmogorov-Arnold Networks (KANs). We ensemble the outcomes using the soft-voting approach. The model is generalized using the Lung-PET-CT-DX dataset. Five-fold cross-validation is used to evaluate the model. The proposed LC detection model achieves an impressive accuracy of 99.0% with a minimal loss of 0.07. In addition, limited resources are required to classify PET / CT images. The high performance underscores the potential of the proposed LC detection model in providing valuable and optimal results. The study findings can significantly improve clinical practice by presenting sophisticated and interpretable outcomes. The proposed model can be enhanced by integrating advanced feature fusion techniques.
Collapse
Affiliation(s)
- Abdul Rahaman Wahab Sait
- Department of Archives and Communication, King Faisal University, Hofuf, Kingdom of Saudi Arabia
| | - Eid AlBalawi
- Department of Computer Science, College of Computer Science and Information Technology, King Faisal University, Al Hofuf, Kingdom of Saudi Arabia
| | - Ramprasad Nagaraj
- Department of Biochemistry, S S Hospital, S S Institute of Medical Sciences & Research Centre, Rajiv Gandhi University of Health Sciences, Davangere, Karnataka, India
| |
Collapse
|
8
|
Oulia F, Charton P, Lo-Thong-Viramoutou O, Acevedo-Rocha CG, Liu W, Huynh D, Damour C, Wang J, Cadet F. Metabolic Fluxes Using Deep Learning Based on Enzyme Variations: Application to Glycolysis in Entamoeba histolytica. Int J Mol Sci 2024; 25:13390. [PMID: 39769154 PMCID: PMC11676880 DOI: 10.3390/ijms252413390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic pathway modeling, essential for understanding organism metabolism, is pivotal in predicting genetic mutation effects, drug design, and biofuel development. Enhancing these modeling techniques is crucial for achieving greater prediction accuracy and reliability. However, the limited experimental data or the complexity of the pathway makes it challenging for researchers to predict phenotypes. Deep learning (DL) is known to perform better than other Machine Learning (ML) approaches if the right conditions are met (i.e., a large database and good choice of parameters). Here, we use a knowledge-based model to massively generate synthetic data and extend a small initial dataset of experimental values. The main objective is to assess if DL can perform at least as well as other ML approaches in flux prediction, using 68,950 instances. Two processing methods are used to generate DL models: cross-validation and repeated holdout evaluation. DL models predict the metabolic fluxes with high precision and slightly outperform the best-known ML approach (the Cubist model) with a lower RMSE (≤0.01) in both cases. They also outperform the PLS model (RMSE ≥ 30). This study is the first to use DL to predict the overall flux of a metabolic pathway only from variations of enzyme concentrations.
Collapse
Affiliation(s)
- Freddy Oulia
- BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France; (F.O.); (P.C.); (O.L.-T.-V.)
- Laboratory of Excellence GR-Ex, 75006 Paris, France
- DSIMB, UMR_S1134 BIGR, Inserm, Faculty of Sciences and Technology, University of Reunion, 97744 Saint-Denis, France
| | - Philippe Charton
- BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France; (F.O.); (P.C.); (O.L.-T.-V.)
- Laboratory of Excellence GR-Ex, 75006 Paris, France
- DSIMB, UMR_S1134 BIGR, Inserm, Faculty of Sciences and Technology, University of Reunion, 97744 Saint-Denis, France
| | - Ophélie Lo-Thong-Viramoutou
- BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France; (F.O.); (P.C.); (O.L.-T.-V.)
- Laboratory of Excellence GR-Ex, 75006 Paris, France
- DSIMB, UMR_S1134 BIGR, Inserm, Faculty of Sciences and Technology, University of Reunion, 97744 Saint-Denis, France
| | - Carlos G. Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Wei Liu
- Department of Computer Science and Software Engineering, School of Physics, Mathematics and Computing, The University of Western Australia, Perth 6009, Australia; (W.L.); (D.H.)
| | - Du Huynh
- Department of Computer Science and Software Engineering, School of Physics, Mathematics and Computing, The University of Western Australia, Perth 6009, Australia; (W.L.); (D.H.)
| | - Cédric Damour
- EnergyLab, EA 4079, Faculty of Sciences and Technology, University of Reunion, 97490 Saint-Denis, France;
| | - Jingbo Wang
- Department of Physics, School of Physics, Mathematics and Computing, The University of Western Australia, Perth 6009, Australia;
| | - Frederic Cadet
- BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France; (F.O.); (P.C.); (O.L.-T.-V.)
- Laboratory of Excellence GR-Ex, 75006 Paris, France
- DSIMB, UMR_S1134 BIGR, Inserm, Faculty of Sciences and Technology, University of Reunion, 97744 Saint-Denis, France
- Artificial Intelligence Department, PEACCEL, 75013 Paris, France
| |
Collapse
|
9
|
Braveen M, Nachiyappan S, Seetha R, Anusha K, Ahilan A, Prasanth A, Jeyam A. RETRACTED ARTICLE: ALBAE feature extraction based lung pneumonia and cancer classification. Soft comput 2024; 28:589. [PMID: 37362264 PMCID: PMC10187954 DOI: 10.1007/s00500-023-08453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 06/28/2023]
Affiliation(s)
- M. Braveen
- Assistant professor senior, School of
Computer Science and Engineering, Vellore
institute of technology, Chennai, Tamil
Nadu India
| | - S. Nachiyappan
- Associate Professor, School of
Computer Science and Engineering, Vellore
Institute of Technology, Chennai, Tamil
Nadu India
| | - R. Seetha
- Associate Professor, School of
Information Technology and Engineering,
Vellore Institute of Technology,
Vellore, Tamil Nadu India
| | - K. Anusha
- Associate Professor, School of
Computer Science and Engineering, Vellore
Institute of Technology, Chennai, Tamil
Nadu India
| | - A. Ahilan
- Associate Professor, Department of
Electronics and Communication Engineering,
PSN College of Engineering and Technology,
Tirunelveli, Tamil Nadu India
| | - A. Prasanth
- Assistant Professor, Department of
Electronics and Communication Engineering,
Sri Venkateswara College of Engineering,
Sriperumbudur, India
| | - A. Jeyam
- Assistant Professor, Computer Science and
Engineering, Lord Jegannath College of Engineering and Technology, Kanyakumari,
Tamil Nadu 629402 India
| |
Collapse
|
10
|
Frascarelli C, Venetis K, Marra A, Mane E, Ivanova M, Cursano G, Porta FM, Concardi A, Ceol AGM, Farina A, Criscitiello C, Curigliano G, Guerini-Rocco E, Fusco N. Deep learning algorithm on H&E whole slide images to characterize TP53 alterations frequency and spatial distribution in breast cancer. Comput Struct Biotechnol J 2024; 23:4252-4259. [PMID: 39678362 PMCID: PMC11638532 DOI: 10.1016/j.csbj.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
The tumor suppressor TP53 is frequently mutated in hormone receptor-negative, HER2-positive breast cancer (BC), contributing to tumor aggressiveness. Traditional ancillary methods like immunohistochemistry (IHC) to assess TP53 functionality face pre- and post-analytical challenges. This proof-of-concept study employed a deep learning (DL) algorithm to predict TP53 mutational status from H&E-stained whole slide images (WSIs) of BC tissue. Using a pre-trained convolutional neural network, the model identified tumor areas and predicted TP53 mutations with a Dice coefficient score of 0.82. Predictions were validated through IHC and next-generation sequencing (NGS), confirming TP53 aberrant expression in 92 % of the tumor area, closely matching IHC findings (90 %). The DL model exhibited high accuracy in tissue quantification and TP53 status prediction, outperforming traditional methods in terms of precision and efficiency. DL-based approaches offer significant promise for enhancing biomarker testing and precision oncology by reducing intra- and inter-observer variability, but further validation is required to optimize their integration into real-world clinical workflows. This study underscores the potential of DL algorithms to predict key genetic alterations, such as TP53 mutations, in BC. DL-based histopathological analysis represents a valuable tool for improving patient management and tailoring treatment approaches based on molecular biomarker status.
Collapse
Affiliation(s)
- Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Alberto Concardi
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Arnaud Gerard Michel Ceol
- Department of Information and Communications Technology, European Institute of Oncology IRCCS, Milan, Italy
| | - Annarosa Farina
- Department of Information and Communications Technology, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Rai HM, Yoo J, Razaque A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. EXPERT SYSTEMS WITH APPLICATIONS 2024; 255:124838. [DOI: 10.1016/j.eswa.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
12
|
Magdy O, Elaziz MA, Dahou A, Ewees AA, Elgarayhi A, Sallah M. Bone scintigraphy based on deep learning model and modified growth optimizer. Sci Rep 2024; 14:25627. [PMID: 39465262 PMCID: PMC11514163 DOI: 10.1038/s41598-024-73991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Bone scintigraphy is recognized as an efficient diagnostic method for whole-body screening for bone metastases. At the moment, whole-body bone scan image analysis is primarily dependent on manual reading by nuclear medicine doctors. However, manual analysis needs substantial experience and is both stressful and time-consuming. To address the aforementioned issues, this work proposed a machine-learning technique that uses phases to detect Bone scintigraphy. The first phase in the proposed model is the feature extraction and it was conducted based on integrating the Mobile Vision Transformer (MobileViT) model in our framework to capture highly complex representations from raw medical imagery using two primary components including ViT and lightweight CNN featuring a limited number of parameters. In addition, the second phase is named feature selection, and it is dependent on the Arithmetic Optimization Algorithm (AOA) being used to improve the Growth Optimizer (GO). We evaluate the performance of the proposed FS model, named GOAOA using a set of 18 UCI datasets. Additionally, the applicability of Bone scintigraphy for real-world application is evaluated using 2800 bone scan images (1400 normal and 1400 abnormal). The results and statistical analysis revealed that the proposed GOAOA algorithm as an FS technique outperforms the other FS algorithms employed in this study.
