1
|
Vrtělka O, Králová K, Fousková M, Setnička V. Comprehensive assessment of the role of spectral data pre-processing in spectroscopy-based liquid biopsy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126261. [PMID: 40273765 DOI: 10.1016/j.saa.2025.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Spectroscopic data often contain artifacts or noise related to the sample characteristics, instrumental variations, or experimental design flaws. Therefore, classifying the raw data is not recommended and might lead to biased results. Nevertheless, most issues may be addressed through appropriate data pre-processing. Effective pre-processing is particularly crucial in critical applications like liquid biopsy for disease detection, where even minor performance improvements may impact patient outcomes. Unfortunately, there is no consensus regarding optimal pre-processing, complicating cross-study comparisons. This study presents a comprehensive evaluation of various pre-processing methods and their combinations to assess their influence on classification results. The goal was to identify whether some pre-processing methods are associated with higher classification outcomes and find an optimal strategy for the given data. Data from Raman optical activity and infrared and Raman spectroscopy were processed, applying tens of thousands of possible pre-processing pipelines. The resulting data were classified using three algorithms to distinguish between subjects with liver cirrhosis and those who had developed hepatocellular carcinoma. Results highlighted that some specific pre-processing methods often ranked among the best classification results, such as the Rolling Ball for correcting the baseline of Raman spectra or the Doubly Reweighted Penalized Least Squares and Mixture model in the case of Raman optical activity. On the other hand, the selection of filtering and/or normalization approach usually did not have a significant impact. Nonetheless, the pre-processing of top-scoring pipelines also depended on the classifier utilized. The best pipelines yielded an AUROC of 0.775-0.823, varying with the evaluated spectroscopic data and classifier.
Collapse
Affiliation(s)
- Ondřej Vrtělka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Kateřina Králová
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Markéta Fousková
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Bonizzi A, Signati L, Grimaldi M, Truffi M, Piccotti F, Gagliardi S, Dotti G, Mazzucchelli S, Albasini S, Cazzola R, Bhowmik D, Narayana C, Corsi F, Morasso C. Exploring breast cancer-related biochemical changes in circulating extracellular vesicles using Raman spectroscopy. Biosens Bioelectron 2025; 278:117287. [PMID: 40023908 DOI: 10.1016/j.bios.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Extracellular vesicles (EVs) are a subgroup of the circulating particles, released by cells in both normal and diseased states, carrying active biomolecules. They have gained significant attention as potential cancer biomarkers, particularly in breast cancer (BC). Previous research showed variations in EVs content and quantity between BC patients and healthy controls (HC). However, studying the biochemical profile of EVs remains challenging due to their low abundance and complex composition. Additionally, EVs may interact with other plasma components, like lipoproteins (LPs), forming a so called "biomolecular corona" that further complicates their analysis. Here, Raman spectroscopy (RS) is proposed as a fast tool to obtain the biochemical profile of circulating EVs in the context of BC. RS was employed to differentiate various extracellular particles (EPs) in blood, including LPs and EVs. The study also evaluated RS's capability to quantify major classes of biomolecules and compared these results with those obtained by traditional biochemical assays. Finally, compositional differences in large EVs (lEVs) and small EVs (sEVs) were assessed between HC and BC patients. RS revealed the existence of distinct biochemical signatures associated with BC, highlighting increased levels of nucleic acids and lipids in the BC group.
Collapse
Affiliation(s)
- Arianna Bonizzi
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Lorena Signati
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Maria Grimaldi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Francesca Piccotti
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Giulia Dotti
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy
| | - Sara Albasini
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy
| | - Debanjan Bhowmik
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Poojappura, Thiruvananthapuram, 695014, India
| | - Chandrabhas Narayana
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Poojappura, Thiruvananthapuram, 695014, India; Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy.
