1
|
Hu D, Lui TY, Chen X, Chan TWD. A Mass Spectrometric Study of the Role of Water in the Paternò-Büchi (PB) Reaction between 2-Acetylpyridine and Unsaturated Fatty Acids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40354655 DOI: 10.1021/jasms.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Localizing the double-bond positions in unsaturated fatty acid isomers is of great importance for understanding the reaction pathways in the occurrence and development of some metabolic diseases. The Paternò-Büchi (PB) reaction using 2-acetylpyridine as the charge-tagging PB reagent in combination with tandem mass spectrometry (MS/MS) has been developed as an effective method for determining the positions of C═C bonds in unsaturated fatty acids. Recently, it was found that the presence of water in the reaction solution could greatly enhance the yield of the PB reaction. To optimize the reaction conditions, the water content of the reaction mixture was systematically varied in the reaction between 2-acetylpyridine and oleic acid using a binary acetonitrile/water solvent system. It was observed that increasing water content could increase the yield of the PB reaction. However, this effect was complicated by the Norrish type II reactions and the low water solubility of oleic acid, and the yield of PB product was found to be maximized at 30% water in a water/acetonitrile binary system. At higher water content conditions, the reaction products were dominated by the isomeric products derived from the Norrish type II-A reaction. This enhanced side reaction was tentatively attributed to the increasing production of hydroxyl radicals through the photolysis of water molecules under 254 nm UV illumination. Since there was no evidence for the direct involvement of water molecules in the photocyclization of carbonyl and olefin functionalities, the exact role of water in facilitating the PB reaction was evaluated based on the existing concepts of 'on-water' and 'in-water'. For the reaction system used in this study, our results favor the 'in-water' model, in which aggregates of oleic acid might be formed at elevated water content. Aggregates have a higher concentration of oleic acid or provide microscopic heterogeneous surfaces for promoting the PB reaction by bringing both reaction species together more efficiently. Our preliminary attempt to accelerate the PB reaction under water-free conditions using a suspension of 50 μm C-18 powders was found to be promising. Higher yield of the PB reaction product without elevating the undesirable Norrish type II reaction product was observed.
Collapse
Affiliation(s)
- Danna Hu
- Department of Chemistry, The Chinese University of Hong Kong, 999077 Hong Kong SAR
| | - T-Y Lui
- Department of Chemistry, The Chinese University of Hong Kong, 999077 Hong Kong SAR
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, 999077 Hong Kong SAR
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Centre, 250014 Jinan, P. R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, 999077 Hong Kong SAR
| |
Collapse
|
2
|
Yuan Y, Chi B, Fan J, Wang Y, Luo G, Gao X. Enhancing the Accuracy of Identification and Relative Quantification of Unsaturated Fatty Acids in Serum via a Stable Isotope-Labeled Double Derivatization Strategy. Anal Chem 2025; 97:5126-5137. [PMID: 40019293 DOI: 10.1021/acs.analchem.4c06375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Accurate identification and quantification of fatty acids are critical for investigating their biological function in disease models. Although several derivatization methods have been proposed for identifying the positions of C═C bonds in unsaturated fatty acids, poor ionization efficiency of the carboxyl group leads to lower intensity of molecular ion peaks, making their identification difficult and interfering with the accuracy of quantification based on peak areas of characteristic ion pairs. In this study, a strategy of stable isotope-labeled carboxyl derivatization combined with C═C derivatization was employed for simultaneously the identification and quantification of fatty acids using d0/d9-5-amino-N,N,N-trimethylpentane-1-ammonium iodide (d0/d9-ATPAI) to label the carboxyl group and m-chloroperoxybenzoic acid to label C═C bonds. The stable isotope-labeled quaternary amine groups in the novel carboxyl derivatization reagent d0/d9-ATPAI can enhance the accuracy of the recognition of characteristic ion pairs to facilitate the structural elucidation of various fatty acids. The heavy isotope-labeled fatty acids can be served as internal standards to achieve accurate relative quantification of the C═C position isomers of individual unsaturated fatty acids among samples based on the peak area ratio of the characteristic ion pairs. Unsaturated fatty acid C═C positional isomers were quantified using aldehyde or alkenyl diagnostic ions. In addition, saturated fatty acids were quantified using the m/z 86.09679 cyclamine characteristic ion. This approach enhanced the detection sensitivity of fatty acids by 60,000 times, allowing for the characterization of 70 fatty acids in rat serum, including 26 unsaturated fatty acid C═C positional isomers. Pseudotargeted metabolomics analysis of serum fatty acids revealed alterations in the fatty acid metabolic pathway during diabetic cognitive dysfunction. Overall, the proposed method, with high sensitivity and wide coverage, could provide accurate identification and relative quantification of various fatty acids in complex matrices.