Collapse
Affiliation(s)
- Omnia Magdy
- Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Abd Elaziz
- Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
- Faculty of Computer Science and Engineering, Galala University, Suze, 435611, Egypt.
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, 346, United Arab Emirates.
| | - Abdelghani Dahou
- Mathematics and Computer Science department, University of Ahmed DRAIA, Adrar, 01000, Algeria
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China
| | - Ahmed A Ewees
- Department of Information System, College of Computing and Information Technology, University of Bisha, P.O Box 551, Bisha, 61922, Saudi Arabia
| | - Ahmed Elgarayhi
- Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed Sallah
- Department of Physics, College of Sciences, University of Bisha, P.O. Box 344, Bisha, 61922, Saudi Arabia
| |
Collapse
|
13
|
Khan S, Bhushan B. Machine Learning Predicts Patients With New-onset Diabetes at Risk of Pancreatic Cancer. J Clin Gastroenterol 2024; 58:681-691. [PMID: 37522752 DOI: 10.1097/mcg.0000000000001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND New-onset diabetes represent a high-risk cohort to screen for pancreatic cancer. GOALS Develop a machine model to predict pancreatic cancer among patients with new-onset diabetes. STUDY A retrospective cohort of patients with new-onset diabetes was assembled from multiple health care networks in the United States. An XGBoost machine learning model was designed from a portion of this cohort (the training set) and tested on the remaining part of the cohort (the test set). Shapley values were used to explain the XGBoost's model features. Model performance was compared with 2 contemporary models designed to predict pancreatic cancer among patients with new-onset diabetes. RESULTS In the test set, the XGBoost model had an area under the curve of 0.80 (0.76 to 0.85) compared with 0.63 and 0.68 for other models. Using cutoffs based on the Youden index, the sensitivity of the XGBoost model was 75%, the specificity was 70%, the accuracy was 70%, the positive predictive value was 1.2%, and the negative predictive value was >99%. The XGBoost model obtained a positive predictive value of at least 2.5% with a sensitivity of 38%. The XGBoost model was the only model that detected at least 50% of patients with cancer one year after the onset of diabetes. All 3 models had similar features that predicted pancreatic cancer, including older age, weight loss, and the rapid destabilization of glucose homeostasis. CONCLUSION Machine learning models isolate a high-risk cohort from those with new-onset diabetes at risk for pancreatic cancer.
Collapse
Affiliation(s)
- Salman Khan
- Department of Medicine, West Virginia University School of Medicine, West Virginia University, Morgantown, WV
- Northeast Ohio Medical University, Rootstown, OH
| | - Bharath Bhushan
- Department of Medicine, West Virginia University School of Medicine, West Virginia University, Morgantown, WV
| |
Collapse
|
14
|
Tong Y, Hu Z, Wang H, Huang J, Zhan Y, Chai W, Deng Y, Yuan Y, Shen K, Wang Y, Chen X, Yu J. Anti-HER2 therapy response assessment for guiding treatment (de-)escalation in early HER2-positive breast cancer using a novel deep learning radiomics model. Eur Radiol 2024; 34:5477-5486. [PMID: 38329503 PMCID: PMC11255056 DOI: 10.1007/s00330-024-10609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES Anti-HER2 targeted therapy significantly reduces risk of relapse in HER2 + breast cancer. New measures are needed for a precise risk stratification to guide (de-)escalation of anti-HER2 strategy. METHODS A total of 726 HER2 + cases who received no/single/dual anti-HER2 targeted therapies were split into three respective cohorts. A deep learning model (DeepTEPP) based on preoperative breast magnetic resonance (MR) was developed. Patients were scored and categorized into low-, moderate-, and high-risk groups. Recurrence-free survival (RFS) was compared in patients with different risk groups according to the anti-HER2 treatment they received, to validate the value of DeepTEPP in predicting treatment efficacy and guiding anti-HER2 strategy. RESULTS DeepTEPP was capable of risk stratification and guiding anti-HER2 treatment strategy: DeepTEPP-Low patients (60.5%) did not derive significant RFS benefit from trastuzumab (p = 0.144), proposing an anti-HER2 de-escalation. DeepTEPP-Moderate patients (19.8%) significantly benefited from trastuzumab (p = 0.048), but did not obtain additional improvements from pertuzumab (p = 0.125). DeepTEPP-High patients (19.7%) significantly benefited from dual HER2 blockade (p = 0.045), suggesting an anti-HER2 escalation. CONCLUSIONS DeepTEPP represents a pioneering MR-based deep learning model that enables the non-invasive prediction of adjuvant anti-HER2 effectiveness, thereby providing valuable guidance for anti-HER2 (de-)escalation strategies. DeepTEPP provides an important reference for choosing the appropriate individualized treatment in HER2 + breast cancer patients, warranting prospective validation. CLINICAL RELEVANCE STATEMENT We built an MR-based deep learning model DeepTEPP, which enables the non-invasive prediction of adjuvant anti-HER2 effectiveness, thus guiding anti-HER2 (de-)escalation strategies in early HER2-positive breast cancer patients. KEY POINTS • DeepTEPP is able to predict anti-HER2 effectiveness and to guide treatment (de-)escalation. • DeepTEPP demonstrated an impressive prognostic efficacy for recurrence-free survival and overall survival. • To our knowledge, this is one of the very few, also the largest study to test the efficacy of a deep learning model extracted from breast MR images on HER2-positive breast cancer survival and anti-HER2 therapy effectiveness prediction.
Collapse
Affiliation(s)
- Yiwei Tong
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhaoyu Hu
- School of Information Science and Technology, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Haoyu Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiahui Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ying Zhan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weimin Chai
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinhui Deng
- School of Information Science and Technology, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Ying Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
15
|
Goldstein Y, Cohen OT, Wald O, Bavli D, Kaplan T, Benny O. Particle uptake in cancer cells can predict malignancy and drug resistance using machine learning. SCIENCE ADVANCES 2024; 10:eadj4370. [PMID: 38809990 PMCID: PMC11314625 DOI: 10.1126/sciadv.adj4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Tumor heterogeneity is a primary factor that contributes to treatment failure. Predictive tools, capable of classifying cancer cells based on their functions, may substantially enhance therapy and extend patient life span. The connection between cell biomechanics and cancer cell functions is used here to classify cells through mechanical measurements, via particle uptake. Machine learning (ML) was used to classify cells based on single-cell patterns of uptake of particles with diverse sizes. Three pairs of human cancer cell subpopulations, varied in their level of drug resistance or malignancy, were studied. Cells were allowed to interact with fluorescently labeled polystyrene particles ranging in size from 0.04 to 3.36 μm and analyzed for their uptake patterns using flow cytometry. ML algorithms accurately classified cancer cell subtypes with accuracy rates exceeding 95%. The uptake data were especially advantageous for morphologically similar cell subpopulations. Moreover, the uptake data were found to serve as a form of "normalization" that could reduce variation in repeated experiments.
Collapse
Affiliation(s)
- Yoel Goldstein
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ora T. Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ori Wald
- Department of Cardiothoracic Surgery, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danny Bavli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
16
|
Romanò S, Nele V, Campani V, De Rosa G, Cinti S. A comprehensive guide to extract information from extracellular vesicles: a tutorial review towards novel analytical developments. Anal Chim Acta 2024; 1302:342473. [PMID: 38580402 DOI: 10.1016/j.aca.2024.342473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.
Collapse
Affiliation(s)
- Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Italy.
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Italy
| | | | | | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
17
|
Shafi I, Ansari S, Din S, Ashraf I. Cancer detection and classification using a simplified binary state vector machine. Med Biol Eng Comput 2024; 62:1491-1501. [PMID: 38300437 DOI: 10.1007/s11517-023-03012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Cancer is an invasive and malignant growth of cells and is known to be one of the most fatal diseases. Its early detection is essential for decreasing the mortality rate and increasing the probability of survival. This study presents an efficient machine learning approach based on the state vector machine (SVM) to diagnose and classify tumors into malignant or benign cancer using the online lymphographic data. Further, two types of neural network architectures are also implemented to evaluate the performance of the proposed SVM-based approach. The optimal structures of the classifiers are obtained by varying the architecture, topology, learning rate, and kernel function and recording the results' accuracy. The classifiers are trained with the preprocessed data examples after noise removal and tested on the unknown cases to diagnose each example as positive or negative. Further, the positive cases are classified into different stages including metastases, malign lymph, and fibrosis. The results are evaluated against the feed-forward and generalized regression neural networks. It is found that the proposed SVM-based approach significantly improves the early detection and classification accuracy in comparison to the experienced physicians and the other machine learning approaches. The proposed approach is robust and can perform sub-class divisions for multipurpose tasks. Experimental results demonstrate that the two-class SVM gives the best results and can effectively be used for the classification of cancer. It has outperformed all other classifiers with an average accuracy of 94.90%.