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy.
| |
Collapse
|
3
|
Borea R, Reduzzi C. The growing field of liquid biopsy and its Snowball effect on reshaping cancer management. THE JOURNAL OF LIQUID BIOPSY 2025; 8:100293. [PMID: 40255897 PMCID: PMC12008596 DOI: 10.1016/j.jlb.2025.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Liquid biopsy (LB) has emerged as a transformative tool in oncology, providing a minimally invasive approach for tumor detection, molecular characterization, and real-time treatment monitoring. By analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and microRNA (miRNA), LB enables comprehensive tumor profiling without the need for traditional tissue biopsies. Over the past decade, research in this field has expanded exponentially, leading to the integration of LB into clinical practice for specific cancer types, including lung and breast cancer. In 2024, the Journal of Liquid Biopsy (JLB) published innovative studies exploring the latest advancements in LB technologies, biomarkers, and their applications for cancer detection, minimal residual disease (MRD) monitoring, and therapy response assessment. This review synthesizes recent findings on the role of LB in cancer treatment and monitoring across different biomarkers, with a particular focus on newly published studies and their context within translational research. Additionally, it highlights emerging techniques such as fragmentomics, artificial intelligence, and multiomics, paving the way for more precise, personalized treatment decisions. Despite these advancements, challenges remain in standardizing methodologies, optimizing clinical validation, and integrating LB into routine oncological workflows. This mini-review highlights the evolving landscape of LB research and its potential to revolutionize cancer diagnosis, treatment monitoring, and therapeutic decision-making, ushering in a new era of precision oncology.
Collapse
Affiliation(s)
- Roberto Borea
- Department of Public Health, University Federico II of Naples, Naples, Italy
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY, 10021, USA
| |
Collapse
|
4
|
Raicevic Toungouz G, Alessandrello R, Giacomini P, Kamal M, Gausachs M, Mazzarella L, Sujobert P, Frigè G, Alay A, Planchon JM, Blau O, Mias Carballal MR, Antoine-Poirel H, Nadal E, Bullinger L, Hebrant A, Servant N, D'Haene N, Aftimos P, Silkenstedt E, Michalík A, Dupain C, Delcourt T, Huet S, Van Campenhout C, Cordero D, Castellano Garcia JM, Codony C, Krol A, Gonzalo J, Van Damme N, Delnord M, Carbone R, Trapani V, Van Garsse S, Van Den Bulcke M. Development and implementation of novel liquid biopsy NGS panels via the OncNGS precommercial procurement (PCP) initiative. ESMO Open 2025; 10:105127. [PMID: 40393376 DOI: 10.1016/j.esmoop.2025.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) analysis is transforming oncology, but challenges such as insufficient analytical sensitivity, difficult variant interpretation, suboptimal turnaround time, limited deployment flexibility, and high costs hinder its broader adoption and raise concerns about reimbursement sustainability across European health care systems. MATERIALS AND METHODS To address these challenges, we created the OncNGS consortium, comprising academic, public, and private hospitals (buyers' group) and several supporting entities, to run a European precommercial procurement (PCP) initiative. The consortium defined ctDNA diagnostic testing requirements, conducted an open market consultation, and launched a call for tender. Suppliers were invited to develop an end-to-end, Conformité Européenne In Vitro Diagnostic (CE-IVD)-compliant solution integrating wet laboratory, dry laboratory, and reporting workflow in a single procedure, offering short turnaround time and reasonable cost. RESULTS The OncNGS consortium defined criteria for a versatile, modular, cost-effective solution, deployable centrally or on-site, and adaptable to advancements in precision oncology. Launched in July 2022, the tender attracted seven companies, with four selected for phase I-OncNGS solution(s) design. From these, three advanced to phase II-prototyping. Ultimately, two contractors were awarded contracts for phase III to assess the clinical performance of their prototypes. CONCLUSIONS By leveraging the PCP approach, OncNGS aims to deliver innovative, affordable solutions to standardize ctDNA testing and reporting across European Union countries, improving diagnostic and therapeutic strategies for oncology patients.
