1
|
Chung HY, Jian MJ, Chang CK, Perng CL, Hung KS, Chiu CH, Shang HS. Enhancing public health outcomes with AI-powered clinical surveillance: Precise detection of COVID-19 variants using qPCR and nanopore sequencing. J Infect Public Health 2025; 18:102663. [PMID: 39862804 DOI: 10.1016/j.jiph.2025.102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND We aimed to evaluate the efficacy of integrating the Varia5 multiplex assay (qPCR) and whole genome sequencing (WGS) for monitoring SARS-CoV-2, focusing on their overall performance in identifying various virus variants. METHODS This study included 140 naso-pharyngeal swab samples from individuals with suspected COVID-19. We utilized our self-developed Varia5 multiplex assay, which targets five viral genes linked to COVID-19 mutations, in conjunction with comprehensive genomic analysis performed through whole genome sequencing (WGS) using the Oxford Nanopore system. Machine learning was integrated to optimize the qPCR conditions and enhance the detection efficiency. RESULTS The Varia5 assay identified the prevalent BA.2.75 variant in 92 samples compared to that in 81 samples detected via WGS. The BA.5.2 variant, indicative of higher viral loads, was identified in 15 samples via Varia5 and in 14 samples via WGS.Furthermore, rare variants, such as BA.2.10, were identified. The mean Ct value was 18.36, with significant viral load differences noted between specific variants. CONCLUSION Our findings demonstrate that while WGS offers enhanced sensitivity and specificity for variant detection, qPCR remains crucial for large-scale testing because of its cost and time efficiency. The integrated approach, which combines both techniques, represents a more comprehensive monitoring algorithm that can improve public health strategies against pandemics such as COVID-19.
Collapse
Affiliation(s)
- Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.
| | - Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Chun-Hsiang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Devaraj AR, Marianthiran VJ. Advancements in Viral Genomics: Gated Recurrent Unit Modeling of SARS-CoV-2, SARS, MERS, and Ebola viruses. Rev Soc Bras Med Trop 2025; 58:e004012024. [PMID: 39936709 PMCID: PMC11805527 DOI: 10.1590/0037-8682-0178-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Emerging infections have posed persistent threats to humanity throughout history. Rapid and unprecedented anthropogenic, behavioral, and social transformations witnessed in the past century have expedited the emergence of novel pathogens, intensifying their impact on the global human population. METHODS This study aimed to comprehensively analyze and compare the genomic sequences of four distinct viruses: SARS-CoV-2, SARS, MERS, and Ebola. Advanced genomic sequencing techniques and a Gated Recurrent Unit-based deep learning model were used to examine the intricate genetic makeup of these viruses. The proposed study sheds light on their evolutionary dynamics, transmission patterns, and pathogenicity and contributes to the development of effective diagnostic and therapeutic interventions. RESULTS This model exhibited exceptional performance as evidenced by accuracy values of 99.01%, 98.91%, 98.35%, and 98.04% for SARS-CoV-2, SARS, MERS, and Ebola respectively. Precision values ranged from 98.1% to 98.72%, recall values consistently surpassed 92%, and F1 scores ranged from 95.47% to 96.37%. CONCLUSIONS These results underscore the robustness of this model and its potential utility in genomic analysis, paving the way for enhanced understanding, preparedness, and response to emerging viral threats. In the future, this research will focus on creating better diagnostic instruments for the early identification of viral illnesses, developing vaccinations, and tailoring treatments based on the genetic composition and evolutionary patterns of different viruses. This model can be modified to examine a more extensive variety of diseases and recently discovered viruses to predict future outbreaks and their effects on global health.
Collapse
Affiliation(s)
- Abhishak Raj Devaraj
- Noorul Islam Centre for Higher Education, Department of Computer Applications, Tamilnadu, India
| | - Victor Jose Marianthiran
- Vel Tech Multi Tech Dr. Rangarajan. Sakunthala Engineering College, Department of Artificial Intelligence and Data Science, Tamilnadu, India
| |
Collapse
|
3
|
Banerjee M, Chakraborty D, Chakraborty A. Molecular characterization, phylogenetic and variation analyses of SARS-CoV-2 strains in India. Virusdisease 2024; 35:462-477. [PMID: 39464729 PMCID: PMC11502728 DOI: 10.1007/s13337-024-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/18/2024] [Indexed: 10/29/2024] Open
Abstract
In the wake of the havoc caused by the COVID-19 pandemic, it is imperative to use the available genomic sequence data to gain insight into the mutational and genomic diversity of SARS-CoV-2. Here we have performed comparative phylogenetic, mutational and genetic diversity analysis on 1962 SARS-CoV-2 genome sequences from seven worst hit Indian states during the third Covid-19 wave, to determine the SARS-CoV-2 strains and mutations in circulation during the third wave and the transmission pattern and disease epidemiology across the states and gain valuable insight into the viral evolution. 6083 Single nucleotide polymorphisms (SNPs) were discovered in the analysis with 93 SNPs common to all states. The genetic relatedness among the statewise multilocus genotypes was visualized by plotting a minimum spanning tree based on Bruvo's distance framework. The phylogenetic tree based on Nei's genetic distance showed distinct clades. The AMOVA results indicated that large proportion of the total genetic variation is distributed within the samples, rather than between the samples within each population and between the populations. Our findings provide insight into the SARS-CoV-2 variants and mutations which dominated the third COVID-19 wave in India and thus provide a basis to monitor and further assess these variants and their sub lineages and mutations for their clinical impact and reaction to existing and newly designed drugs and vaccines. The genetic diversity analysis helps in comprehending the viral transmission scenarios across the Indian states so as to enable the State government and researchers in developing state specific prevention measures for future. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00878-7.
Collapse
Affiliation(s)
- Meghna Banerjee
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan 304022 India
| | - Dipjyoti Chakraborty
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan 304022 India
| | - Arindom Chakraborty
- Department of Statistics, Visva-Bharati University, Santiniketan, West Bengal 731235 India
| |
Collapse
|
4
|
Guevara C, Coronel D, Salazar B, Salazar J, Arias-Flores H. Analysis of the Spread and Evolution of COVID-19 Mutations in Ecuador Using Open Data. Life (Basel) 2024; 14:735. [PMID: 38929718 PMCID: PMC11205030 DOI: 10.3390/life14060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, the analyses of and prediction using COVID-19-related data extracted from patient information repositories compiled by hospitals and health organizations are of paramount importance. These efforts significantly contribute to vaccine development and the formulation of contingency techniques, providing essential tools to prevent resurgence and to effectively manage the spread of the disease. In this context, the present research focuses on analyzing the biological information of the SARS-CoV-2 viral gene sequences and the clinical data of COVID-19-affected patients using publicly accessible data from Ecuador. This involves considering variables such as age, gender, and geographical location to understand the evolution of mutations and their distributions across Ecuadorian provinces. The Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology is applied for data analysis. Various data preprocessing and statistical analysis techniques are employed, including Pearson correlation, the chi-square test, and analysis of variance (ANOVA). Statistical diagrams and charts are used to facilitate a better visualization of the results. The results illuminate the genetic diversity of the virus and its correlation with clinical variables, offering a comprehensive understanding of the dynamics of COVID-19 spread in Ecuador. Critical variables influencing population vulnerability are highlighted, and the findings underscore the significance of mutation monitoring and indicate a need for global expansion of the research area.