Collapse
Affiliation(s)
- Imran Shafi
- College of Electrical & Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Sana Ansari
- College of Electrical & Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Sadia Din
- Department of Information & Communication Engineering, Yeungnam University, Gyeongsan, Korea.
| | - Imran Ashraf
- Department of Information & Communication Engineering, Yeungnam University, Gyeongsan, Korea.
| |
Collapse
|
18
|
Rai HM, Yoo J, Atif Moqurrab S, Dashkevych S. Advancements in traditional machine learning techniques for detection and diagnosis of fatal cancer types: Comprehensive review of biomedical imaging datasets. MEASUREMENT 2024; 225:114059. [DOI: 10.1016/j.measurement.2023.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
19
|
Rai HM, Yoo J. Analysis of Colorectal and Gastric Cancer Classification: A Mathematical Insight Utilizing Traditional Machine Learning Classifiers. MATHEMATICS 2023; 11:4937. [DOI: 10.3390/math11244937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cancer remains a formidable global health challenge, claiming millions of lives annually. Timely and accurate cancer diagnosis is imperative. While numerous reviews have explored cancer classification using machine learning and deep learning techniques, scant literature focuses on traditional ML methods. In this manuscript, we undertake a comprehensive review of colorectal and gastric cancer detection specifically employing traditional ML classifiers. This review emphasizes the mathematical underpinnings of cancer detection, encompassing preprocessing techniques, feature extraction, machine learning classifiers, and performance assessment metrics. We provide mathematical formulations for these key components. Our analysis is limited to peer-reviewed articles published between 2017 and 2023, exclusively considering medical imaging datasets. Benchmark and publicly available imaging datasets for colorectal and gastric cancers are presented. This review synthesizes findings from 20 articles on colorectal cancer and 16 on gastric cancer, culminating in a total of 36 research articles. A significant focus is placed on mathematical formulations for commonly used preprocessing techniques, features, ML classifiers, and assessment metrics. Crucially, we introduce our optimized methodology for the detection of both colorectal and gastric cancers. Our performance metrics analysis reveals remarkable results: 100% accuracy in both cancer types, but with the lowest sensitivity recorded at 43.1% for gastric cancer.
Collapse
Affiliation(s)
- Hari Mohan Rai
- School of Computing, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Joon Yoo
- School of Computing, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
20
|
Sadeghi MH, Sina S, Alavi M, Giammarile F. The OCDA-Net: a 3D convolutional neural network-based system for classification and staging of ovarian cancer patients using [ 18F]FDG PET/CT examinations. Ann Nucl Med 2023; 37:645-654. [PMID: 37768493 DOI: 10.1007/s12149-023-01867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE To create the 3D convolutional neural network (CNN)-based system that can use whole-body [18F]FDG PET for recurrence/post-therapy surveillance in ovarian cancer (OC). METHODS In this study, 1224 image sets from OC patients who underwent whole-body [18F]FDG PET/CT at Kowsar Hospital between April 2019 and May 2022 were investigated. For recurrence/post-therapy surveillance, diagnostic classification as cancerous, and non-cancerous and staging as stage III, and stage IV were determined by pathological diagnosis and specialists' interpretation. New deep neural network algorithms, the OCDAc-Net, and the OCDAs-Net were developed for diagnostic classification and staging of OC patients using [18F]FDG PET/CT images. Examinations were divided into independent training (75%), validation (10%), and testing (15%) subsets. RESULTS This study included 37 women (mean age 56.3 years; age range 36-83 years). Data augmentation techniques were applied to the images in two phases. There were 1224 image sets for diagnostic classification and staging. For the test set, 170 image sets were considered for diagnostic classification and staging. The OCDAc-Net areas under the receiver operating characteristic curve (AUCs) and overall accuracy for diagnostic classification were 0.990 and 0.92, respectively. The OCDAs-Net achieved areas under the receiver operating characteristic curve (AUCs) of 0.995 and overall accuracy of 0.94 for staging. CONCLUSIONS The proposed 3D CNN-based models provide potential tools for recurrence/post-therapy surveillance in OC. The OCDAc-Net and the OCDAs-Net model provide a new prognostic analysis method that can utilize PET images without pathological findings for diagnostic classification and staging.
Collapse
Affiliation(s)
- Mohammad Hossein Sadeghi
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Sedigheh Sina
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
- Radiation Research Center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| | - Mehrosadat Alavi
- Department of Nuclear Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
21
|
Huang HY, Hsiao YP, Karmakar R, Mukundan A, Chaudhary P, Hsieh SC, Wang HC. A Review of Recent Advances in Computer-Aided Detection Methods Using Hyperspectral Imaging Engineering to Detect Skin Cancer. Cancers (Basel) 2023; 15:5634. [PMID: 38067338 PMCID: PMC10705122 DOI: 10.3390/cancers15235634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 08/15/2024] Open
Abstract
Skin cancer, a malignant neoplasm originating from skin cell types including keratinocytes, melanocytes, and sweat glands, comprises three primary forms: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and malignant melanoma (MM). BCC and SCC, while constituting the most prevalent categories of skin cancer, are generally considered less aggressive compared to MM. Notably, MM possesses a greater capacity for invasiveness, enabling infiltration into adjacent tissues and dissemination via both the circulatory and lymphatic systems. Risk factors associated with skin cancer encompass ultraviolet (UV) radiation exposure, fair skin complexion, a history of sunburn incidents, genetic predisposition, immunosuppressive conditions, and exposure to environmental carcinogens. Early detection of skin cancer is of paramount importance to optimize treatment outcomes and preclude the progression of disease, either locally or to distant sites. In pursuit of this objective, numerous computer-aided diagnosis (CAD) systems have been developed. Hyperspectral imaging (HSI), distinguished by its capacity to capture information spanning the electromagnetic spectrum, surpasses conventional RGB imaging, which relies solely on three color channels. Consequently, this study offers a comprehensive exploration of recent CAD investigations pertaining to skin cancer detection and diagnosis utilizing HSI, emphasizing diagnostic performance parameters such as sensitivity and specificity.
Collapse
Affiliation(s)
- Hung-Yi Huang
- Department of Dermatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia Yi City 60002, Taiwan;
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan;
- Institute of Medicine, School of Medicine, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
| | - Pramod Chaudhary
- Department of Aeronautical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600 062, India;
| | - Shang-Chin Hsieh
- Department of Plastic Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
- Department of Medical Research, Dalin Tzu Chi General Hospital, No. 2, Min-Sheng Rd., Dalin Town, Chia Yi City 62247, Taiwan
- Technology Development, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung 80661, Taiwan
| |
Collapse
|
22
|
Ayoola MB, Pillai N, Nanduri B, Rothrock MJ, Ramkumar M. Predicting foodborne pathogens and probiotics taxa within poultry-related microbiomes using a machine learning approach. Anim Microbiome 2023; 5:57. [PMID: 37968727 PMCID: PMC10648331 DOI: 10.1186/s42523-023-00260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/23/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Microbiomes that can serve as an indicator of gut, intestinal, and general health of humans and animals are largely influenced by food consumed and contaminant bioagents. Microbiome studies usually focus on estimating the alpha (within sample) and beta (similarity/dissimilarity among samples) diversities. This study took a combinatorial approach and applied machine learning to microbiome data to predict the presence of disease-causing pathogens and their association with known/potential probiotic taxa. Probiotics are beneficial living microorganisms capable of improving the host organism's digestive system, immune function and ultimately overall health. Here, 16 S rRNA gene high-throughput Illumina sequencing of temporal pre-harvest (feces, soil) samples of 42 pastured poultry flocks (poultry in this entire work solely refers to chickens) from southeastern U.S. farms was used to generate the relative abundance of operational taxonomic units (OTUs) as machine learning input. Unique genera from the OTUs were used as predictors of the prevalence of foodborne pathogens (Salmonella, Campylobacter and Listeria) at different stages of poultry growth (START (2-4 weeks old), MID (5-7 weeks old), END (8-11 weeks old)), association with farm management practices and physicochemical properties. RESULT While we did not see any significant associations between known probiotics and Salmonella or Listeria, we observed significant negative correlations between known probiotics (Bacillus and Clostridium) and Campylobacter at the mid-time point of sample collection. Our data indicates a negative correlation between potential probiotics and Campylobacter at both early and end-time points of sample collection. Furthermore, our model prediction shows that changes in farm operations such as how often the houses are moved on the pasture, age at which chickens are introduced to the pasture, diet composition and presence of other animals on the farm could favorably increase the abundance and activity of probiotics that could reduce Campylobacter prevalence. CONCLUSION Integration of microbiome data with farm management practices using machine learning provided insights on how to reduce Campylobacter prevalence and transmission along the farm-to-fork continuum. Altering management practices to support proliferation of beneficial probiotics to reduce pathogen prevalence identified here could constitute a complementary method to the existing but ineffective interventions such as vaccination and bacteriophage cocktails usage. Study findings also corroborate the presence of bacterial genera such as Caloramator, DA101, Parabacteroides and Faecalibacterium as potential probiotics.