Collapse
Affiliation(s)
- Yunxia Yuan
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bingqing Chi
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajia Fan
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Wang
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gan Luo
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyan Gao
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
3
|
Liu Y, Xia Y, Zhang W. Structural Lipidomics Enabled by Isomer-Resolved Tandem Mass Spectrometry. Anal Chem 2025; 97:4275-4286. [PMID: 39960352 DOI: 10.1021/acs.analchem.4c06680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
4
|
Chen Z, Gong Y, Chen F, Lee HJ, Qian J, Zhao J, Zhang W, Li Y, Zhou Y, Xu Q, Xia Y, Zhou L, Cheng J. Orchestrated desaturation reprogramming from stearoyl-CoA desaturase to fatty acid desaturase 2 in cancer epithelial-mesenchymal transition and metastasis. Cancer Commun (Lond) 2025; 45:245-280. [PMID: 39722173 PMCID: PMC11947613 DOI: 10.1002/cac2.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Adaptative desaturation in fatty acid (FA) is an emerging hallmark of cancer metabolic plasticity. Desaturases such as stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) have been implicated in multiple cancers, and their dominant and compensatory effects have recently been highlighted. However, how tumors initiate and sustain their self-sufficient FA desaturation to maintain phenotypic transition remains elusive. This study aimed to explore the molecular orchestration of SCD and FADS2 and their specific reprogramming mechanisms in response to cancer progression. METHODS The potential interactions between SCD and FADS2 were explored by bioinformatics analyses across multiple cancer cohorts, which guided subsequent functional and mechanistic investigations. The expression levels of desaturases were investigated with online datasets and validated in both cancer tissues and cell lines. Specific desaturation activities were characterized through various isomer-resolved lipidomics methods and sensitivity assays using desaturase inhibitors. In-situ lipid profiling was conducted using multiplex stimulated Raman scattering imaging. Functional assays were performed both in vitro and in vivo, with RNA-sequencing employed for the mechanism verification. RESULTS After integration of the RNA-protein-metabolite levels, the data revealed that a reprogramming from SCD-dependent to FADS2-dependent desaturation was linked to cancer epithelial-mesenchymal transition (EMT) and progression in both patients and cell lines. FADS2 overexpression and SCD suppression concurrently maintained EMT plasticity. A FADS2/β-catenin self-reinforcing feedback loop facilitated the degree of lipid unsaturation, membrane fluidity, metastatic potential and EMT signaling. Moreover, SCD inhibition triggered a lethal apoptosis but boosted survival plasticity by inducing EMT and enhancing FA uptake via adenosine monophosphate-activated protein kinase activation. Notably, this desaturation reprogramming increased transforming growth factor-β2, effectively sustaining aggressive phenotypes and metabolic plasticity during EMT. CONCLUSIONS These findings revealed a metabolic reprogramming from SCD-dependent to FADS2-dependent desaturation during cancer EMT and progression, which concurrently supports EMT plasticity. Targeting desaturation reprogramming represents a potential vulnerability for cancer metabolic therapy.