Collapse
Affiliation(s)
- Cesar Guevara
- Centro de Mecatrónica y Sistemas Interactivos—MIST, Universidad Tecnológica Indoamérica, Quito 170301, Ecuador; (D.C.); (H.A.-F.)
| | - Dennys Coronel
- Centro de Mecatrónica y Sistemas Interactivos—MIST, Universidad Tecnológica Indoamérica, Quito 170301, Ecuador; (D.C.); (H.A.-F.)
| | - Byron Salazar
- Neurosurgery Department, Hospital de las Fuerzas Armadas HE-1, Quito 170136, Ecuador;
| | - Jorge Salazar
- Neurosurgery Department, Metropolitano Hospital, Quito 170521, Ecuador;
| | - Hugo Arias-Flores
- Centro de Mecatrónica y Sistemas Interactivos—MIST, Universidad Tecnológica Indoamérica, Quito 170301, Ecuador; (D.C.); (H.A.-F.)
| |
Collapse
|
5
|
Hu Y, Villalan AK, Fan X, Zhang S, Joka FR, Wu X, Wang H, Wang X. Analysis the molecular similarity of least common amino acid sites in ACE2 receptor to predict the potential susceptible species for SARS-CoV-2. PLoS One 2024; 19:e0293441. [PMID: 38696505 PMCID: PMC11065212 DOI: 10.1371/journal.pone.0293441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/24/2024] [Indexed: 05/04/2024] Open
Abstract
SARS-CoV-2 infections in animals have been reported globally. However, the understanding of the complete spectrum of animals susceptible to SARS-CoV-2 remains limited. The virus's dynamic nature and its potential to infect a wide range of animals are crucial considerations for a One Health approach that integrates both human and animal health. This study introduces a bioinformatic approach to predict potential susceptibility to SARS-CoV-2 in both domestic and wild animals. By examining genomic sequencing, we establish phylogenetic relationships between the virus and its potential hosts. We focus on the interaction between the SARS-CoV-2 genome sequence and specific regions of the host species' ACE2 receptor. We analyzed and compared ACE2 receptor sequences from 29 species known to be infected, selecting 10 least common amino acid sites (LCAS) from key binding domains based on similarity patterns. Our analysis included 49 species across primates, carnivores, rodents, and artiodactyls, revealing complete consistency in the LCAS and identifying them as potentially susceptible. We employed the LCAS similarity pattern to predict the likelihood of SARS-CoV-2 infection in unexamined species. This method serves as a valuable screening tool for assessing infection risks in domestic and wild animals, aiding in the prevention of disease outbreaks.
Collapse
Affiliation(s)
- YeZhi Hu
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Arivizhivendhan Kannan Villalan
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Xin Fan
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Shuang Zhang
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | | | - XiaoDong Wu
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - HaoNing Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang Province, China
| | - XiaoLong Wang
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Li J, Khalid WA, Imtiaz H, Huang L, Ali Y, Yousaf R, Gul F, Mahmood A, Shah AA, Deng H, Khattak S. The deleterious variants of N-acetylgalactosamine-6-sulfatase (GalN6S) enzyme trigger Morquio a syndrome by disrupting protein foldings. J Biomol Struct Dyn 2024; 42:3700-3711. [PMID: 37222604 DOI: 10.1080/07391102.2023.2214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Lysosomal enzymes degrade cellular macromolecules, while their inactivation causes human hereditary metabolic disorders. Mucopolysaccharidosis IVA (MPS IVA; Moquio A syndrome) is one of the lysosomal storage disorders caused by a defective Galactosamine-6-sulfatase (GalN6S) enzyme. In several populations, disease incidence is elevated due to missense mutations brought on by non-synonymous allelic variation in the GalN6S enzyme. Here, we studied the effect of non-synonymous single nucleotide polymorphism (nsSNPs) on the structural dynamics of the GalN6S enzyme and its binding with N-acetylgalactosamine (GalNAc) using all-atom molecular dynamics simulation and an essential dynamics approach. Consequently, in this study, we have identified three functionally disruptive mutations in domain-I and domain-II, that is, S80L, R90W, and S162F, which presumably contribute to post-translational modifications. The study delineated that both domains work cooperatively, and alteration in domain II (S80L, R90W) leads to conformational changes in the catalytic site in domain-I, while mutation S162F mainly provokes higher residual flexibility of domain II. These results show that these mutations impair the hydrophobic core, implying that Morquio A syndrome is caused by misfolding of the GalN6S enzyme. The results also show the instability of the GalN6S-GalNAc complex upon substitution. Overall, the structural dynamics resulting from point mutations give the molecular rationale for Moquio A syndrome and, more importantly, the Mucopolysaccharidoses (MPS) family of diseases, re-establishing MPS IVA as a protein-folding disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Anesthesiology, The First People's Hospital of Chenzhou, Chenzhou, Hunan Province, PR China
| | - Waqas Ahmad Khalid
- Government Rana Abdul Raheem Memorial Hospital Sodiwal Lahore, Sodiwal, Punjab, Pakistan
| | - Hina Imtiaz
- Tehsil Headquarters Hospital Bhera, Sarghoda, Bhera, Punjab, Pakistan
| | - Lingkun Huang
- Department of Anesthesiology, The First People's Hospital of Chenzhou, Chenzhou, Hunan Province, PR China
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rimsha Yousaf
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fouzia Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, PR China
| | - Abid Ali Shah
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, PR China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Shoaib M, Ali Y, Shen Y, Ni J. Identification of potential natural products derived from fungus growing termite, inhibiting Pseudomonas aeruginosa quorum sensing protein LasR using molecular docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2024; 42:1126-1144. [PMID: 37096792 DOI: 10.1080/07391102.2023.2198607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/26/2023] [Indexed: 04/26/2023]
Abstract
Pseudomonas aeruginosa, the most common opportunistic pathogen, is becoming antibiotic-resistant worldwide. The fate of P. aeruginosa, a multidrug-resistant strain, can be determined by multidrug efflux pumps, enzyme synthesis, outer membrane protein depletion, and target alterations. Microbial niches have long used quorum sensing (QS) to synchronize virulence gene expression. Computational methods can aid in the development of novel P. aeruginosa drug-resistant treatments. The tripartite symbiosis in termites that grow fungus may help special microbes find new antimicrobial drugs. To find anti-quorum sensing natural products that could be used as alternative therapies, a library of 376 fungal-growing termite-associated natural products (NPs) was screened for their physicochemical properties, pharmacokinetics, and drug-likeness. Using GOLD, the top 74 NPs were docked to the QS transcriptional regulator LasR protein. The five lead NPs with the highest gold score and drug-like properties were chosen for a 200-ns molecular dynamics simulation to test the competitive activity of different compounds against negative catechin. Fridamycin and Daidzein had stable conformations, with mean RMSDs of 2.48 and 3.67 Å, respectively, which were similar to Catechin's 3.22 Å. Fridamycin and Daidzein had absolute binding energies of -71.186 and -52.013 kcal/mol, respectively, which were higher than the control's -42.75 kcal/mol. All the compounds within the active site of the LasR protein were kept intact by Trp54, Arg55, Asp67, and Ser123. These findings indicate that termite gut and fungus-associated NPs, specifically Fridamycin and Daidzein, are potent QS antagonists that can be used to treat P. aeruginosa's multidrug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, P. R. China