Collapse
Affiliation(s)
- Moses B Ayoola
- Geosystems Research Institute, Mississippi State University, Starkville, MS, 39762, USA
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, 39762, USA
| | - Nisha Pillai
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS, 39762, USA
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, 39762, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, USDA-ARS U.S. National Poultry Research Center, Athens, GA 30605, USA
| | - Mahalingam Ramkumar
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS, 39762, USA.
| |
Collapse
|
23
|
Rai HM, Yoo J. A comprehensive analysis of recent advancements in cancer detection using machine learning and deep learning models for improved diagnostics. J Cancer Res Clin Oncol 2023; 149:14365-14408. [PMID: 37540254 DOI: 10.1007/s00432-023-05216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE There are millions of people who lose their life due to several types of fatal diseases. Cancer is one of the most fatal diseases which may be due to obesity, alcohol consumption, infections, ultraviolet radiation, smoking, and unhealthy lifestyles. Cancer is abnormal and uncontrolled tissue growth inside the body which may be spread to other body parts other than where it has originated. Hence it is very much required to diagnose the cancer at an early stage to provide correct and timely treatment. Also, manual diagnosis and diagnostic error may cause of the death of many patients hence much research are going on for the automatic and accurate detection of cancer at early stage. METHODS In this paper, we have done the comparative analysis of the diagnosis and recent advancement for the detection of various cancer types using traditional machine learning (ML) and deep learning (DL) models. In this study, we have included four types of cancers, brain, lung, skin, and breast and their detection using ML and DL techniques. In extensive review we have included a total of 130 pieces of literature among which 56 are of ML-based and 74 are from DL-based cancer detection techniques. Only the peer reviewed research papers published in the recent 5-year span (2018-2023) have been included for the analysis based on the parameters, year of publication, feature utilized, best model, dataset/images utilized, and best accuracy. We have reviewed ML and DL-based techniques for cancer detection separately and included accuracy as the performance evaluation metrics to maintain the homogeneity while verifying the classifier efficiency. RESULTS Among all the reviewed literatures, DL techniques achieved the highest accuracy of 100%, while ML techniques achieved 99.89%. The lowest accuracy achieved using DL and ML approaches were 70% and 75.48%, respectively. The difference in accuracy between the highest and lowest performing models is about 28.8% for skin cancer detection. In addition, the key findings, and challenges for each type of cancer detection using ML and DL techniques have been presented. The comparative analysis between the best performing and worst performing models, along with overall key findings and challenges, has been provided for future research purposes. Although the analysis is based on accuracy as the performance metric and various parameters, the results demonstrate a significant scope for improvement in classification efficiency. CONCLUSION The paper concludes that both ML and DL techniques hold promise in the early detection of various cancer types. However, the study identifies specific challenges that need to be addressed for the widespread implementation of these techniques in clinical settings. The presented results offer valuable guidance for future research in cancer detection, emphasizing the need for continued advancements in ML and DL-based approaches to improve diagnostic accuracy and ultimately save more lives.
Collapse
Affiliation(s)
- Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea.
| | - Joon Yoo
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
24
|
Zhang L, LaBelle W, Unberath M, Chen H, Hu J, Li G, Dreizin D. A vendor-agnostic, PACS integrated, and DICOM-compatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow. Front Med (Lausanne) 2023; 10:1241570. [PMID: 37954555 PMCID: PMC10637622 DOI: 10.3389/fmed.2023.1241570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Background Reproducible approaches are needed to bring AI/ML for medical image analysis closer to the bedside. Investigators wishing to shadow test cross-sectional medical imaging segmentation algorithms on new studies in real-time will benefit from simple tools that integrate PACS with on-premises image processing, allowing visualization of DICOM-compatible segmentation results and volumetric data at the radiology workstation. Purpose In this work, we develop and release a simple containerized and easily deployable pipeline for shadow testing of segmentation algorithms within the clinical workflow. Methods Our end-to-end automated pipeline has two major components- 1. A router/listener and anonymizer and an OHIF web viewer backstopped by a DCM4CHEE DICOM query/retrieve archive deployed in the virtual infrastructure of our secure hospital intranet, and 2. An on-premises single GPU workstation host for DICOM/NIfTI conversion steps, and image processing. DICOM images are visualized in OHIF along with their segmentation masks and associated volumetry measurements (in mL) using DICOM SEG and structured report (SR) elements. Since nnU-net has emerged as a widely-used out-of-the-box method for training segmentation models with state-of-the-art performance, feasibility of our pipleine is demonstrated by recording clock times for a traumatic pelvic hematoma nnU-net model. Results Mean total clock time from PACS send by user to completion of transfer to the DCM4CHEE query/retrieve archive was 5 min 32 s (± SD of 1 min 26 s). This compares favorably to the report turnaround times for whole-body CT exams, which often exceed 30 min, and illustrates feasibility in the clinical setting where quantitative results would be expected prior to report sign-off. Inference times accounted for most of the total clock time, ranging from 2 min 41 s to 8 min 27 s. All other virtual and on-premises host steps combined ranged from a minimum of 34 s to a maximum of 48 s. Conclusion The software worked seamlessly with an existing PACS and could be used for deployment of DL models within the radiology workflow for prospective testing on newly scanned patients. Once configured, the pipeline is executed through one command using a single shell script. The code is made publicly available through an open-source license at "https://github.com/vastc/," and includes a readme file providing pipeline config instructions for host names, series filter, other parameters, and citation instructions for this work.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Wayne LaBelle
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Mathias Unberath
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Haomin Chen
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jiazhen Hu
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Guang Li
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - David Dreizin
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
25
|
Ma X, Pierce E, Anand H, Aviles N, Kunk P, Alemazkoor N. Early prediction of response to palliative chemotherapy in patients with stage-IV gastric and esophageal cancer. BMC Cancer 2023; 23:910. [PMID: 37759332 PMCID: PMC10536729 DOI: 10.1186/s12885-023-11422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The goal of therapy for many patients with advanced stage malignancies, including those with metastatic gastric and esophageal cancers, is to extend overall survival while also maintaining quality of life. After weighing the risks and benefits of treatment with palliative chemotherapy (PC) with non-curative intent, many patients decide to pursue treatment. It is known that a subset of patients who are treated with PC experience significant side effects without clinically significant survival benefits from PC. METHODS We use data from 150 patients with stage-IV gastric and esophageal cancers to train machine learning models that predict whether a patient with stage-IV gastric or esophageal cancers would benefit from PC, in terms of increased survival duration, at very early stages of the treatment. RESULTS Our findings show that machine learning can predict with high accuracy whether a patient will benefit from PC at the time of diagnosis. More accurate predictions can be obtained after only two cycles of PC (i.e., about 4 weeks after diagnosis). The results from this study are promising with regard to potential improvements in quality of life for patients near the end of life and a potential overall survival benefit by optimizing systemic therapy earlier in the treatment course of patients.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- Department of Statistics, University of Virginia, Charlottesville, USA
| | - Eric Pierce
- School of Medicine, University of Virginia, Charlottesville, USA
| | - Harsh Anand
- System and Information Engineering, University of Virginia, Charlottesville, USA
| | - Natalie Aviles
- Department of Sociology, University of Virginia, Charlottesville, USA
| | - Paul Kunk
- School of Medicine, University of Virginia, Charlottesville, USA
| | - Negin Alemazkoor
- System and Information Engineering, University of Virginia, Charlottesville, USA.
| |
Collapse
|
26
|
Rai HM. Cancer detection and segmentation using machine learning and deep learning techniques: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 83:27001-27035. [DOI: 10.1007/s11042-023-16520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 05/12/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
|
27
|
Adam R, Dell'Aquila K, Hodges L, Maldjian T, Duong TQ. Deep learning applications to breast cancer detection by magnetic resonance imaging: a literature review. Breast Cancer Res 2023; 25:87. [PMID: 37488621 PMCID: PMC10367400 DOI: 10.1186/s13058-023-01687-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Deep learning analysis of radiological images has the potential to improve diagnostic accuracy of breast cancer, ultimately leading to better patient outcomes. This paper systematically reviewed the current literature on deep learning detection of breast cancer based on magnetic resonance imaging (MRI). The literature search was performed from 2015 to Dec 31, 2022, using Pubmed. Other database included Semantic Scholar, ACM Digital Library, Google search, Google Scholar, and pre-print depositories (such as Research Square). Articles that were not deep learning (such as texture analysis) were excluded. PRISMA guidelines for reporting were used. We analyzed different deep learning algorithms, methods of analysis, experimental design, MRI image types, types of ground truths, sample sizes, numbers of benign and malignant lesions, and performance in the literature. We discussed lessons learned, challenges to broad deployment in clinical practice and suggested future research directions.