Collapse
Affiliation(s)
| | - R Alessandrello
- Innovation Unit, Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | - P Giacomini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOSD Medicina di Precisione in Senologia, Rome, Italy; Alleanza Contro Il Cancro (ACC), Rome, Italy
| | - M Kamal
- Department of Drug Development & Innovation, Institut Curie (IC), Paris, France; IHU PRISM National PRecISion Medicine Center in Oncology, Gustave Roussy, France
| | - M Gausachs
- Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - L Mazzarella
- Alleanza Contro Il Cancro (ACC), Rome, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - P Sujobert
- Laboratory of Haematology, Hospices Civils de Lyon (HCL), Hôpital Lyon Sud, Lyon, France
| | - G Frigè
- Alleanza Contro Il Cancro (ACC), Rome, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - A Alay
- Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - J M Planchon
- Department of Genetics, Institut Curie (IC), Paris, France
| | - O Blau
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin (HC), Berlin, Germany
| | - M R Mias Carballal
- Innovation Unit, Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | | | - E Nadal
- Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - L Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin (HC), Berlin, Germany
| | - A Hebrant
- Cancer Center, Sciensano (SC), Brussels, Belgium
| | - N Servant
- Bioinformatics Core Facility, INSERM U1331, Mines Paris Tech, Institut Curie (IC), Paris, France
| | - N D'Haene
- Medical Oncology Department, Institut Jules Bordet (IJB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - P Aftimos
- Medical Oncology Department, Institut Jules Bordet (IJB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - E Silkenstedt
- Department of Medicine III, University Hospital Groβhadern, Ludwig Maximilians University (LMU), Munich, Germany
| | - A Michalík
- De Clercq & Partners (DCP), Sint-Martens-Latem, Belgium
| | - C Dupain
- Department of Drug Development & Innovation, Institut Curie (IC), Paris, France
| | - T Delcourt
- Cancer Center, Sciensano (SC), Brussels, Belgium
| | - S Huet
- Laboratory of Haematology, Hospices Civils de Lyon (HCL), Hôpital Lyon Sud, Lyon, France
| | - C Van Campenhout
- Medical Oncology Department, Institut Jules Bordet (IJB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - D Cordero
- Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - J M Castellano Garcia
- Innovation Unit, Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | - C Codony
- Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - A Krol
- Institut National du Cancer (INCa), Boulogne-Billancourt, France
| | - J Gonzalo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - N Van Damme
- Belgian Cancer Registry (BCR), Brussels, Belgium
| | - M Delnord
- Cancer Center, Sciensano (SC), Brussels, Belgium
| | - R Carbone
- Alleanza Contro Il Cancro (ACC), Rome, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - V Trapani
- Alleanza Contro Il Cancro (ACC), Rome, Italy; Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | | | | |
Collapse
|
5
|
Venetis K, Cursano G, Scafetta R, Giachetti PPMB, Concardi A, De Camilli E, D'Ercole M, Mane E, Frascarelli C, Marra A, Gandini S, Pepe F, Scagnoli S, Rossi SM, Troiano R, Speziale E, De Angelis C, Troncone G, Malapelle U, Perrone G, Botticelli A, Viale G, Curigliano G, Guerini Rocco E, Criscitiello C, Fusco N. ESR1 testing on FFPE samples from metastatic lesions in HR + /HER2- breast cancer after progression on CDK4/6 inhibitor therapy. Breast Cancer Res 2025; 27:79. [PMID: 40369610 PMCID: PMC12079830 DOI: 10.1186/s13058-025-02020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Mutations in ESR1 play a critical role in resistance to endocrine therapy (ET) in hormone receptor-positive (HR +)/HER2- metastatic breast cancer (MBC). Testing for ESR1 mutations is essential for guiding treatment with novel oral selective estrogen receptor degraders (SERDs) like elacestrant or camizestrant. While most studies have utilized liquid biopsy (LB) for mutation detection, the role of formalin-fixed paraffin-embedded (FFPE) tissue biopsy in this context remains unclear. In this study, we analyzed a cohort of HR + /HER2- MBC patients who experienced resistance to ET and CDK4/6 inhibitors. Next-generation sequencing (NGS) was performed on FFPE biopsy samples obtained from metastatic sites at the time of disease progression. ESR1 mutations were detected in 24 out of 38 patients (63.2%), with p.D538G identified in 10 patients (45.5%) and p.Y537S in 6 patients (27.2%) as the most frequent alterations. One patient exhibited dual ESR1 mutations, and a recurrent ESR1-CCDC170 gene fusion was identified, underscoring the diversity and potential interplay of genetic alterations driving resistance in HR + /HER2- MBC. Notably, lung metastases were significantly more common in ESR1 mutant cases (8/24, 33.3%) compared to wild-type cases (1/14, 7.1%), while liver metastases showed no difference between mutant (12/24, 50.0%) and wild-type groups (7/14, 50.0%). Co-mutations in actionable pathways, particularly PIK3CA, were observed in n = 10 ESR1 mutant tumors (41.6%), highlighting their contribution to resistance mechanisms and posing significant challenges for treatment selection, as these alterations may necessitate combination therapies to effectively target multiple resistance pathways. This study presents new insights into the prevalence and clinical significance of ESR1 mutations in HR + /HER2- MBC, highlighting the potential utility of FFPE biopsy samples as a viable alternative or complementary approach to LB for mutation detection, particularly in resource-limited settings where access to ctDNA analysis may be constrained.