- Institute of Health Sciences, Islamabad Campus, Khyber Medical University, Peshawar, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, P. R. China
| | - Jinfeng Ni
- Institute of Health Sciences, Islamabad Campus, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
8
|
Tambe LAM, Mathobo P, Matume ND, Munzhedzi M, Edokpayi JN, Viraragavan A, Glanzmann B, Tebit DM, Mavhandu-Ramarumo LG, Street R, Johnson R, Kinnear C, Bessong PO. Molecular epidemiology of SARS-CoV-2 in Northern South Africa: wastewater surveillance from January 2021 to May 2022. Front Public Health 2023; 11:1309869. [PMID: 38174083 PMCID: PMC10764116 DOI: 10.3389/fpubh.2023.1309869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Wastewater-based genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides a comprehensive approach to characterize evolutionary patterns and distribution of viral types in a population. This study documents the molecular epidemiology of SARS-CoV-2, in Northern South Africa, from January 2021 to May 2022. Methodology A total of 487 wastewater samples were collected from the influent of eight wastewater treatment facilities and tested for SARS-CoV-2 RNA using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). SARS-CoV-2 positive samples with genome copies/mL ≥1,500 were subjected to allele-specific genotyping (ASG) targeting the Spike protein; 75 SARS-CoV-2 positive samples were subjected to whole genome sequencing (WGS) on the ATOPlex platform. Variants of concern (VoC) and lineages were assigned using the Nextclade and PangoLIN Software. Concordance for VoC between ASG and WGS analyses was determined. Sequence relationship was determined by phylogenetic analysis. Results Seventy-five percent (365/487) of the influent samples were positive for SARS-CoV-2 RNA. Delta and Omicron VoC were more predominant at a prevalence of 45 and 32%, respectively, and they were detected as early as January and February 2021, while Beta VoC was least detected at a prevalence of 5%. A total of 11/60 (18%) sequences were assigned lineages and clades only, but not a specific VoC name. Phylogenetic analysis was used to investigate the relationship of these sequences to other study sequences, and further characterize them. Concordance in variant assignment between ASG and WGS was seen in 51.2% of the study sequences. There was more intra-variant diversity among Beta VoC sequences; mutation E484K was absent. Three previously undescribed mutations (A361S, V327I, D427Y) were seen in Delta VoC. Discussion and Conclusion The detection of Delta and Omicron VoCs in study sites earlier in the outbreak than has been reported in other regions of South Africa highlights the importance of population-based approaches over individual sample-based approaches in genomic surveillance. Inclusion of non-Spike protein targets could improve the specificity of ASG, since all VoCs share similar Spike protein mutations. Finally, continuous molecular epidemiology with the application of sensitive technologies such as next generation sequencing (NGS) is necessary for the documentation of mutations whose implications when further investigated could enhance diagnostics, and vaccine development efforts.
Collapse
Affiliation(s)
- Lisa Arrah Mbang Tambe
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Phindulo Mathobo
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Nontokozo D. Matume
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Mukhethwa Munzhedzi
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, University of Venda, Thohoyandou, South Africa
| | - Amsha Viraragavan
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Brigitte Glanzmann
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Denis M. Tebit
- Global Biomed Laboratories Inc., Lynchburg, VA, United States
| | - Lufuno Grace Mavhandu-Ramarumo
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Renee Street
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Centre for Cardiometabolic Research in Africa, Stellenbosch University, Stellenbosch, South Africa
| | - Craig Kinnear
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Pascal Obong Bessong
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Center for Global Health Equity, School of Medicine, University of Virginia, Charlottesville, VA, United States
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
de Souza SB, Cabral PGA, da Silva RM, Arruda RF, Cabral SPDF, de Assis ALEM, Viana Junior AB, Degrave WMS, Moreira ADS, Silva CG, Chang J, Lei P. Phase III, randomized, double-blind, placebo-controlled clinical study: a study on the safety and clinical efficacy of AZVUDINE in moderate COVID-19 patients. Front Med (Lausanne) 2023; 10:1215916. [PMID: 37928473 PMCID: PMC10620601 DOI: 10.3389/fmed.2023.1215916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Background In 2019, a highly pathogenic coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced and resulted in the outbreak of coronavirus disease 2019 (COVID-19). With the aim of finding effective drugs to fight against the disease, several trials have been conducted since COVID-19 can only be considered a treatable disease, from a clinical point of view, after the availability of specific and effective antivirals. AZVUDINE (FNC), initially developed for treating HIV, is a potential treatment for COVID-19 as it has the capability to lower the patient's viral load and promote recovery. Methods Volunteers infected with SARS-CoV-2 confirmed by reverse transcription polymerase chain reaction (RT-PCR), with good kidney and liver function, who were not using other antivirals or monoclonal antibodies were eligible. Samples from patients were assessed for viral load every 48 h during treatment using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and droplet digital polymerase chain reaction (ddPCR). Results The study's primary outcome measure was the percentage of participants showing an improvement in clinical scores, while the secondary outcome measure was the percentage of participants with a clinical outcome of cure. These measures were used to assess the safety and efficacy of FNC for treating COVID-19. In the analysis of sociodemographic variables, no significant differences were detected between patients in the FNC and the placebo group for race, age group, or sex. The results showed a potential benefit to participants who received FNC during the study, as observed in the shorter hospital stay, shorter negative conversion time of SARS-CoV-2, and a significant reduction in viral load. Furthermore, the reduction in fever and chills were significant at D1, D2, and D3. In this study, a total of 112 adverse events cases were noted, with 105 cases being categorized as non-serious and only 7 cases as serious adverse events. Conclusion The pandemic is not being effectively controlled and is causing multiple waves of infection that require extensive medical resources. However, FNC has demonstrated potential to reduce the treatment duration of moderate COVID-19 cases, thereby saving significant medical resources. This makes FNC a promising candidate for COVID-19 treatment.Clinical trial registration: [clinicaltrials.gov], identifier [NCT04668235].