Collapse
Affiliation(s)
- Richard Adam
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kevin Dell'Aquila
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Laura Hodges
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Takouhie Maldjian
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
28
|
Jain S, Naicker D, Raj R, Patel V, Hu YC, Srinivasan K, Jen CP. Computational Intelligence in Cancer Diagnostics: A Contemporary Review of Smart Phone Apps, Current Problems, and Future Research Potentials. Diagnostics (Basel) 2023; 13:diagnostics13091563. [PMID: 37174954 PMCID: PMC10178016 DOI: 10.3390/diagnostics13091563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a dangerous and sometimes life-threatening disease that can have several negative consequences for the body, is a leading cause of mortality, and is becoming increasingly difficult to detect. Each form of cancer has its own set of traits, symptoms, and therapies, and early identification and management are important for a positive prognosis. Doctors utilize a variety of approaches to detect cancer, depending on the kind and location of the tumor. Imaging tests such as X-rays, Computed Tomography scans, Magnetic Resonance Imaging scans, and Positron Emission Tomography (PET) scans, which may provide precise pictures of the body's interior structures to spot any abnormalities, are some of the tools that doctors use to diagnose cancer. This article evaluates computational-intelligence approaches and provides a means to impact future work by focusing on the relevance of machine learning and deep learning models such as K Nearest Neighbour (KNN), Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Deep Neural Network, Deep Boltzmann machine, and so on. It evaluates information from 114 studies using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). This article explores the advantages and disadvantages of each model and provides an outline of how they are used in cancer diagnosis. In conclusion, artificial intelligence shows significant potential to enhance cancer imaging and diagnosis, despite the fact that there are a number of clinical issues that need to be addressed.
Collapse
Affiliation(s)
- Somit Jain
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Dharmik Naicker
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Ritu Raj
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Vedanshu Patel
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Yuh-Chung Hu
- Department of Mechanical and Electromechanical Engineering, National ILan University, Yilan 26047, Taiwan
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Chun-Ping Jen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan
| |
Collapse
|
29
|
Zhang L, LaBelle W, Unberath M, Chen H, Hu J, Li G, Dreizin D. A vendor-agnostic, PACS integrated, and DICOMcompatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow. RESEARCH SQUARE 2023:rs.3.rs-2837634. [PMID: 37163064 PMCID: PMC10168465 DOI: 10.21203/rs.3.rs-2837634/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Reproducible approaches are needed to bring AI/ML for medical image analysis closer to the bedside. Investigators wishing to shadow test cross-sectional medical imaging segmentation algorithms on new studies in real-time will benefit from simple tools that integrate PACS with on-premises image processing, allowing visualization of DICOM-compatible segmentation results and volumetric data at the radiology workstation. Purpose In this work, we develop and release a simple containerized and easily deployable pipeline for shadow testing of segmentation algorithms within the clinical workflow. Methods Our end-to-end automated pipeline has two major components-1. a router/listener and anonymizer and an OHIF web viewer backstopped by a DCM4CHEE DICOM query/retrieve archive deployed in the virtual infrastructure of our secure hospital intranet, and 2. An on-premises single GPU workstation host for DICOM/NIfTI conversion steps, and image processing. DICOM images are visualized in OHIF along with their segmentation masks and associated volumetry measurements (in mL) using DICOM SEG and structured report (SR) elements. Feasibility is demonstrated by recording clock times for a traumatic pelvic hematoma cascaded nnU-net model. Results Mean total clock time from PACS send by user to completion of transfer to the DCM4CHEE query/retrieve archive was 5 minutes 32 seconds (+/- SD of 1 min 26 sec). This compares favorably to the report turnaround times for whole-body CT exams, which often exceed 30 minutes. Inference times accounted for most of the total clock time, ranging from 2 minutes 41 seconds to 8 minutes 27 seconds. All other virtual and on-premises host steps combined ranged from a minimum of 34 seconds to a maximum of 48 seconds. Conclusion The software worked seamlessly with an existing PACS and could be used for deployment of DL models within the radiology workflow for prospective testing on newly scanned patients. Once configured, the pipeline is executed through one command using a single shell script. The code is made publicly available through an open-source license at "https://github.com/vastc/", and includes a readme file providing pipeline config instructions for host names, series filter, other parameters, and citation instructions for this work.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang Li
- University of Maryland, Baltimore
| | | |
Collapse
|
30
|
Zhao X, Jiang C. The prediction of distant metastasis risk for male breast cancer patients based on an interpretable machine learning model. BMC Med Inform Decis Mak 2023; 23:74. [PMID: 37085843 PMCID: PMC10120176 DOI: 10.1186/s12911-023-02166-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVES This research was designed to compare the ability of different machine learning (ML) models and nomogram to predict distant metastasis in male breast cancer (MBC) patients and to interpret the optimal ML model by SHapley Additive exPlanations (SHAP) framework. METHODS Four powerful ML models were developed using data from male breast cancer (MBC) patients in the SEER database between 2010 and 2015 and MBC patients from our hospital between 2010 and 2020. The area under curve (AUC) and Brier score were used to assess the capacity of different models. The Delong test was applied to compare the performance of the models. Univariable and multivariable analysis were conducted using logistic regression. RESULTS Of 2351 patients were analyzed; 168 (7.1%) had distant metastasis (M1); 117 (5.0%) had bone metastasis, and 71 (3.0%) had lung metastasis. The median age at diagnosis is 68.0 years old. Most patients did not receive radiotherapy (1723, 73.3%) or chemotherapy (1447, 61.5%). The XGB model was the best ML model for predicting M1 in MBC patients. It showed the largest AUC value in the tenfold cross validation (AUC:0.884; SD:0.02), training (AUC:0.907; 95% CI: 0.899-0.917), testing (AUC:0.827; 95% CI: 0.802-0.857) and external validation (AUC:0.754; 95% CI: 0.739-0.771) sets. It also showed powerful ability in the prediction of bone metastasis (AUC: 0.880, 95% CI: 0.856-0.903 in the training set; AUC: 0.823, 95% CI:0.790-0.848 in the test set; AUC: 0.747, 95% CI: 0.727-0.764 in the external validation set) and lung metastasis (AUC: 0.906, 95% CI: 0.877-0.928 in training set; AUC: 0.859, 95% CI: 0.816-0.891 in the test set; AUC: 0.756, 95% CI: 0.732-0.777 in the external validation set). The AUC value of the XGB model was larger than that of nomogram in the training (0.907 vs 0.802) and external validation (0.754 vs 0.706) sets. CONCLUSIONS The XGB model is a better predictor of distant metastasis among MBC patients than other ML models and nomogram; furthermore, the XGB model is a powerful model for predicting bone and lung metastasis. Combining with SHAP values, it could help doctors intuitively understand the impact of each variable on outcome.
Collapse
Affiliation(s)
- Xuhai Zhao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Cong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
31
|
Hussain S, Haider S, Maqsood S, Damaševičius R, Maskeliūnas R, Khan M. ETISTP: An Enhanced Model for Brain Tumor Identification and Survival Time Prediction. Diagnostics (Basel) 2023; 13:diagnostics13081456. [PMID: 37189556 DOI: 10.3390/diagnostics13081456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Technology-assisted diagnosis is increasingly important in healthcare systems. Brain tumors are a leading cause of death worldwide, and treatment plans rely heavily on accurate survival predictions. Gliomas, a type of brain tumor, have particularly high mortality rates and can be further classified as low- or high-grade, making survival prediction challenging. Existing literature provides several survival prediction models that use different parameters, such as patient age, gross total resection status, tumor size, or tumor grade. However, accuracy is often lacking in these models. The use of tumor volume instead of size may improve the accuracy of survival prediction. In response to this need, we propose a novel model, the enhanced brain tumor identification and survival time prediction (ETISTP), which computes tumor volume, classifies it into low- or high-grade glioma, and predicts survival time with greater accuracy. The ETISTP model integrates four parameters: patient age, survival days, gross total resection (GTR) status, and tumor volume. Notably, ETISTP is the first model to employ tumor volume for prediction. Furthermore, our model minimizes the computation time by allowing for parallel execution of tumor volume computation and classification. The simulation results demonstrate that ETISTP outperforms prominent survival prediction models.
Collapse
Affiliation(s)
- Shah Hussain
- Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Shahab Haider
- Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Sarmad Maqsood
- Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
| | - Rytis Maskeliūnas
- Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Muzammil Khan
- Department of Computer & Software Technology, University of Swat, Swat 19200, Pakistan
| |
Collapse
|
32
|
Mokoatle M, Marivate V, Mapiye D, Bornman R, Hayes VM. A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application. BMC Bioinformatics 2023; 24:112. [PMID: 36959534 PMCID: PMC10037872 DOI: 10.1186/s12859-023-05235-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Using visual, biological, and electronic health records data as the sole input source, pretrained convolutional neural networks and conventional machine learning methods have been heavily employed for the identification of various malignancies. Initially, a series of preprocessing steps and image segmentation steps are performed to extract region of interest features from noisy features. Then, the extracted features are applied to several machine learning and deep learning methods for the detection of cancer. METHODS In this work, a review of all the methods that have been applied to develop machine learning algorithms that detect cancer is provided. With more than 100 types of cancer, this study only examines research on the four most common and prevalent cancers worldwide: lung, breast, prostate, and colorectal cancer. Next, by using state-of-the-art sentence transformers namely: SBERT (2019) and the unsupervised SimCSE (2021), this study proposes a new methodology for detecting cancer. This method requires raw DNA sequences of matched tumor/normal pair as the only input. The learnt DNA representations retrieved from SBERT and SimCSE will then be sent to machine learning algorithms (XGBoost, Random Forest, LightGBM, and CNNs) for classification. As far as we are aware, SBERT and SimCSE transformers have not been applied to represent DNA sequences in cancer detection settings. RESULTS The XGBoost model, which had the highest overall accuracy of 73 ± 0.13 % using SBERT embeddings and 75 ± 0.12 % using SimCSE embeddings, was the best performing classifier. In light of these findings, it can be concluded that incorporating sentence representations from SimCSE's sentence transformer only marginally improved the performance of machine learning models.