Collapse
Affiliation(s)
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberta Scafetta
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Pier Paolo Maria Berton Giachetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Concardi
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa De Camilli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Marianna D'Ercole
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO, IRCCS, Milan, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Simone Scagnoli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Silvia Maria Rossi
- Operative Research Unit of Anatomical Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Raffaella Troiano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elena Speziale
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Giuseppe Perrone
- Operative Research Unit of Anatomical Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Viale
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini Rocco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Urzì O, Olofsson Bagge R, Crescitelli R. Extracellular vesicles in uveal melanoma - Biological roles and diagnostic value. Cancer Lett 2025; 615:217531. [PMID: 39914771 DOI: 10.1016/j.canlet.2025.217531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Uveal melanoma (UM), which originates from the uveal tract of the eye, is the most common and aggressive intraocular cancer in adults. The detection of genetic markers is crucial for an accurate diagnosis, but this requires tumor biopsies that can be challenging to obtain. Extracellular vesicles (EVs) have emerged as potential biomarkers for UM due to their presence in biological fluids and their ability to carry disease-related biomolecules such as proteins and nucleic acids. Increasing evidence indicates that EVs released from UM cells play crucial roles in UM development, including cancer progression, pre-metastatic niche formation, and metastasis. Moreover, many studies have demonstrated that UM-derived EVs carry proteins and microRNAs that might be used as biomarkers. This review explores the role of EVs in UM, focusing on their biological functions and their potential as diagnostic and prognostic biomarkers of UM. Additionally, current challenges to the use of UM-derived EVs in clinical translation were identified, as well as perspectives and future directions in the field.
Collapse
Affiliation(s)
- Ornella Urzì
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Grech L, Grech CA, Calleja-Agius J, Pace NP. Biobanking and gynecologic oncology - Special considerations, challenges and opportunities. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109713. [PMID: 40348475 DOI: 10.1016/j.ejso.2025.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 05/14/2025]
Abstract
Biobanks of gynecological tissues occupy a critical niche in oncologic research. They are essential components of contemporary research strategies on gynecologic malignancy by integrating clinical, molecular and longitudinal biospecimen data. They also implement protocols for quality control, regulate sample and data sharing, provide ethical and regulatory oversight, and establish governance mechanisms to regulate their function. Gynecologic tissue biobanks also face some unique challenges. The broad heterogeneity of disease entities encompassed under this domain include common and rare malignancies, each with unique molecular subtypes that must be integrated into biobank information systems. Specimen acquisition extends beyond conventional tissues to include cervicovaginal microbiomes and ascitic fluid. Thus, gynecologic tissue biobanks should develop tailored collection strategies and the establishment of dedicated gynecologic tissue repositories that enable the aggregation of rare specimens through collaborative networks. This article emphasizes the need for high-quality annotation of biospecimens, the incorporation of multi-omics approaches to enhance the translational approaches, challenges associated with integration of high dimensional datasets, the role of biobank networks, and various ethical and cultural considerations concerning gynecologic biobanks. Emerging technologies that integrate multi omics, spatial biology and liquid biopsies now offer enhanced opportunities that augment classical specimen collection and should be integrated into standardized protocols.