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aline dos Santos Moreira
- Functional Genomics and Bioinformatics Laboratory, Oswaldo Cruz Institute – FIOCRUZ, Rio de Janeiro, Brazil
| | - Cléber Glória Silva
- Santa Casa de Misericórdia de Campos Hospital, Campos dos Goytacazes, Brazil
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Normal University, Xinxiang, China
| | - Pingsheng Lei
- Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Ajmal A, Ali Y, Khan A, Wadood A, Rehman AU. Identification of novel peptide inhibitors for the KRas-G12C variant to prevent oncogenic signaling. J Biomol Struct Dyn 2023; 41:8866-8875. [PMID: 36300526 DOI: 10.1080/07391102.2022.2138550] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRas) activating mutations are common in solid tumors, accounting for 90%, 45%, and 35% of pancreatic, colorectal, and lung cancers (LC), respectively. Each year, nearly 150k new cases (both men and women) of KRas-mutated malignancies are reported in the United States. NSCLC (non-small cell lung cancer) accounts for 80% of all LC cases. KRas mutations are found in 15% to 25% of NSCLC patients. The main cause of NSCLC is the KRas-G12C mutation. The drugs Sotorasib and Adagrasib were recently developed to treat advanced NSCLC caused by the KRas-G12C mutation. Most patients do not respond to KRas-G12C inhibitors due to cellular, molecular, and genetic resistance. Because of their safety, efficacy, and selectivity, peptide inhibitors have the potential to treat newly developing KRas mutations. Based on the KRas mutations, peptide inhibitors that are highly selective and specific to individual lung cancers can be rationally designed. The current study uses an alanine and residue scanning approach to design peptide inhibitors for KRas-G12C based on the known peptide. Our findings show that substitution of F3K, G11T, L8C, T14C, K13D, G11S, and G11P considerably enhances the binding affinity of the novel peptides, whereas F3K, G11T, L8C, and T14C peptides have higher stability and favorable binding to the altered peptides. Overall, our study paves the road for the development of potential therapeutic peptidomimetics that target the KRas-G12C complex and may inhibit the KRas and SOS complex from interacting.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
11
|
Wu HB, Wang CH, Chung YD, Shan YS, Lin YJ, Tsai HP, Lee GB. Highly-specific aptamer targeting SARS-CoV-2 S1 protein screened on an automatic integrated microfluidic system for COVID-19 diagnosis. Anal Chim Acta 2023; 1274:341531. [PMID: 37455073 DOI: 10.1016/j.aca.2023.341531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Variants of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) have evolved such that it may be challenging for diagnosis and clinical treatment of the pandemic coronavirus disease-19 (COVID-19). Compared with developed SARS-CoV-2 diagnostic tools recently, aptamers may exhibit some advantages, including high specificity/affinity, longer shelf life (vs. antibodies), and could be easily prepared. Herein an integrated microfluidic system was developed to automatically carry out one novel screening process based on the systematic evolution of ligands by exponential enrichment (SELEX) for screening aptamers specific with SARS-CoV-2. The new screening process started with five rounds of positive selection (with the S1 protein of SARS-CoV-2). In addition, including non-target viruses (influenza A and B), human respiratory tract-related cancer cells (adenocarcinoma human alveolar basal epithelial cells and dysplastic oral keratinocytes), and upper respiratory tract-related infectious bacteria (including methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae), and human saliva were involved to increase the specificity of the screened aptamer during the negative selection. Totally, all 10 rounds could be completed within 20 h. The dissociation constant of the selected aptamer was determined to be 63.0 nM with S1 protein. Limits of detection for Wuhan and Omicron clinical strains were found to be satisfactory for clinical applications (i.e. 4.80 × 101 and 1.95 × 102 copies/mL, respectively). Moreover, the developed aptamer was verified to be capable of capturing inactivated SARS-CoV-2 viruses, eight SARS-CoV-2 pseudo-viruses, and clinical isolates of SARS-CoV-2 viruses. For high-variable emerging viruses, this developed integrated microfluidic system can be used to rapidly select highly-specific aptamers based on the novel SELEX methods to deal with infectious diseases in the future.
Collapse
Affiliation(s)
- Hung-Bin Wu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan; Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jun Lin
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
12
|
Berekaa MM, AlMulla AA, AlMoslem MM, AlSahli KS, AlJassim MT, AlSaif AS, AlQuwayi SA. Public Anxiety, Attitudes, and Practices towards COVID-19 Infection in the Eastern Province of Saudi Arabia: A Cross-Sectional Study. Healthcare (Basel) 2023; 11:2083. [PMID: 37510523 PMCID: PMC10379982 DOI: 10.3390/healthcare11142083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Coronavirus disease 2019, or COVID-19, still has a terrifying potential due to its continuous genetic variation. Although vaccines have been created, adherence to preventive measures remains a privileged choice to tackle the pandemic. This study aims to investigate the anxiety, attitudes, and practices (KAPs) towards COVID-19 infection in the Eastern Province of Saudi Arabia. In this cross-sectional study, data were collected from 400 participants via an online self-structured questionnaire. Anxiety, attitude, and practice scores were calculated by summing the points of the statements under the corresponding domain multiplied by 100 over 12, 21, or 15, respectively. Chi-square and one-way analysis of variance were used to investigate the relationships between vaccination, anxiety, attitude, practice scores, and demographic characteristics. More than half of the participants were female (58.5%; mean age of 29.5 years; the majority in the age groups of <20 years and 21-30 years). Only 21.5% of the participants were suffering from or previously had chronic diseases. Notably, 22.3% of the male participants were vaccinated (p = 0.000). The old age groups (41-50 years and >50 years) were more vaccinated (16.3% and 24.1%, respectively, p = 0.000), as well as the unemployed (36.4%; p = 0.000). The mean scores of anxiety, attitude, and practice were 66.8, 72.3, and 85.2, respectively. Females had an anxiety score of 68.5% (p = 0.008) and a higher attitude score of 68.5% (p = 0.008). Infected male participants had a lower practice score of 80% (p = 0.038), while females recorded higher practice scores (85.7 ± 11.6). The results highlight the importance of reliable communication from health representatives and legislators in educating the public and promoting their knowledge about non-therapeutic interventions. Efficient intervention approaches are required to fill the gap during the implementation of non-therapeutic measures. Also, it is recommended that awareness programs, during COVID-19 or any other similar pandemics, should be tailored to target Eastern Province inhabitants, especially males.