Collapse
Affiliation(s)
- Zhicong Chen
- Department of Obstetrics and GynecologyCenter for Reproductive MedicineGuangdong Provincial Key Laboratory of Major Obstetric DiseasesGuangdong Provincial Clinical Research Center for Obstetrics and GynecologyGuangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongP. R. China
- Department of Biomedical EngineeringDepartment of Electrical and Computer EngineeringPhotonics CenterBoston UniversityBostonMassachusettsUSA
- Department of UrologyPeking University First HospitalBeijingP. R. China
| | - Yanqing Gong
- Department of UrologyPeking University First HospitalBeijingP. R. China
| | - Fukai Chen
- Department of Biomedical EngineeringDepartment of Electrical and Computer EngineeringPhotonics CenterBoston UniversityBostonMassachusettsUSA
| | - Hyeon Jeong Lee
- Department of Biomedical EngineeringDepartment of Electrical and Computer EngineeringPhotonics CenterBoston UniversityBostonMassachusettsUSA
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jinqin Qian
- Department of UrologyPeking University First HospitalBeijingP. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijingP. R. China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijingP. R. China
| | - Yamin Li
- Department of Biomedical EngineeringTufts UniversityMedfordMassachusettsUSA
| | - Yihui Zhou
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qiaobing Xu
- Department of Biomedical EngineeringTufts UniversityMedfordMassachusettsUSA
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijingP. R. China
| | - Liqun Zhou
- Department of UrologyPeking University First HospitalBeijingP. R. China
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringDepartment of Electrical and Computer EngineeringPhotonics CenterBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
5
|
Zhu S, He Y, Lei JN, Liu YF, Xu YJ. The chemical and biological characteristics of fatty acid esters of hydroxyl fatty acids. Nutr Rev 2025; 83:e427-e442. [PMID: 38412339 DOI: 10.1093/nutrit/nuae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
With the continuous advancements in detection methods and the exploration of unknown substances, an increasing number of bioactive compounds are being discovered. Fatty acid esters of hydroxyl fatty acids (FAHFAs), a class of endogenous lipids found in 2014, exhibit various physiological activities, such as improving glucose tolerance and insulin sensitivity, stimulating insulin secretion, and demonstrating broad anti-inflammatory effects. Moreover, some FAHFAs are closely linked to intestinal health and can serve as potential biomarkers for gut health. Various FAHFAs have been observed in food, including palmitic acid esters of hydroxy stearic acids (PAHSA), oleic acid esters of hydroxy stearic acids (OAHSA), linoleic acid esters of hydroxy linoleic acid (LAHLA). As a type of lipid regularly consumed in the daily diet, it is highly important to ascertain the types and quantities of FAHFAs present in the diet. This article, based on existing research, provides a review of the analysis methods for FAHFAs, particularly focusing on the separation of chiral isomers. It also summarizes the sources and contents of dietary FAHFAs, emphasizing their bioavailability and impact on the gut. Understanding the beneficial effects of these lipids in the diet can serve as a valuable reference for the development of specific functional foods.
Collapse
Affiliation(s)
- Shuang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuan He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing-Nan Lei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Smith RA, Omar AM, Mulani FA, Zhang Q. OzNOxESI: A Novel Mass Spectrometry Ion Chemistry for Elucidating Lipid Double-Bond Regioisomerism in Complex Mixtures. Anal Chem 2025; 97:1879-1888. [PMID: 39817428 PMCID: PMC11780577 DOI: 10.1021/acs.analchem.4c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics. This ion chemistry relies on the online derivatization of lipid C═C with ozone and nitrogen oxides upon fragmentation by tandem mass spectrometry, yielding characteristic product ions capable of unambiguously annotating C═C regioisomers. The new workflow was thoroughly evaluated with various glycerophospholipids and fatty acids and applied to human plasma lipid extract, successfully identified and quantified 270 glycerophospholipid and 36 fatty acid C═C isomers with an in-house developed software, OzNOx Companion, for automated data analysis.