Collapse
Affiliation(s)
- Laura Grech
- Department of Applied Biomedical Sciences, Faculty of Health Sciences, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| | - Celine Ann Grech
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| | - Nikolai Paul Pace
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| |
Collapse
|
8
|
Bartolomucci A, Nobrega M, Ferrier T, Dickinson K, Kaorey N, Nadeau A, Castillo A, Burnier JV. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis Oncol 2025; 9:84. [PMID: 40122951 PMCID: PMC11930993 DOI: 10.1038/s41698-025-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a dynamic biomarker in cancer, as evidenced by its increasing integration into clinical practice. Carrying tumor specific characteristics, ctDNA can be used to inform treatment selection, monitor response, and identify drug resistance. In this review, we provide a comprehensive, up-to-date summary of ctDNA in monitoring treatment response with a focus on lung, colorectal, and breast cancers, and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Monyse Nobrega
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Alberto Castillo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
van Dongen JE, Segerink LI. Building the Future of Clinical Diagnostics: An Analysis of Potential Benefits and Current Barriers in CRISPR/Cas Diagnostics. ACS Synth Biol 2025; 14:323-331. [PMID: 39880685 PMCID: PMC11854988 DOI: 10.1021/acssynbio.4c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Advancements in molecular diagnostics, such as polymerase chain reaction and next-generation sequencing, have revolutionized disease management and prognosis. Despite these advancements in molecular diagnostics, the field faces challenges due to high operational costs and the need for sophisticated equipment and highly trained personnel besides having several technical limitations. The emergent field of CRISPR/Cas sensing technology is showing promise as a new paradigm in clinical diagnostics, although widespread clinical adoption remains limited. This perspective paper discusses specific cases where CRISPR/Cas technology can surmount the challenges of existing diagnostic methods by stressing the significant role that CRISPR/Cas technology can play in revolutionizing clinical diagnostics. It underscores the urgency and importance of addressing the technological and regulatory hurdles that must be overcome to harness this technology effectively in clinical laboratories.
Collapse
Affiliation(s)
- Jeanne E. van Dongen
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands
| | - Loes I. Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands
| |
Collapse
|
10
|
Rodriguez-Nieves AL, Shah S, Taylor ML, Alle M, Huang X. Magnetic-Plasmonic Core-Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:264. [PMID: 39997827 PMCID: PMC11858323 DOI: 10.3390/nano15040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Nanoparticles have been widely used in cancer diagnostics and treatment research due to their unique properties. Magnetic nanoparticles are popular in imaging techniques due to their ability to alter the magnetization field around them. Plasmonic nanoparticles are mainly applied in cancer treatments like photothermal therapy due to their ability to convert light into heat. While these nanoparticles are popular among their respective fields, magnetic-plasmonic core-shell nanoparticles (MPNPs) have gained popularity in recent years due to the combined magnetic and optical properties from the core and shell. MPNPs have stood out in cancer theranostics as a multimodal platform capable of serving as a contrast agent for imaging, a guidable drug carrier, and causing cellular ablation through photothermal energy conversion. In this review, we summarize the different properties of MPNPs and the most common synthesis approaches. We particularly discuss applications of MPNPs in cancer diagnosis and treatment based on different mechanisms using the magnetic and optical properties of the particles. Lastly, we look into current challenges they face for clinical applications and future perspectives using MPNPs for cancer detection and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (A.L.R.-N.); (S.S.); (M.L.T.); (M.A.)