Collapse
Affiliation(s)
- Mahmoud Mohamed Berekaa
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdulaziz Abdulrahman AlMulla
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Munthir Mohammed AlMoslem
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Saif AlSahli
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Tawfiq AlJassim
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdulmalik Salman AlSaif
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Salman Ali AlQuwayi
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
13
|
Khan HA, Asif MU, Ijaz MK, Alharbi M, Ali Y, Ahmad F, Azhar R, Ahmad S, Irfan M, Javed M, Naseer N, Aziz A. In Silico Characterization and Analysis of Clinically Significant Variants of Lipase-H (LIPH Gene) Protein Associated with Hypotrichosis. Pharmaceuticals (Basel) 2023; 16:803. [PMID: 37375751 PMCID: PMC10302509 DOI: 10.3390/ph16060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Hypotrichosis is an uncommon type of alopecia (hair loss) characterized by coarse scalp hair caused by the reduced or fully terminated activity of the Lipase-H (LIPH) enzyme. LIPH gene mutations contribute to the development of irregular or non-functional proteins. Because several cellular processes, including cell maturation and proliferation, are inhibited when this enzyme is inactive, the hair follicles become structurally unreliable, undeveloped, and immature. This results in brittle hair, as well as altered hair shaft development and structure. Because of these nsSNPs, the protein's structure and/or function may be altered. Given the difficulty in discovering functional SNPs in genes associated with disease, it is possible to assess potential functional SNPs before conducting broader population investigations. As a result, in our in silico analysis, we separated potentially hazardous nsSNPs of the LIPH gene from benign representatives using a variety of sequencing and architecture-based bioinformatics approaches. Using seven prediction algorithms, 9 out of a total of 215 nsSNPs were shown to be the most likely to cause harm. In order to distinguish between potentially harmful and benign nsSNPs of the LIPH gene, in our in silico investigation, we employed a range of sequence- and architecture-based bioinformatics techniques. Three nsSNPs (W108R, C246S, and H248N) were chosen as potentially harmful. The present findings will likely be helpful in future large population-based studies, as well as in drug discovery, particularly in the creation of personalized medicine, since this study provides an initial thorough investigation of the functional nsSNPs of LIPH.
Collapse
Affiliation(s)
- Hamza Ali Khan
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan;
| | | | | | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.A.); (R.A.); (M.J.); (N.N.)
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.A.); (R.A.); (M.J.); (N.N.)
| | - Ramsha Azhar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.A.); (R.A.); (M.J.); (N.N.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Maryana Javed
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.A.); (R.A.); (M.J.); (N.N.)
| | - Noorulain Naseer
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.A.); (R.A.); (M.J.); (N.N.)
| | - Abdul Aziz
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan;
| |
Collapse
|
14
|
Marriam S, Afghan MS, Nadeem M, Sajid M, Ahsan M, Basit A, Wajid M, Sabri S, Sajid M, Zafar I, Rashid S, Sehgal SA, Alkhalifah DHM, Hozzein WN, Chen KT, Sharma R. Elucidation of novel compounds and epitope-based peptide vaccine design against C30 endopeptidase regions of SARS-CoV-2 using immunoinformatics approaches. Front Cell Infect Microbiol 2023; 13:1134802. [PMID: 37293206 PMCID: PMC10244718 DOI: 10.3389/fcimb.2023.1134802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/29/2023] [Indexed: 06/10/2023] Open
Abstract
There has been progressive improvement in immunoinformatics approaches for epitope-based peptide design. Computational-based immune-informatics approaches were applied to identify the epitopes of SARS-CoV-2 to develop vaccines. The accessibility of the SARS-CoV-2 protein surface was analyzed, and hexa-peptide sequences (KTPKYK) were observed having a maximum score of 8.254, located between amino acids 97 and 102, whereas the FSVLAC at amino acids 112 to 117 showed the lowest score of 0.114. The surface flexibility of the target protein ranged from 0.864 to 1.099 having amino acid ranges of 159 to 165 and 118 to 124, respectively, harboring the FCYMHHM and YNGSPSG hepta-peptide sequences. The surface flexibility was predicted, and a 0.864 score was observed from amino acids 159 to 165 with the hepta-peptide (FCYMHHM) sequence. Moreover, the highest score of 1.099 was observed between amino acids 118 and 124 against YNGSPSG. B-cell epitopes and cytotoxic T-lymphocyte (CTL) epitopes were also identified against SARS-CoV-2. In molecular docking analyses, -0.54 to -26.21 kcal/mol global energy was observed against the selected CTL epitopes, exhibiting binding solid energies of -3.33 to -26.36 kcal/mol. Based on optimization, eight epitopes (SEDMLNPNY, GSVGFNIDY, LLEDEFTPF, DYDCVSFCY, GTDLEGNFY, QTFSVLACY, TVNVLAWLY, and TANPKTPKY) showed reliable findings. The study calculated the associated HLA alleles with MHC-I and MHC-II and found that MHC-I epitopes had higher population coverage (0.9019% and 0.5639%) than MHC-II epitopes, which ranged from 58.49% to 34.71% in Italy and China, respectively. The CTL epitopes were docked with antigenic sites and analyzed with MHC-I HLA protein. In addition, virtual screening was conducted using the ZINC database library, which contained 3,447 compounds. The 10 top-ranked scrutinized molecules (ZINC222731806, ZINC077293241, ZINC014880001, ZINC003830427, ZINC030731133, ZINC003932831, ZINC003816514, ZINC004245650, ZINC000057255, and ZINC011592639) exhibited the least binding energy (-8.8 to -7.5 kcal/mol). The molecular dynamics (MD) and immune simulation data suggest that these epitopes could be used to design an effective SARS-CoV-2 vaccine in the form of a peptide-based vaccine. Our identified CTL epitopes have the potential to inhibit SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Saigha Marriam
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Muhammad Sher Afghan
- Department of Ear, Nose, and Throat (ENT), District Headquarter (DHQ) Teaching Hospital Faisalabad, Faisalabad, Punjab, Pakistan
| | - Mazhar Nadeem
- Department of Ear, Nose, and Throat (ENT), District Headquarter (DHQ) Teaching Hospital Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Pakistan
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Muhammad Wajid
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Sabeen Sabri
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, Pakistan
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, Faculty of Life Sciences, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by ShowChwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Das K, Das P, Almuqbil M, Asdaq SMB, Nikhil K, Preethi K, Angelinkiruba A, Alomar NF, Al Harbi RM, Al Abdullah WA, Alshehri SM, Laghabi YA, Alsaegh AR, Mohzari Y, Alshehri S, Mannasaheb BA, Rabbani SI. Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: An in-silico approach. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102534. [PMID: 36619666 PMCID: PMC9811905 DOI: 10.1016/j.jksus.2022.102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 05/28/2023]
Abstract
Background and Objective In 2019, a novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) was declared pandemic. Advancement in computational technology has provided rapid and cost-effective techniques to test the efficacy of newer therapeutic agents. This study evaluated some of the potent phytochemicals obtained from AYUSH (Ayurveda, Yoga, Naturopathy, Unani, Siddha, Sowa-Rigpa, and Homeopathy)-listed medicinal plants against SARS-CoV-2 proteins using computational techniques. Materials and methods The potential SARS-CoV-2 protein targets were utilized to study the ligand-protein binding characteristics. The bioactive agents were obtained from ashwagandha, liquorice, amla, neem, tinospora, pepper, and stevia. Ivermectin was utilized as a reference agent to compare its efficacy with phytochemicals. Results The computational analysis suggested that all the bioactive components from the selected plants possessed negative docking scores (ranging from -6.24 to -10.53). The phytoconstituents were well absorbed, distributed in the body except for the CNS, metabolized by liver enzymes, well cleared from the body, and well tolerated. The data suggest that AYUSH-recommended plants demonstrated therapeutic efficacy against SARS CoV-2 virus infection with significantly reduced toxicity. Conclusion The phytoconstituents were found to hinder the early stages of infection, such as absorption and penetration, while ivermectin prevented the passage of genetic material from the cytoplasm to the nucleus. Additional research involving living tissues and clinical trials are suggested to corroborate the computational findings.