Collapse
Affiliation(s)
- Ryan A. Smith
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Ashraf M. Omar
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Fayaj A. Mulani
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
- Department
of Chemistry & Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
7
|
Xu C, Feng X, Xing W, Tang C, Sun X, Yang Y, Zhang J. Identification and quantitation of carbon-carbon double bond isomers of fatty acid in livestock and poultry meat. Food Res Int 2024; 196:115119. [PMID: 39614582 DOI: 10.1016/j.foodres.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Livestock and poultry meat is one of the main consumption sources of fatty acids (FAs) in China. FAs are the main component of lipids and essential nutrients for the human body. The location of carbon-carbon double bond (CC) in unsaturated fatty acids (UFAs) significantly affects the nutrition and flavor quality of meat products. This study established an analytical method for identifying the CC positions of UFAs based on the Paternò-Büchi (PB) reaction using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF). The FA extract was derivatized with 2-acetylpyridine under ultraviolet light at 254 nm. The derivatized FA was then analyzed using targeted MS/MS mode in positive electrospray ionization. Limits of detection (LOD) and limits of quantitation (LOQ) of 21 UFAs were 0.004-0.680 and 0.013-2.267 μg/L, respectively. Furthermore, for the diagnostic ions at the same functional group terminal fragmented from derivatives of FA CC isomers, the abundance ratio was linear with that of the corresponding content, which could be applied to non-targeted screening of CC positions in FAs. Based on this method, a total of 28 UFAs were screened in five types of livestock and poultry meats in this study. Among them, four isomers of C17:1, four of C18:1, two of C18:2, two of C20:3 and two of C22:5 were identified. The precise identification and quantitation of the double bond positions of fatty acids will be of great significance for the exploration of the nutritional components in livestock and poultry meat.
Collapse
Affiliation(s)
- Chenyang Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Weihai Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaojie Sun
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China.
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Gosset-Erard C, Han G, Kyrko D, Hueber A, Nay B, Eparvier V, Touboul D. Structural characterization of N-acyl-homoserine lactones from bacterial quorum sensing using LC-MS/MS analyses after Paternò-Büchi derivatization in solution. Anal Bioanal Chem 2024; 416:5431-5443. [PMID: 38842688 DOI: 10.1007/s00216-024-05355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Bacterial quorum sensing is a chemical language allowing bacteria to interact through the excretion of molecules called autoinducers, like N-acyl-homoserine lactones (AHLs) produced by Gram-negative Burkholderia and Paraburkholderia bacteria known as opportunistic pathogens. The AHLs differ in their acyl-chain length and may be modified by a 3-oxo or 3-hydroxy substituent, or C = C double bonds at different positions. As the bacterial signal specificity depends on all of these chemical features, their structural characterization is essential to have a better understanding of the population regulation and virulence phenomenon. This study aimed at enabling the localization of the C = C double bond on such specialized metabolites while using significantly lower amounts of biological material. The approach is based on LC-MS/MS analyses of bacterial extracts after in-solution derivatization by a photochemical Paternò-Büchi reaction, leading to the formation of an oxetane ring and subsequently to specific fragmentations when performing MS/MS experiments. The in-solution derivatization of AHLs was optimized on several standards, and then the matrix effect of bacterial extracts on the derivatization was assessed. As a proof of concept, the optimized conditions were applied to a bacterial extract enabling the localization of C = C bonds on unsaturated AHLs.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Guanghui Han
- Laboratoire de Synthèse Organique (LSO), CNRS UMR 7652, Ecole Polytechnique, ENSTA, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Dimitra Kyrko
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Amandine Hueber
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Bastien Nay
- Laboratoire de Synthèse Organique (LSO), CNRS UMR 7652, Ecole Polytechnique, ENSTA, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Véronique Eparvier
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France.