Collapse
Affiliation(s)
- Mpho Mokoatle
- Department of Computer Science, University of Pretoria, Pretoria, South Africa.
| | - Vukosi Marivate
- Department of Computer Science, University of Pretoria, Pretoria, South Africa
| | | | - Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- School of Medical Sciences, The University of Sydney, Sydney, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Systematic Review of Tumor Segmentation Strategies for Bone Metastases. Cancers (Basel) 2023; 15:cancers15061750. [PMID: 36980636 PMCID: PMC10046265 DOI: 10.3390/cancers15061750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Purpose: To investigate the segmentation approaches for bone metastases in differentiating benign from malignant bone lesions and characterizing malignant bone lesions. Method: The literature search was conducted in Scopus, PubMed, IEEE and MedLine, and Web of Science electronic databases following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 77 original articles, 24 review articles, and 1 comparison paper published between January 2010 and March 2022 were included in the review. Results: The results showed that most studies used neural network-based approaches (58.44%) and CT-based imaging (50.65%) out of 77 original articles. However, the review highlights the lack of a gold standard for tumor boundaries and the need for manual correction of the segmentation output, which largely explains the absence of clinical translation studies. Moreover, only 19 studies (24.67%) specifically mentioned the feasibility of their proposed methods for use in clinical practice. Conclusion: Development of tumor segmentation techniques that combine anatomical information and metabolic activities is encouraging despite not having an optimal tumor segmentation method for all applications or can compensate for all the difficulties built into data limitations.
Collapse
|
34
|
AI-Powered Diagnosis of Skin Cancer: A Contemporary Review, Open Challenges and Future Research Directions. Cancers (Basel) 2023; 15:cancers15041183. [PMID: 36831525 PMCID: PMC9953963 DOI: 10.3390/cancers15041183] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Skin cancer continues to remain one of the major healthcare issues across the globe. If diagnosed early, skin cancer can be treated successfully. While early diagnosis is paramount for an effective cure for cancer, the current process requires the involvement of skin cancer specialists, which makes it an expensive procedure and not easily available and affordable in developing countries. This dearth of skin cancer specialists has given rise to the need to develop automated diagnosis systems. In this context, Artificial Intelligence (AI)-based methods have been proposed. These systems can assist in the early detection of skin cancer and can consequently lower its morbidity, and, in turn, alleviate the mortality rate associated with it. Machine learning and deep learning are branches of AI that deal with statistical modeling and inference, which progressively learn from data fed into them to predict desired objectives and characteristics. This survey focuses on Machine Learning and Deep Learning techniques deployed in the field of skin cancer diagnosis, while maintaining a balance between both techniques. A comparison is made to widely used datasets and prevalent review papers, discussing automated skin cancer diagnosis. The study also discusses the insights and lessons yielded by the prior works. The survey culminates with future direction and scope, which will subsequently help in addressing the challenges faced within automated skin cancer diagnosis.
Collapse
|
35
|
Maurya S, Tiwari S, Mothukuri MC, Tangeda CM, Nandigam RNS, Addagiri DC. A review on recent developments in cancer detection using Machine Learning and Deep Learning models. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Nasser M, Yusof UK. Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction. Diagnostics (Basel) 2023; 13:diagnostics13010161. [PMID: 36611453 PMCID: PMC9818155 DOI: 10.3390/diagnostics13010161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is one of the precarious conditions that affect women, and a substantive cure has not yet been discovered for it. With the advent of Artificial intelligence (AI), recently, deep learning techniques have been used effectively in breast cancer detection, facilitating early diagnosis and therefore increasing the chances of patients' survival. Compared to classical machine learning techniques, deep learning requires less human intervention for similar feature extraction. This study presents a systematic literature review on the deep learning-based methods for breast cancer detection that can guide practitioners and researchers in understanding the challenges and new trends in the field. Particularly, different deep learning-based methods for breast cancer detection are investigated, focusing on the genomics and histopathological imaging data. The study specifically adopts the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), which offer a detailed analysis and synthesis of the published articles. Several studies were searched and gathered, and after the eligibility screening and quality evaluation, 98 articles were identified. The results of the review indicated that the Convolutional Neural Network (CNN) is the most accurate and extensively used model for breast cancer detection, and the accuracy metrics are the most popular method used for performance evaluation. Moreover, datasets utilized for breast cancer detection and the evaluation metrics are also studied. Finally, the challenges and future research direction in breast cancer detection based on deep learning models are also investigated to help researchers and practitioners acquire in-depth knowledge of and insight into the area.
Collapse
|
37
|
Toda N, Hashimoto M, Iwabuchi Y, Nagasaka M, Takeshita R, Yamada M, Yamada Y, Jinzaki M. Validation of deep learning-based computer-aided detection software use for interpretation of pulmonary abnormalities on chest radiographs and examination of factors that influence readers' performance and final diagnosis. Jpn J Radiol 2023; 41:38-44. [PMID: 36121622 DOI: 10.1007/s11604-022-01330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate the performance of a deep learning-based computer-aided detection (CAD) software for detecting pulmonary nodules, masses, and consolidation on chest radiographs (CRs) and to examine the effect of readers' experience and data characteristics on the sensitivity and final diagnosis. MATERIALS AND METHODS The CRs of 453 patients were retrospectively selected from two institutions. Among these CRs, 60 images with abnormal findings (pulmonary nodules, masses, and consolidation) and 140 without abnormal findings were randomly selected for sequential observer-performance testing. In the test, 12 readers (three radiologists, three pulmonologists, three non-pulmonology physicians, and three junior residents) interpreted 200 images with and without CAD, and the findings were compared. Weighted alternative free-response receiver operating characteristic (wAFROC) figure of merit (FOM) was used to analyze observer performance. The lesions that readers initially missed but CAD detected were stratified by anatomic location and degree of subtlety, and the adoption rate was calculated. Fisher's exact test was used for comparison. RESULTS The mean wAFROC FOM score of the 12 readers significantly improved from 0.746 to 0.810 with software assistance (P = 0.007). In the reader group with < 6 years of experience, the mean FOM score significantly improved from 0.680 to 0.779 (P = 0.011), while that in the reader group with ≥ 6 years of experience increased from 0.811 to 0.841 (P = 0.12). The sensitivity of the CAD software and the adoption rate for the lesions with subtlety level 2 or 3 (obscure) lesions were significantly lower than for level 4 or 5 (distinct) lesions (50% vs. 93%, P < 0.001; and 55% vs. 74%, P = 0.04, respectively). CONCLUSION CAD software use improved doctors' performance in detecting nodules/masses and consolidation on CRs, particularly for non-expert doctors, by preventing doctors from missing distinct lesions rather than helping them to detect obscure lesions.
Collapse
Affiliation(s)
- Naoki Toda
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Hashimoto
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yu Iwabuchi
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Misa Nagasaka
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryo Takeshita
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
38
|
Beyond Imaging and Genetic Signature in Glioblastoma: Radiogenomic Holistic Approach in Neuro-Oncology. Biomedicines 2022; 10:biomedicines10123205. [PMID: 36551961 PMCID: PMC9775324 DOI: 10.3390/biomedicines10123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an emerging translational field of research aiming to study the correlation between radiographic signature and underlying gene expression. Although a research field still under development, not yet incorporated into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing insights into the potential efficacy of such an approach for survival prognostication. Despite a high sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic features are the Achilles heel of this newborn tool. Looking into the future, investigators' efforts should be directed towards standardization and a disciplined approach to data collection, algorithms, and statistical analysis.
Collapse
|
39
|
Region-Based Segmentation and Classification for Ovarian Cancer Detection Using Convolution Neural Network. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5968939. [PMID: 36475297 PMCID: PMC9701126 DOI: 10.1155/2022/5968939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
Abstract
Ovarian cancer is a serious sickness for elderly women. According to data, it is the seventh leading cause of death in women as well as the fifth most frequent disease worldwide. Many researchers classified ovarian cancer using Artificial Neural Networks (ANNs). Doctors consider classification accuracy to be an important aspect of making decisions. Doctors consider improved classification accuracy for providing proper treatment. Early and precise diagnosis lowers mortality rates and saves lives. On basis of ROI (region of interest) segmentation, this research presents a novel annotated ovarian image classification utilizing FaRe-ConvNN (rapid region-based Convolutional neural network). The input photos were divided into three categories: epithelial, germ, and stroma cells. This image is segmented as well as preprocessed. After that, FaRe-ConvNN is used to perform the annotation procedure. For region-based classification, the method compares manually annotated features as well as trained feature in FaRe-ConvNN. This will aid in the analysis of higher accuracy in disease identification, as human annotation has lesser accuracy in previous studies; therefore, this effort will empirically prove that ML classification will provide higher accuracy. Classification is done using a combination of SVC and Gaussian NB classifiers after the region-based training in FaRe-ConvNN. The ensemble technique was employed in feature classification due to better data indexing. To diagnose ovarian cancer, the simulation provides an accurate portion of the input image. FaRe-ConvNN has a precision value of more than 95%, SVC has a precision value of 95.96%, and Gaussian NB has a precision value of 97.7%, with FR-CNN enhancing precision in Gaussian NB. For recall/sensitivity, SVC is 94.31 percent and Gaussian NB is 97.7 percent, while for specificity, SVC is 97.39 percent and Gaussian NB is 98.69 percent using FaRe-ConvNN.