Collapse
Affiliation(s)
- Kuntal Das
- NITTE College of Pharmacy, Yelahanka, Bangalore 560064, India
| | - Paramita Das
- Krupanidhi College of Pharmacy, #12/1, Chikkabelandur, Carmelaram Post, Varthur Hobli, Bangalore 560035, India
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - K Nikhil
- Krupanidhi College of Pharmacy, #12/1, Chikkabelandur, Carmelaram Post, Varthur Hobli, Bangalore 560035, India
| | - K Preethi
- Krupanidhi College of Pharmacy, #12/1, Chikkabelandur, Carmelaram Post, Varthur Hobli, Bangalore 560035, India
| | - A Angelinkiruba
- Krupanidhi College of Pharmacy, #12/1, Chikkabelandur, Carmelaram Post, Varthur Hobli, Bangalore 560035, India
| | | | - Rawabi M Al Harbi
- Pharmaceutical Services, King Saud Medical City, Riyadh, Saudi Arabia
| | | | - Sami M Alshehri
- Pharmaceutical Services, King Saud Medical City, Riyadh, Saudi Arabia
| | - Yahya A Laghabi
- Pharmaceutical Services, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ahmed R Alsaegh
- Clinical Pharmacy Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Yahya Mohzari
- Clinical Pharmacy Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | | | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
16
|
Niu Z, Xu S, Zhang J, Zou Z, Ren L, Liu X, Zhang S, Zou H, Hu X, Wang J, Zhang L, Zhou Y, Song Z. Bioinformatic analysis of the S protein of human respiratory coronavirus. Mol Phylogenet Evol 2023; 181:107704. [PMID: 36657625 PMCID: PMC9840983 DOI: 10.1016/j.ympev.2023.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/13/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
The present study aimed to apply bioinformatic methods to analyze the structure of the S protein of human respiratory coronaviruses, including severe respiratory disease syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus HKU1 (HCoV-HKU1), and severe respiratory disease syndrome coronavirus type 2 (SARS-CoV-2). We predicted and analyzed the physicochemical properties, hydrophilicity and hydrophobicity, transmembrane regions, signal peptides, phosphorylation and glycosylation sites, epitopes, functional domains, and motifs of the S proteins of human respiratory coronaviruses. All four S proteins contain a transmembrane region, which enables them to bind to host cell surface receptors. All four S proteins contain a signal peptide, phosphorylation sites, glycosylation sites, and epitopes. The predicted phosphorylation sites might mediate S protein activation, the glycosylation sites might affect the cellular orientation of the virus, and the predicted epitopes might have implications for the design of antiviral inhibitors. The S proteins of all four viruses have two structural domains, S1 (C-terminal and N-terminal domains) and S2 (homology region 1 and 2). Our bioinformatic analysis of the structural and functional domains of human respiratory coronavirus S proteins provides a basis for future research to develop broad-spectrum antiviral drugs, vaccines, and antibodies.
Collapse
Affiliation(s)
- Zheng Niu
- College of Veterinary Medicine, Southwest University, Chongqing, China; College of Veterinary Medicine, Northwest A&F University, Shaanxi, China.
| | - ShaSha Xu
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - JingYi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - ZhuoLan Zou
- College of Veterinary Medicine, Southwest University, Chongqing, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - LiXin Ren
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - XiangYang Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China; College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China.
| | - ShuJuan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - Hong Zou
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - Xia Hu
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - Jing Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - Li Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, China; College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China.
| | - ZhenHui Song
- College of Veterinary Medicine, Southwest University, Chongqing, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
17
|
Khattak S, Rauf MA, Ali Y, Yousaf MT, Liu Z, Wu DD, Ji XY. The monkeypox diagnosis, treatments and prevention: A review. Front Cell Infect Microbiol 2023; 12:1088471. [PMID: 36814644 PMCID: PMC9939471 DOI: 10.3389/fcimb.2022.1088471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023] Open
Abstract
The world is currently dealing with a second viral outbreak, monkeypox, which has the potential to become an epidemic after the COVID-19 pandemic. People who reside in or close to forest might be exposed indirectly or at a low level, resulting in subclinical disease. However, the disease has lately emerged in shipped African wild mice in the United States. Smallpox can cause similar signs and symptoms to monkeypox, such as malaise, fever, flu-like signs, headache, distinctive rash, and back pain. Because Smallpox has been eliminated, similar symptoms in a monkeypox endemic zone should be treated cautiously. Monkeypox is transmitted to humans primarily via interaction with diseased animals. Infection through inoculation via interaction with skin or scratches and mucosal lesions on the animals is conceivable significantly once the skin barrier is disrupted by scratches, bites, or other disturbances or trauma. Even though it is clinically unclear from other pox-like infections, laboratory diagnosis is essential. There is no approved treatment for human monkeypox virus infection, however, smallpox vaccination can defend counter to the disease. Human sensitivity to monkeypox virus infection has grown after mass vaccination was discontinued in the 1980s. Infection may be prevented by reducing interaction with sick patients or animals and reducing respiratory exposure among people who are infected.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Mohd Ahmar Rauf
- School of Pharmaceutical Sciences, Wayne State University, Detroit, MI, United States
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Muhammad Tufail Yousaf
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Zhihui Liu
- Department of General Practice, Henan Provincial Peoples Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China,School of Stomatology, Henan University, Kaifeng, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
18
|
Khan MS, Khan IM, Ahmad SU, Rahman I, Khan MZ, Khan MSZ, Abbas Z, Noreen S, Liu Y. Immunoinformatics design of B and T-cell epitope-based SARS-CoV-2 peptide vaccination. Front Immunol 2023; 13:1001430. [PMID: 36685569 PMCID: PMC9846236 DOI: 10.3389/fimmu.2022.1001430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
SARS-COV-2 is a virulent respiratory virus, first identified in China (Wuhan) at the end of 2019. Scientists and researchers are trying to find any possible solution to this deadly viral disease. Different drug source agents have been identified, including western medicine, natural products, and traditional Chinese medicine. They have the potential to counteract COVID-19. This virus immediately affects the liver and causes a decrease in oxygen levels. In this study, multiple vacciome approaches were employed for designing a multi-epitope subunit vaccine for battling against SARS-COV-2. Vaccine designing, immunogenicity, allergenic, and physico-chemical assessment were performed by using the vacciome approach. The vaccine design is likely to be antigenic and produce potent interactions with ACE2 and NSP3 receptors. The developed vaccine has also been given to in-silico cloning models and immune response predictions. A total number of 12 CTL and 12 HTL antigenic epitopes were predicted from three selected covid-19 virulent proteins (spike protein, nucleocapsid protein, and membrane proteins, respectively) based on C-terminal cleavage and MHC binding scores. These predicted epitopes were amalgamated by AYY and GPGPG linkers, and a β-defensins adjuvant was inserted into the N-terminus of this vaccine. This analysis shows that the recommended vaccine can produce immune responses against SARS-COV-2. Designing and developing of the mentioned vaccine will require further experimental validation.