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| |
Collapse
|
9
|
Yang L, Yuan J, Yu B, Hu S, Bai Y. Sample preparation for fatty acid analysis in biological samples with mass spectrometry-based strategies. Anal Bioanal Chem 2024; 416:2371-2387. [PMID: 38319358 DOI: 10.1007/s00216-024-05185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Fatty acids (FAs) have attracted many interests for their pivotal roles in many biological processes. Imbalance of FAs is related to a variety of diseases, which makes the measurement of them important in biological samples. Over the past two decades, mass spectrometry (MS) has become an indispensable technique for the analysis of FAs owing to its high sensitivity and precision. Due to complex matrix effect of biological samples and inherent poor ionization efficiency of FAs in MS, sample preparation including extraction and chemical derivatization prior to analysis are often employed. Here, we describe an updated overview of FA extraction techniques, as well as representative derivatization methods utilized in different MS platforms including gas chromatography-MS, liquid chromatography-MS, and mass spectrometry imaging based on different chain lengths of FAs. Derivatization strategies for the identification of double bond location in unsaturated FAs are also summarized and highlighted. The advantages, disadvantages, and prospects of these methods are compared and discussed. This review provides the development and valuable information for sample pretreatment approaches and qualitative and quantitative analysis of interested FAs using different MS-based platforms in complex biological matrices. Finally, the challenges of FA analysis are summarized and the future perspectives are prospected.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| | - Jie Yuan
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Bolin Yu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Shuang Hu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yu Bai
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
10
|
Xiong Y, Xu Z, Li X, Wang Y, Zhao J, Wang N, Duan Y, Xia R, Han Z, Qian Y, Liang J, Zhang A, Guo C, Inoue A, Xia Y, Chen Z, He Y. Identification of oleic acid as an endogenous ligand of GPR3. Cell Res 2024; 34:232-244. [PMID: 38287117 PMCID: PMC10907358 DOI: 10.1038/s41422-024-00932-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Although GPR3 plays pivotal roles in both the nervous system and metabolic processes, such as cold-induced thermogenesis, its endogenous ligand remains elusive. Here, by combining structural approach (including cryo-electron microscopy), mass spectrometry analysis, and functional studies, we identify oleic acid (OA) as an endogenous ligand of GPR3. Our study reveals a hydrophobic tunnel within GPR3 that connects the extracellular side of the receptor to the middle of plasma membrane, enabling fatty acids to readily engage the receptor. Functional studies demonstrate that OA triggers downstream Gs signaling, whereas lysophospholipids fail to activate the receptor. Moreover, our research reveals that cold stimulation induces the secretion of OA in mice, subsequently activating Gs/cAMP/PKA signaling in brown adipose tissue. Notably, brown adipose tissues from Gpr3 knockout mice do not respond to OA during cold stimulation, reinforcing the significance of GPR3 in this process. Finally, we propose a "born to be activated and cold to enhance" model for GPR3 activation. Our study provides a starting framework for the understanding of GPR3 signaling in cold-stimulated thermogenesis.
Collapse
Affiliation(s)
- Yangjie Xiong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhenmei Xu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Na Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yaning Duan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Ruixue Xia
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yu Qian
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jiale Liang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Japan
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Yuanzheng He
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| |
Collapse
|
11
|
Wang Z, Garza S, Li X, Rahman MS, Brenna JT, Wang DH. Paternò-Büchi Reaction Mass Spectrometry Enables Positional Assignment of Polymethylene-Interrupted Double Bonds in Food-Derived Lipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3180-3188. [PMID: 38308634 DOI: 10.1021/acs.jafc.3c06366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Fatty acids (FAs) containing polymethylene-interrupted (PMI) double bonds are a component of human foods; however, they present a significant analytical challenge for de novo identification. Covalent adduct chemical ionization and ozone-induced dissociation mass spectrometry (MS) methods enable unambiguous assignment of PMI-FA double bond positions, however, no method has been reported with electrospray ionization (ESI) platform using off-the-shelf systems. In the current work, we studied the Paternò-Büchi (PB) fragmentation patterns of PMI-FA and triacylglycerol (TG) by analyzing several known food sources. PB-MS/MS and MS3 enabled complete double bond location assignments, including the isolated double bond in PMI-FA and triacylglycerols. Sea urchin ("uni"), oyster, pine nut, and ginkgo nut were characterized for their signature PMI-FA, 20:2(5Z,11Z), 22:2(7Z, 15Z), 18:3(5Z,9Z,12Z), and 20:3(5Z,11Z,14Z), respectively. Quantitative analyses of the relative abundance of these PMI-FA led to results similar to reference methods. 18:3(5Z,9Z,12Z) was enriched at the sn-1/sn-3 position in pine nut major TG.