Collapse
|
40
|
Han L, Yin Z. A hybrid breast cancer classification algorithm based on meta-learning and artificial neural networks. Front Oncol 2022; 12:1042964. [DOI: 10.3389/fonc.2022.1042964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of breast cancer in women has surpassed that of lung cancer as the world’s leading new cancer case. Regular screening and measures become an effective way to prevent breast cancer and also provide a good foundation for later treatment. Women should receive regular checkups in the hospital after reaching a certain age. The use of computer-aided technology can improve the accuracy and efficiency of physicians’ decision-making. Data pre-processing is required before data analysis, and 16 features are selected using a correlation-based feature selection method. In this paper, meta-learning and Artificial Neural Networks (ANN) are combined to create a hybrid algorithm. The proposed hybrid algorithm for predicting breast cancer was attempted to achieve 98.74% accuracy and 98.02% F1-score by creating a combination of various meta-learning models whose output was used as input features for creating ANN models. Therefore, the hybrid algorithm proposed in this paper can obtain better prediction results than a single model.
Collapse
|
41
|
Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences. BMC Bioinformatics 2022; 23:469. [PMID: 36348271 PMCID: PMC9644450 DOI: 10.1186/s12859-022-05012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Early detection of cancers has been much explored due to its paramount importance in biomedical fields. Among different types of data used to answer this biological question, studies based on T cell receptors (TCRs) are under recent spotlight due to the growing appreciation of the roles of the host immunity system in tumor biology. However, the one-to-many correspondence between a patient and multiple TCR sequences hinders researchers from simply adopting classical statistical/machine learning methods. There were recent attempts to model this type of data in the context of multiple instance learning (MIL). Despite the novel application of MIL to cancer detection using TCR sequences and the demonstrated adequate performance in several tumor types, there is still room for improvement, especially for certain cancer types. Furthermore, explainable neural network models are not fully investigated for this application. In this article, we propose multiple instance neural networks based on sparse attention (MINN-SA) to enhance the performance in cancer detection and explainability. The sparse attention structure drops out uninformative instances in each bag, achieving both interpretability and better predictive performance in combination with the skip connection. Our experiments show that MINN-SA yields the highest area under the ROC curve scores on average measured across 10 different types of cancers, compared to existing MIL approaches. Moreover, we observe from the estimated attentions that MINN-SA can identify the TCRs that are specific for tumor antigens in the same T cell repertoire.
Collapse
|
42
|
Machine learning-enabled optimization of extrusion-based 3D printing. Methods 2022; 206:27-40. [PMID: 35963502 DOI: 10.1016/j.ymeth.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/02/2023] Open
Abstract
Machine learning (ML) and three-dimensional (3D) printing are among the fastest-growing branches of science. While ML can enable computers to independently learn from available data to make decisions with minimal human intervention, 3D printing has opened up an avenue for modern, multi-material, manufacture of complex 3D structures with a rapid turn-around ability for users with limited manufacturing experience. However, the determination of optimum printing parameters is still a challenge, increasing pre-printing process time and material wastage. Here, we present the first integration of ML and 3D printing through an easy-to-use graphical user interface (GUI) for printing parameter optimization. Unlike the widely held orthogonal design used in most of the 3D printing research, we, for the first time, used nine different computer-aided design (CAD) images and in order to enable ML algorithms to distinguish the difference between designs, we devised a self-designed method to calculate the "complexity index" of CAD designs. In addition, for the first time, the similarity of the print outcomes and CAD images are measured using four different self-designed labeling methods (both manually and automatically) to figure out the best labeling method for ML purposes. Subsequently, we trained eight ML algorithms on 224 datapoints to identify the best ML model for 3D printing applications. The "gradient boosting regression" model yields the best prediction performance with an R-2 score of 0.954. The ML-embedded GUI developed in this study enables users (either skilled or unskilled in 3D printing and/or ML) to simply upload a design (desired to print) to the GUI along with desired printing temperature and pressure to obtain the approximate similarity in the case of actual 3D printing of the uploaded design. This ultimately can prevent error-and-trial steps prior to printing which in return can speed up overall design-to-end-product time with less material waste and more cost-efficiency.
Collapse
|
43
|
Dritsas E, Trigka M. Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22145365. [PMID: 35891045 PMCID: PMC9322993 DOI: 10.3390/s22145365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 06/12/2023]
Abstract
Cholesterol is a waxy substance found in blood lipids. Its role in the human body is helpful in the process of producing new cells as long as it is at a healthy level. When cholesterol exceeds the permissible limits, it works the opposite, causing serious heart health problems. When a person has high cholesterol (hypercholesterolemia), the blood vessels are blocked by fats, and thus, circulation through the arteries becomes difficult. The heart does not receive the oxygen it needs, and the risk of heart attack increases. Nowadays, machine learning (ML) has gained special interest from physicians, medical centers and healthcare providers due to its key capabilities in health-related issues, such as risk prediction, prognosis, treatment and management of various conditions. In this article, a supervised ML methodology is outlined whose main objective is to create risk prediction tools with high efficiency for hypercholesterolemia occurrence. Specifically, a data understanding analysis is conducted to explore the features association and importance to hypercholesterolemia. These factors are utilized to train and test several ML models to find the most efficient for our purpose. For the evaluation of the ML models, precision, recall, accuracy, F-measure, and AUC metrics have been taken into consideration. The derived results highlighted Soft Voting with Rotation and Random Forest trees as base models, which achieved better performance in comparison to the other models with an AUC of 94.5%, precision of 92%, recall of 91.8%, F-measure of 91.7% and an accuracy equal to 91.75%.
Collapse
|
44
|
Dritsas E, Trigka M. Data-Driven Machine-Learning Methods for Diabetes Risk Prediction. SENSORS (BASEL, SWITZERLAND) 2022; 22:5304. [PMID: 35890983 PMCID: PMC9318204 DOI: 10.3390/s22145304] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus is a chronic condition characterized by a disturbance in the metabolism of carbohydrates, fats and proteins. The most characteristic disorder in all forms of diabetes is hyperglycemia, i.e., elevated blood sugar levels. The modern way of life has significantly increased the incidence of diabetes. Therefore, early diagnosis of the disease is a necessity. Machine Learning (ML) has gained great popularity among healthcare providers and physicians due to its high potential in developing efficient tools for risk prediction, prognosis, treatment and the management of various conditions. In this study, a supervised learning methodology is described that aims to create risk prediction tools with high efficiency for type 2 diabetes occurrence. A features analysis is conducted to evaluate their importance and explore their association with diabetes. These features are the most common symptoms that often develop slowly with diabetes, and they are utilized to train and test several ML models. Various ML models are evaluated in terms of the Precision, Recall, F-Measure, Accuracy and AUC metrics and compared under 10-fold cross-validation and data splitting. Both validation methods highlighted Random Forest and K-NN as the best performing models in comparison to the other models.
Collapse
Affiliation(s)
| | - Maria Trigka
- Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
45
|
Di Santo R, Vaccaro M, Romanò S, Di Giacinto F, Papi M, Rapaccini GL, De Spirito M, Miele L, Basile U, Ciasca G. Machine Learning-Assisted FTIR Analysis of Circulating Extracellular Vesicles for Cancer Liquid Biopsy. J Pers Med 2022; 12:jpm12060949. [PMID: 35743734 PMCID: PMC9224706 DOI: 10.3390/jpm12060949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are abundantly released into the systemic circulation, where they show remarkable stability and harbor molecular constituents that provide biochemical information about their cells of origin. Due to this characteristic, EVs are attracting increasing attention as a source of circulating biomarkers for cancer liquid biopsy and personalized medicine. Despite this potential, none of the discovered biomarkers has entered the clinical practice so far, and novel approaches for the label-free characterization of EVs are highly demanded. In this regard, Fourier Transform Infrared Spectroscopy (FTIR) has great potential as it provides a quick, reproducible, and informative biomolecular fingerprint of EVs. In this pilot study, we investigated, for the first time in the literature, the capability of FTIR spectroscopy to distinguish between EVs extracted from sera of cancer patients and controls based on their mid-IR spectral response. For this purpose, EV-enriched suspensions were obtained from the serum of patients diagnosed with Hepatocellular Carcinoma (HCC) of nonviral origin and noncancer subjects. Our data point out the presence of statistically significant differences in the integrated intensities of major mid-IR absorption bands, including the carbohydrate and nucleic acids band, the protein amide I and II bands, and the lipid CH stretching band. Additionally, we used Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) for the automated classification of spectral data according to the shape of specific mid-IR spectral signatures. The diagnostic performances of the proposed spectral biomarkers, alone and combined, were evaluated using multivariate logistic regression followed by a Receiving Operator Curve analysis, obtaining large Areas Under the Curve (AUC = 0.91, 95% CI 0.81–1.0). Very interestingly, our analyses suggest that the discussed spectral biomarkers can outperform the classification ability of two widely used circulating HCC markers measured on the same groups of subjects, namely alpha-fetoprotein (AFP), and protein induced by the absence of vitamin K or antagonist-II (PIVKA-II).