Collapse
Affiliation(s)
- Muhammad Shehzad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- Department of Physics, College of Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Syed Umair Ahmad
- Department of Bioinformatics Hazara University Mansehra, Mansehra, Pakistan
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Zahoor Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Shah Zeb Khan
- Department of Biotechnology, University of Science and Technology of Bannu, Bannu, Pakistan
- School of Biomedical Science and Biomedical Engineering, Southeast University, Nanjing, China
| | - Zain Abbas
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Shumaila Noreen
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
19
|
Shoaib M, Shehzadi I, Asif MU, Shen Y, Ni J. Identification of fungus-growing termite-associated halogenated-PKS maduralactomycin a as a potential inhibitor of MurF protein of multidrug-resistant Acinetobacter baumannii. Front Mol Biosci 2023; 10:1183073. [PMID: 37152898 PMCID: PMC10160657 DOI: 10.3389/fmolb.2023.1183073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii infections have become a major public health concern globally. Inhibition of its essential MurF protein has been proposed as a potential target for broad-spectrum drugs. This study aimed to evaluate the potential of a novel ecological niche of 374 fungus-growing termite associated Natural Products (NPs). The molecular docking and computational pharmacokinetics screened four compounds, i.e., Termstrin B, Fridamycin A, Maduralactomycin A, and Natalenamide C, as potential compounds that have higher binding affinities and favourable protein-ligand interactions. The compound Maduralactomycin A induced more stability based on its lowest average RMSD value (2.31 Å) and low standard deviation (0.35) supported by the consistent flexibility and β-factor during the protein's time-dependent motion. While hydrogen bond analysis indicated that Termstrin B has formed the strongest intra-protein interaction, solvent accessibility was in good agreement with Maduralactomycin A compactness. Maduralactomycin A has the strongest binding energy among all the compounds (-348.48 kcal/mol) followed by Termstrin B (-321.19 kcal/mol). Since these findings suggest Maduralactomycin A and Termstrin B as promising candidates for inhibition of MurF protein, the favourable binding energies of Maduralactomycin A make it a more important compound to warrant further investigation. However, experimental validation using animal models and clinical trials is recommended before reaching any final conclusions.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | | | | | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
- *Correspondence: Yulong Shen, ; Jinfeng Ni,
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
- *Correspondence: Yulong Shen, ; Jinfeng Ni,
| |
Collapse
|
20
|
Aliabadi N, Jamaliduost M, Pouladfar G, Marandi NH, Ziyaeyan M. Characterization and phylogenetic analysis of Iranian SARS-CoV-2 genomes: A phylogenomic study. Health Sci Rep 2023; 6:e1052. [PMID: 36686884 PMCID: PMC9841325 DOI: 10.1002/hsr2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/27/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background and Aim Characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on analyzing the evolution and mutations of viruses is crucial for tracking viral infections, potential mutants, and other pathogens. The purpose was to study the complete sequences of SARS-CoV-2 to reveal genetic distance and mutation rate among different provinces of Iran. Methods As of March 2020-April 2021, a total of 131 SARS-CoV-2 whole genome sequences submitted from Tehran and 133 SARS-CoV-2 full-length sequences from 24 cities with high coverage submitted to EpiCoV GISAID database were analyzed to infer clades and mutation annotation compared with the wild-type variant Wuhan-Hu-1. Results The results of variant annotation were revealed 11,204 and 9468 distinct genomes were identified among the samples from different cities and Tehran, respectively. The phylogenetic analysis of genomic sequences showed the presence of eight GISAID clades, namely GH, GR, O, GRY, G, GK, L, and GV, and six Nextstrain clades; that is, 19A, 20A, 20B, 20I (alpha, V1), 20H (Beta, V2), and 21I (Delta) in Iran. The GH (GISAID clade), 20A (Nextstrain clade), and B.1 (Pango lineage) were predominant in Iran. Notably, analysis of the spike protein revealed D614G mutation (S_D614G) in 56% of the sequences. Also, the delta variant of the coronavirus, the super-infectious strain that was first identified among the sequences submitted from the southern cities of the country such as Zahedan, Yazd and Bushehr, and most likely from these places to other cities of Iran as well has expanded. Conclusions Our results indicate that most of the circulated viruses in Iran in the early time of the pandemic had collected in eight GISAID clades. Therefore, a continuous and extensive genome sequence analysis would be necessary to understand the genomic epidemiology of SARS-CoV-2 in Iran.
Collapse
Affiliation(s)
- Nasrin Aliabadi
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| | - Marzieh Jamaliduost
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| | - Gholamreza Pouladfar
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| | - Nahid H. Marandi
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| | - Mazyar Ziyaeyan
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| |
Collapse
|
21
|
Wang L, Li Z. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. BIOSENSORS 2022; 12:1129. [PMID: 36551096 PMCID: PMC9775677 DOI: 10.3390/bios12121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At the current stage, prevention and vaccination are still the most efficient ways to slow down the pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress and research activities in developing smart nanostructured materials for COVID-19 prevention, sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on the development of stimuli-responsive nanostructures for high-performance biosensing and detection of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some existing challenges are also provided, which need continuous efforts in creating smart nanostructured materials for coronavirus biosensing, treatment, and vaccination.