Collapse
Affiliation(s)
- Zhen Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P. R. China
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Secilia Garza
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Xu Li
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019 Jiangsu, China
| | - Md Saydur Rahman
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas 78520, United States
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Dong Hao Wang
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P. R. China
| |
Collapse
|
12
|
Zhang W, Hu W, Zhu Q, Niu M, An N, Feng Y, Kawamura K, Fu P. Hydroxy fatty acids in the surface Earth system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167358. [PMID: 37793460 DOI: 10.1016/j.scitotenv.2023.167358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Lipids are ubiquitous and highly abundant in a wide range of organisms and have been found in various types of environmental media. These molecules play a crucial role as organic tracers by providing a chemical perspective on viewing the material world, as well as offering a wealth of information on metabolic activities. Among the diverse lipid compounds, hydroxy fatty acids (HFAs) with one to multiple hydroxyl groups attached to the carbon chain stand out as important biomarkers for different sources of organic matter. HFAs are widespread in nature and are involved in biotransformation and oxidation processes in living organisms. The unique chemical and physical properties attributed to the hydroxyl group make HFAs ideal biomarkers in biomedicine and environmental toxicology, as well as organic geochemistry. The molecular distribution patterns of HFAs can be unique and diagnostic for a given class of organisms, including animals, plants, and microorganisms. Thus, HFAs can act as a valuable proxy for understanding the ecological relationships between different organisms and their environment. Furthermore, HFAs have numerous industrial applications due to their higher reactivity, viscosity, and solvent miscibility. This review paper integrates the latest research on the sources and chemical analyses of HFAs, as well as their applications in industrial/medicinal production and as biomarkers in environmental studies. This review article also provides insights into the biogeochemical cycles of HFAs in the surface Earth system, highlighting the importance of these compounds in understanding the complex interactions between living organisms and the environment.
Collapse
Affiliation(s)
- Wenxin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Quanfei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Mutong Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Zhao J, Qiao L, Xia Y. In-Depth Characterization of Sphingoid Bases via Radical-Directed Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2394-2402. [PMID: 37735971 DOI: 10.1021/jasms.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sphingoid base (SPH) is a basic structural unit of all classes of sphingolipids. A sphingoid base typically consists of an aliphatic chain that may be desaturated between C4 and C5, an amine group at C2, and a variable number of OH groups located at C1, C3, and C4. Variations in the chain length and the occurrence of chemical modifications, such as methyl branching, desaturation, and hydroxylation, lead to a large structural diversity and distinct functional properties of sphingoid bases. However, conventional tandem mass spectrometry (MS/MS) via collision-induced dissociation (CID) faces challenges in characterizing these modifications. Herein, we developed an MS/MS method based on CID-triggered radical-directed dissociation (RDD) for in-depth characterization of sphingoid bases. The method involves derivatizing the sphingoid amine with 3-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-picolinic acid 2,5-dioxopyrrolidin-1-yl ester (TPN), followed by MS2 CID to unleash the pyridine methyl radical moiety for subsequent RDD. This MS/MS method was integrated on a reversed-phase liquid chromatography-mass spectrometry workflow and further applied for in-depth profiling of total sphingoid bases in bovine heart and Caenorhabditis elegans. Notably, we identified and relatively quantified a series of unusual sphingoid bases, including SPH id17:2 (4,13) and SPH it19:0 in C. elegans, revealing that the metabolic pathways of sphingolipids are more diverse than previously known.