Collapse
Affiliation(s)
- Riccardo Di Santo
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Correspondence:
| | - Maria Vaccaro
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Massimiliano Papi
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Gian Ludovico Rapaccini
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Sezione di Medicina Interna, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Miele
- Sezione di Medicina Interna, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Umberto Basile
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
46
|
Rahman AU, Alqahtani A, Aldhafferi N, Nasir MU, Khan MF, Khan MA, Mosavi A. Histopathologic Oral Cancer Prediction Using Oral Squamous Cell Carcinoma Biopsy Empowered with Transfer Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:3833. [PMID: 35632242 PMCID: PMC9146317 DOI: 10.3390/s22103833] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
Oral cancer is a dangerous and extensive cancer with a high death ratio. Oral cancer is the most usual cancer in the world, with more than 300,335 deaths every year. The cancerous tumor appears in the neck, oral glands, face, and mouth. To overcome this dangerous cancer, there are many ways to detect like a biopsy, in which small chunks of tissues are taken from the mouth and tested under a secure and hygienic microscope. However, microscope results of tissues to detect oral cancer are not up to the mark, a microscope cannot easily identify the cancerous cells and normal cells. Detection of cancerous cells using microscopic biopsy images helps in allaying and predicting the issues and gives better results if biologically approaches apply accurately for the prediction of cancerous cells, but during the physical examinations microscopic biopsy images for cancer detection there are major chances for human error and mistake. So, with the development of technology deep learning algorithms plays a major role in medical image diagnosing. Deep learning algorithms are efficiently developed to predict breast cancer, oral cancer, lung cancer, or any other type of medical image. In this study, the proposed model of transfer learning model using AlexNet in the convolutional neural network to extract rank features from oral squamous cell carcinoma (OSCC) biopsy images to train the model. Simulation results have shown that the proposed model achieved higher classification accuracy 97.66% and 90.06% of training and testing, respectively.
Collapse
Affiliation(s)
- Atta-ur Rahman
- Department of Computer Science (CS), College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdullah Alqahtani
- Department of Computer Information Systems (CIS), College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.A.); (N.A.)
| | - Nahier Aldhafferi
- Department of Computer Information Systems (CIS), College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.A.); (N.A.)
| | - Muhammad Umar Nasir
- Faculty of Computing, Riphah School of Computing and Innovation, Riphah International University, Lahore Campus, Lahore 54000, Pakistan;
| | - Muhammad Farhan Khan
- Department of Forensic Sciences, University of Health Sciences, Lahore 54000, Pakistan;
| | | | - Amir Mosavi
- John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary;
- Institute of Information Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, 81107 Bratislava, Slovakia
- Faculty of Civil Engineering, TU-Dresden, 01062 Dresden, Germany
| |
Collapse
|
47
|
Painuli D, Bhardwaj S, Köse U. Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review. Comput Biol Med 2022; 146:105580. [PMID: 35551012 DOI: 10.1016/j.compbiomed.2022.105580] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/14/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023]
Abstract
Being a second most cause of mortality worldwide, cancer has been identified as a perilous disease for human beings, where advance stage diagnosis may not help much in safeguarding patients from mortality. Thus, efforts to provide a sustainable architecture with proven cancer prevention estimate and provision for early diagnosis of cancer is the need of hours. Advent of machine learning methods enriched cancer diagnosis area with its overwhelmed efficiency & low error-rate then humans. A significant revolution has been witnessed in the development of machine learning & deep learning assisted system for segmentation & classification of various cancers during past decade. This research paper includes a review of various types of cancer detection via different data modalities using machine learning & deep learning-based methods along with different feature extraction techniques and benchmark datasets utilized in the recent six years studies. The focus of this study is to review, analyse, classify, and address the recent development in cancer detection and diagnosis of six types of cancers i.e., breast, lung, liver, skin, brain and pancreatic cancer, using machine learning & deep learning techniques. Various state-of-the-art technique are clustered into same group and results are examined through key performance indicators like accuracy, area under the curve, precision, sensitivity, dice score on benchmark datasets and concluded with future research work challenges.
Collapse
Affiliation(s)
- Deepak Painuli
- Department of Computer Science and Engineering, Gurukula Kangri Vishwavidyalaya, Haridwar, India.
| | - Suyash Bhardwaj
- Department of Computer Science and Engineering, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Utku Köse
- Department of Computer Engineering, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
48
|
Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database. Invest Radiol 2022; 57:327-333. [PMID: 34935652 DOI: 10.1097/rli.0000000000000842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Renal cell carcinoma (RCC) is often found incidentally in asymptomatic individuals undergoing abdominal computed tomography (CT) examinations. The purpose of our study is to develop a deep learning-based algorithm for fully automated detection of small (≤4 cm) RCCs in contrast-enhanced CT images using a multicenter database and to evaluate its performance. MATERIALS AND METHODS For the algorithmic detection of RCC, we retrospectively selected contrast-enhanced CT images of patients with histologically confirmed single RCC with a tumor diameter of 4 cm or less between January 2005 and May 2020 from 7 centers in the Japan Medical Image Database. A total of 453 patients from 6 centers were selected as dataset A, and 132 patients from 1 center were selected as dataset B. Dataset A was used for training and internal validation. Dataset B was used only for external validation. Nephrogenic phase images of multiphase CT or single-phase postcontrast CT images were used. Our algorithm consisted of 2-step segmentation models, kidney segmentation and tumor segmentation. For internal validation with dataset A, 10-fold cross-validation was applied. For external validation, the models trained with dataset A were tested on dataset B. The detection performance of the models was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC). RESULTS The mean ± SD diameters of RCCs in dataset A and dataset B were 2.67 ± 0.77 cm and 2.64 ± 0.78 cm, respectively. Our algorithm yielded an accuracy, sensitivity, and specificity of 88.3%, 84.3%, and 92.3%, respectively, with dataset A and 87.5%, 84.8%, and 90.2%, respectively, with dataset B. The AUC of the algorithm with dataset A and dataset B was 0.930 and 0.933, respectively. CONCLUSIONS The proposed deep learning-based algorithm achieved high accuracy, sensitivity, specificity, and AUC for the detection of small RCCs with both internal and external validations, suggesting that this algorithm could contribute to the early detection of small RCCs.
Collapse
|
49
|
Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images. Bioengineering (Basel) 2022; 9:bioengineering9030097. [PMID: 35324786 PMCID: PMC8945332 DOI: 10.3390/bioengineering9030097] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian naive Bayes, while deep learning (DL) models employed are either based on a custom Convolutional Neural Network model, or leverage transfer learning via the use of pre-trained models (VGG16, Xception and ResNet50). We find that DL models, with accuracies up to 0.88, all outperform ML models. ML models exhibit accuracies below 0.72, which can be increased to up to 0.75 with ensemble learning. To further assess the performance of DL models, we test them on a larger and more imbalanced dataset. Metrics, such as the F-score and accuracy, indicate that, after fine-tuning, pre-trained models perform extremely well for skin tumor classification. This is most notably the case for VGG16, which exhibits an F-score of 0.88 and an accuracy of 0.88 on the smaller database, and metrics of 0.70 and 0.88, respectively, on the larger database.
Collapse
|
50
|
Akbar S, Hassan SA, Shoukat A, Alyami J, Bahaj SA. Detection of microscopic glaucoma through fundus images using deep transfer learning approach. Microsc Res Tech 2022; 85:2259-2276. [PMID: 35170136 DOI: 10.1002/jemt.24083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
Glaucoma disease in humans can lead to blindness if it progresses to the point where it affects the oculus' optic nerve head. It is not easily detected since there are no symptoms, but it can be detected using tonometry, ophthalmoscopy, and perimeter. However, advances in artificial intelligence approaches have permitted machine learning techniques to diagnose at an early stage. Numerous methods have been proposed using Machine Learning to diagnose glaucoma with different data sets and techniques but these are complex methods. Although, medical imaging instruments are used as glaucoma screening methods, fundus imaging specifically is the most used screening technique for glaucoma detection. This study presents a novel DenseNet and DarkNet combination to classify normal and glaucoma affected fundus image. These frameworks have been trained and tested on three data sets of high-resolution fundus (HRF), RIM 1, and ACRIMA. A total of 658 images have been used for healthy eyes and 612 images for glaucoma-affected eyes classification. It has also been observed that the fusion of DenseNet and DarkNet outperforms the two CNN networks and achieved 99.7% accuracy, 98.9% sensitivity, 100% specificity for the HRF database. In contrast, for the RIM1 database, 89.3% accuracy, 93.3% sensitivity, 88.46% specificity has been attained. Moreover, for the ACRIMA database, 99% accuracy, 100% sensitivity, 99% specificity has been achieved. Therefore, the proposed method is robust and efficient with less computational time and complexity compared to the literature available.
Collapse
Affiliation(s)
- Shahzad Akbar
- Riphah College of Computing, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan
| | - Syed Ale Hassan
- Riphah College of Computing, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan
| | - Ayesha Shoukat
- Riphah College of Computing, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan
| | - Jaber Alyami
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Imaging Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saeed Ali Bahaj
- MIS Department, College of Business Administration, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| |
Collapse
|