Collapse
Affiliation(s)
- Lifeng Wang
- Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Zhiwei Li
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
22
|
Ali Y, Ahmad F, Ullah MF, Haq NU, Haq MIU, Aziz A, Zouidi F, Khan MI, Eldin SM. Structural Evaluation and Conformational Dynamics of ZNF141T474I Mutation Provoking Postaxial Polydactyly Type A. Bioengineering (Basel) 2022; 9:bioengineering9120749. [PMID: 36550955 PMCID: PMC9774408 DOI: 10.3390/bioengineering9120749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Postaxial Polydactyly (PAP) is a congenital disorder of limb abnormalities characterized by posterior extra digits. Mutations in the N-terminal region of the Zinc finger protein 141 (ZNF141) gene were recently linked with PAP type A. Zinc finger proteins exhibit similarity at their N-terminal regions due to C2-H2 type Zinc finger domains, but their functional preferences vary significantly by the binding patterns of DNA. Methods: This study delineates the pathogenic association, miss-fold aggregation, and conformational paradigm of a missense variant (c.1420C > T; p.T474I) in ZNF141 gene segregating PAP through a molecular dynamics simulations approach. Results: In ZNF141 protein, helices play a crucial role by attaching three specific target DNA base pairs. In ZNF141T474I protein, H1, H3, and H6 helices attain more flexibility by acquiring loop conformation. The outward disposition of the proximal portion of H9-helix in mutant protein occurs due to the loss of prior beta-hairpins at the C terminal region of the C2-H2 domain. The loss of hydrogen bonds and exposure of hydrophobic residues to solvent and helices turning to loops cause dysfunction of ZNF141 protein. These significant changes in the stability and conformation of the mutant protein were validated using essential dynamics and cross-correlation maps, which revealed that upon point mutation, the overall motion of the proteins and the correlation between them were completely different, resulting in Postaxial polydactyly type A. Conclusions: This study provides molecular insights into the structural association of ZNF141 protein with PAP type A. Identification of active site residues and legends offers new therapeutic targets for ZNF141 protein. Further, it reiterates the functional importance of the last residue of a protein.
Collapse
Affiliation(s)
- Yasir Ali
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Faisal Ahmad
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Muhammad Farhat Ullah
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Noor Ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - M. Inam Ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Abdul Aziz
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Ferjeni Zouidi
- Biology Department, Faculty of Arts and Sciences of Muhayil Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - M. Ijaz Khan
- Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
- Department of Mechanical Engineering, Lebanese American University, Beirut 13-5053, Lebanon
- Correspondence: or
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| |
Collapse
|
23
|
Shah AA, Amjad M, Hassan JU, Ullah A, Mahmood A, Deng H, Ali Y, Gul F, Xia K. Molecular Insights into the Role of Pathogenic nsSNPs in GRIN2B Gene Provoking Neurodevelopmental Disorders. Genes (Basel) 2022; 13:genes13081332. [PMID: 35893069 PMCID: PMC9394290 DOI: 10.3390/genes13081332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
The GluN2B subunit of N-methyl-D-aspartate receptors plays an important role in the physiology of different neurodevelopmental diseases. Genetic variations in the GluN2B coding gene (GRIN2B) have consistently been linked to West syndrome, intellectual impairment with focal epilepsy, developmental delay, macrocephaly, corticogenesis, brain plasticity, as well as infantile spasms and Lennox–Gastaut syndrome. It is unknown, however, how GRIN2B genetic variation impacts protein function. We determined the cumulative pathogenic impact of GRIN2B variations on healthy participants using a computational approach. We looked at all of the known mutations and calculated the impact of single nucleotide polymorphisms on GRIN2B, which encodes the GluN2B protein. The pathogenic effect, functional impact, conservation analysis, post-translation alterations, their driving residues, and dynamic behaviors of deleterious nsSNPs on protein models were then examined. Four polymorphisms were identified as phylogenetically conserved PTM drivers and were related to structural and functional impact: rs869312669 (p.Thr685Pro), rs387906636 (p.Arg682Cys), rs672601377 (p.Asn615Ile), and rs1131691702 (p.Ser526Pro). The combined impact of protein function is accounted for by the calculated stability, compactness, and total globularity score. GluN2B hydrogen occupancy was positively associated with protein stability, and solvent-accessible surface area was positively related to globularity. Furthermore, there was a link between GluN2B protein folding, movement, and function, indicating that both putative high and low local movements were linked to protein function. Multiple GRIN2B genetic variations are linked to gene expression, phylogenetic conservation, PTMs, and protein instability behavior in neurodevelopmental diseases. These findings suggest the relevance of GRIN2B genetic variations in neurodevelopmental problems.
Collapse
Affiliation(s)
- Abid Ali Shah
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; (A.A.S.); (A.M.)
| | - Marryam Amjad
- District Headquarter (DHQ) Hospital, Faisalabad 38000, Punjab, Pakistan;
| | | | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; (A.A.S.); (A.M.)
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.G.)
| | - Fouzia Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.G.)
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; (A.A.S.); (A.M.)
- Hengyang Medical School, University of South China, Hengyang 421000, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200030, China
- Correspondence: ; Tel.: +86-731-8480-5357
| |
Collapse
|
24
|
Peisahovics F, Rohaim MA, Munir M. Structural topological analysis of spike proteins of SARS-CoV-2 variants of concern highlight distinctive amino acid substitution patterns. Eur J Cell Biol 2022; 101:151275. [PMID: 36156414 PMCID: PMC9484102 DOI: 10.1016/j.ejcb.2022.151275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 02/08/2023] Open
Abstract
Since the onset of pandemic in 2019, SARS-CoV-2 has diverged into numerous variants driven by antigenic and infectivity-oriented selection. Some variants have accumulated fitness-enhancing mutations, evaded immunity and spread despite global vaccination campaigns. The spike (S) glycoprotein of SARS-CoV-2 demonstrated the greatest immunogenicity and amino acid substitution diversity owing to its importance in the interaction with human angiotensin receptor 2 (hACE2). The S protein consistently emerges as an amino acid substitution (AAS) hotspot in all six lineages, however, in Omicron this enrichment is significantly higher. This study attempts to design and validate a method of mapping S-protein substitution profile across variants to identify the conserved and AAS regions. A substitution matrix was created based on publicly available databases, and the substitution localization was illustrated on a cryo-electron microscopy generated S-protein model. Our analyses indicated that the diversity of N-terminal (NTD) and receptor-binding (RBD) domains exceeded that of any other regions but still contained extended low substitution density regions particularly considering significantly broader substitution profiles of Omicron BA.2 and BA.4/5. Finally, the substitution matrix was compared to a random sample alignment of variant sequences, revealing discrepancies. Therefore, it was suggested to improve matrix accuracy by processing a large number of S-protein sequences using an automated algorithm. Several critical immunogenic and receptor-interacting residues were identified in the conserved regions within NTD and RBD. In conclusion, the structural and topological analysis of S proteins of SARS-CoV-2 variants highlight distinctive amino acid substitution patterns which may be foundational in predicting future variants.
Collapse
Affiliation(s)
| | | | - Muhammad Munir
- Correspondence to: Lancaster University, Lancaster, United Kingdom
| |
Collapse
|