Collapse
Affiliation(s)
- Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lipeng Qiao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Xia T, Jin X, Zhang D, Wang J, Jian R, Yin H, Xia Y. Alternative fatty acid desaturation pathways revealed by deep profiling of total fatty acids in RAW 264.7 cell line. J Lipid Res 2023; 64:100410. [PMID: 37437845 PMCID: PMC10407907 DOI: 10.1016/j.jlr.2023.100410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
In-depth structural characterization of lipids provides a new means to investigate lipid metabolism. In this study, we have conducted deep profiling of total fatty acids (FAs) from RAW 264.7 macrophages by utilizing charge-tagging Paternò-Büchi derivatization of carbon-carbon double bond (C=C) and reversed-phase liquid chromatography-tandem mass spectrometry. A series of FAs exhibiting unusual site(s) of unsaturation was unearthed, with their identities being confirmed by observing anticipated compositional alterations upon desaturase inhibition. The data reveal that FADS2 Δ 6-desaturation can generate n-11 C=C in the odd-chain monounsaturated fatty acids (MUFAs) as well as n-10 and n-12 families of even-chain MUFAs. SCD1 Δ 9-desaturation yields n-6, n-8, and n-10 of odd-chain MUFAs, as well as n-5, n-7, and n-9 families of even-chain MUFAs. Besides n-3 and n-6 families of polyunsaturated fatty acids (PUFAs), the presence of n-7 and n-9 families of PUFAs indicates that the n-7 and n-9 isomers of FA 18:1 can be utilized as substrates for further desaturation and elongation. The n-7 and n-9 families of PUFAs identified in RAW 264.7 macrophages are noteworthy because their C=C modifications are achieved exclusively via de novo lipogenesis. Our discovery outlines the metabolic plasticity in fatty acid desaturation which constitutes an unexplored rewiring in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xue Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jitong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Xia T, Zhou F, Zhang D, Jin X, Shi H, Yin H, Gong Y, Xia Y. Deep-profiling of phospholipidome via rapid orthogonal separations and isomer-resolved mass spectrometry. Nat Commun 2023; 14:4263. [PMID: 37460558 DOI: 10.1038/s41467-023-40046-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Feng Zhou
- Bytedance Technology Co., 201103, Shanghai, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, 100084, Beijing, China
| | - Xue Jin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Hengxue Shi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, 100084, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, 100034, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
16
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
17
|
Armbruster MR, Mostafa ME, Caldwell RN, Grady SF, Arnatt CK, Edwards JL. Isobaric 6-plex and tosyl dual tagging for the determination of positional isomers and quantitation of monounsaturated fatty acids using rapid UHPLC-MS/MS. Analyst 2023; 148:297-304. [PMID: 36533920 DOI: 10.1039/d2an01699k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isobaric labelling of fatty acids is complicated by chromatographic co-elution of double bond isomers. This produces contaminated spectra which can mask important biological changes. Here two derivatization strategies are combined to improve throughput and produce MS2 reporters which change mass depending on double bond position. A 6-plex isobaric tag is attached to the acid group, followed by the tosylation of the double bond using chloramine-T. These two derivatizations allowed for the chromatographic resolution of nearly all investigated isomers using a 3.5 minute ultrafast method. Further isomer differentiation is achieved upon fragmentation as reporter masses scale with the double bond location. This occurs by a dual-fragmentation route which reveals the isobaric labelling and fragments along the double bond of each analyte. These unique fragments allowed for accurate quantitation of co-isolated double bond isomers where traditional isobaric tags would experience ratio distortion. Saturated and monounsaturated fatty acids were characterized by this rapid 6-plex method and produced an average signal RSD of 9.3% and R2 of 0.99. The method was then used to characterize fatty acid dysregulation upon inhibition of stearoyl CoA desaturase with CAY10566.