| |
Collapse
|
11
|
Balaraman AK, Moglad E, Afzal M, Babu MA, Goyal K, Roopashree R, Kaur I, Kumar S, Kumar MR, Chauhan AS, Hemalatha S, Gupta G, Ali H. Liquid biopsies and exosomal ncRNA: Transforming pancreatic cancer diagnostics and therapeutics. Clin Chim Acta 2025; 567:120105. [PMID: 39706249 DOI: 10.1016/j.cca.2024.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Pancreatic cancer is a highly fatal malignancy due to poor early detection rate and resistance to conventional therapies. This review examines the potential for liquid biopsy as a transformative technology to identify diagnostic and therapeutic targets in pancreatic cancer. Specifically, we explore emerging biomarkers such as exosomal non-coding RNAs (ncRNAs), circulating tumor DNA (ctDNA), and circulating tumor cells (CTCs). Tumor-derived exosomes contain nucleic acid and protein that reflect the unique molecular landscape of the malignancy and can serve as an alternative diagnostic approach vs traditional biomarkers like CA19-9. Herein we highlight exosomal miRNAs, lncRNAs, and other ncRNAs alongside ctDNA and CTC-based strategies, evaluating their combined ability to improve early detection, disease monitoring and treatment response. Furthermore, the therapeutic implications of ncRNAs such as lncRNA UCA1 and miR-3960 in chemoresistance and progression are also discussed via suppression of EZH2 and PTEN/AKT pathways. Emerging therapeutic strategies that target the immune response, epithelial-mesenchymal transition (EMT) and drug resistance are explored. This review demonstrates a paradigm shift in pancreatic cancer management toward personalized, less invasive and more effective approaches.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - MRavi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - S Hemalatha
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
12
|
Moon GY, Dalkiran B, Park HS, Shin D, Son C, Choi JH, Bang S, Lee H, Doh I, Kim DH, Jeong WJ, Bu J. Dual Biomarker Strategies for Liquid Biopsy: Integrating Circulating Tumor Cells and Circulating Tumor DNA for Enhanced Tumor Monitoring. BIOSENSORS 2025; 15:74. [PMID: 39996976 PMCID: PMC11852634 DOI: 10.3390/bios15020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025]
Abstract
The liquid biopsy has gained significant attention in cancer diagnostics, with circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) being recognized as key biomarkers for tumor detection and monitoring. However, each biomarker possesses inherent limitations that restrict its standalone clinical utility, such as the rarity and heterogeneity of CTCs and the variable sensitivity and specificity of ctDNA assays. This highlights the necessity of integrating both biomarkers to maximize diagnostic and prognostic potential, offering a more comprehensive understanding of the tumor biology and therapeutic response. In this review, we summarize clinical studies that have explored the combined analysis of CTCs and ctDNA as biomarkers, providing insights into their synergistic value in diverse tumor types. Specifically, this paper examines the individual advantages and limitations of CTCs and ctDNA, details the findings of combined biomarker studies across various cancers, highlights the benefits of dual biomarker approaches over single-biomarker strategies, and discusses future prospects for advancing personalized oncology through liquid biopsies. By offering a comprehensive overview of clinical studies combining CTCs and ctDNA, this review serves as a guideline for researchers and clinicians aiming to enhance biomarker-based strategies in oncology and informs biosensor design for improved biomarker detection.
Collapse
Affiliation(s)
- Ga Young Moon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Basak Dalkiran
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Hyun Sung Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Dongjun Shin
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Chaeyeon Son
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Jung Hyun Choi
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Seha Bang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Hosu Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Il Doh
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Dong Hyung Kim
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Woo-jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jiyoon Bu
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
13
|
Gottardo A, Russo TDB, Perez A, Bono M, Di Giovanni E, Di Marco E, Siino R, Bannera CF, Mujacic C, Vitale MC, Contino S, Iannì G, Busuito G, Iacono F, Incorvaia L, Badalamenti G, Galvano A, Russo A, Bazan V, Gristina V. Exploring the potential of multiomics liquid biopsy testing in the clinical setting of lung cancer. Cytopathology 2024; 35:664-670. [PMID: 38822635 DOI: 10.1111/cyt.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
The transformative role of artificial intelligence (AI) and multiomics could enhance the diagnostic and prognostic capabilities of liquid biopsy (LB) for lung cancer (LC). Despite advances, the transition from tissue biopsies to more sophisticated, non-invasive methods like LB has been impeded by challenges such as the heterogeneity of biomarkers and the low concentration of tumour-related analytes. The advent of multiomics - enabled by deep learning algorithms - offers a solution by allowing the simultaneous analysis of various analytes across multiple biological fluids, presenting a paradigm shift in cancer diagnostics. Through multi-marker, multi-analyte and multi-source approaches, this review showcases how AI and multiomics are identifying clinically valuable biomarker combinations that correlate with patients' health statuses. However, the path towards clinical implementation is fraught with challenges, including study reproducibility and lack of methodological standardization, thus necessitating urgent solutions to solve these common issues.
Collapse
Affiliation(s)
- Andrea Gottardo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Enrico Di Marco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Rita Siino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuliana Iannì
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giulia Busuito
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | | | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Maqueda JJ, De Feo A, Scotlandi K. Evaluating Circulating Biomarkers for Diagnosis, Prognosis, and Tumor Monitoring in Pediatric Sarcomas: Recent Advances and Future Directions. Biomolecules 2024; 14:1306. [PMID: 39456239 PMCID: PMC11506719 DOI: 10.3390/biom14101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Pediatric sarcomas present a significant challenge in oncology. There is an urgent need for improved therapeutic strategies for high-risk patients and better management of long-term side effects for those who survive the disease. Liquid biopsy is emerging as a promising tool to optimize treatment in these patients by offering non-invasive, repeatable assessments of disease status. Circulating biomarkers can provide valuable insights into tumor genetics and treatment response, potentially facilitating early diagnosis and dynamic disease monitoring. This review examines the potential of liquid biopsies, focusing on circulating biomarkers in the most common pediatric sarcomas, i.e., osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma. We also highlight the current research efforts and the necessary advancements required before these technologies can be widely adopted in clinical practice.
Collapse
Affiliation(s)
- Joaquín J. Maqueda
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (K.S.)
| | | | | |
Collapse
|
15
|
Nassar SI, Suk A, Nguyen SA, Adilbay D, Pang J, Nathan CAO. The Role of ctDNA and Liquid Biopsy in the Diagnosis and Monitoring of Head and Neck Cancer: Towards Precision Medicine. Cancers (Basel) 2024; 16:3129. [PMID: 39335101 PMCID: PMC11430155 DOI: 10.3390/cancers16183129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Recent data have shown a continued rise in the worldwide annual incidence and mortality rates of head and neck cancers. The present standard for diagnosis and monitoring for disease recurrence or progression involves clinical examination, imaging, and invasive biopsy techniques of lesions suspected of being malignant. In addition to limitations relating to cost, time, and patient discomfort, these methodologies have inherent inaccuracies for detecting recurrence. In view of these limitations, the analysis of patient bodily fluid samples via liquid biopsy proposes a cost-effective and convenient alternative, which provides insight on the biogenetic and biomolecular underpinnings of oncologic disease processes. The monitoring of biomarkers for head and neck cancer via liquid biopsy, including circulating tumor DNA, circulating tumor cells, and circulating cell-free RNA, has shown clinical utility in the screening, diagnosis, prognostication, and monitoring of patients with various forms of head and neck cancer. The present review will provide an update on the current literature examining the use of liquid biopsy in head and neck cancer care and the clinical applicability of potential biomarkers, with a focus on viral and non-viral circulating tumor DNA. Possible future avenues for research to address specific shortcomings of liquid biopsy will be discussed.
Collapse
Affiliation(s)
- Sami I. Nassar
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Amber Suk
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Shaun A. Nguyen
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Dauren Adilbay
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - John Pang
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| |
Collapse
|