Collapse
Affiliation(s)
- Michael R Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| | - Mahmoud Elhusseiny Mostafa
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| | - Rhea N Caldwell
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| | - Scott F Grady
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| | - Christopher K Arnatt
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| |
Collapse
|
18
|
Chen C, Li R, Wu H. Recent progress in the analysis of unsaturated fatty acids in biological samples by chemical derivatization-based chromatography-mass spectrometry methods. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123572. [PMID: 36565575 DOI: 10.1016/j.jchromb.2022.123572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Unsaturated fatty acids (UFAs) are essential fatty acids that execute various biological functions in the human body. Therefore, the qualitative and quantitative analysis of UFAs in biological samples can help to clarify their roles in the occurrence and development of diseases, so to reveal the mechanisms of pathogenesis and potential drug intervention strategies. Chromatography-mass spectrometry is one of the most commonly used techniques for the analysis of UFAs in biological samples. However, due to factors such as the complex structural information of UFAs (the number and specific location of CC double bonds) and the low concentration of UFAs in biological samples, it is still difficult to conduct accurate qualitative and/or quantitative studies of UFAs in complex biological samples. In recent years, the integration and application of chemical derivatization and chromatography-mass spectrometry has been widely used in the detection of UFAs. Based on this overview, we reviewed recent developments and application progress for chemical derivatization-based chromatography-mass spectrometry methods for the qualitative and/or quantitative analysis of UFAs in biological samples over the past ten years. Potential trends for the design and improvement of novel derivatization reagents were proposed.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
19
|
Liquid Chromatography-Mass Spectrometry (LC-MS) Derivatization-Based Methods for the Determination of Fatty Acids in Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175717. [PMID: 36080484 PMCID: PMC9458108 DOI: 10.3390/molecules27175717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Fatty acids (FAs) play pleiotropic roles in living organisms, acting as signaling molecules and gene regulators. They are present in plants and foods and may affect human health by food ingestion. As a consequence, analytical methods for their determination in biological fluids, plants and foods have attracted high interest. Undoubtedly, mass spectrometry (MS) has become an indispensable technique for the analysis of FAs. Due to the inherent poor ionization efficiency of FAs, their chemical derivatization prior to analysis is often employed. Usually, the derivatization of the FA carboxyl group aims to charge reversal, allowing detection and quantification in positive ion mode, thus, resulting in an increase in sensitivity in determination. Another approach is the derivatization of the double bond of unsaturated FAs, which aims to identify the double bond location. The present review summarizes the various classes of reagents developed for FA derivatization and discusses their applications in the liquid chromatography-MS (LC-MS) analysis of FAs in various matrices, including plasma and feces. In addition, applications for the determination of eicosanoids and fatty acid esters of hydroxy fatty acids (FAHFAs) are discussed.
Collapse
|
20
|
Mao R, Li W, Jia P, Ding H, Teka T, Zhang L, Fu Z, Fu X, Kaushal S, Dou Z, Han L. An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: Total lipid extract from bovine liver as a case study. J Chromatogr A 2022; 1675:463176. [DOI: 10.1016/j.chroma.2022.463176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
|
21
|
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res 2022; 63:100219. [PMID: 35489417 PMCID: PMC9213770 DOI: 10.1016/j.jlr.2022.100219] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
22
|
Lin Q, Li P, Fang M, Zhang D, Xia Y. Deep Profiling of Aminophospholipids Reveals a Dysregulated Desaturation Pattern in Breast Cancer Cell Lines. Anal Chem 2021; 94:820-828. [PMID: 34931817 DOI: 10.1021/acs.analchem.1c03494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylethanolamines (PEs), ether-PEs, and phosphatidylserines (PSs) are glycerophospholipids harboring a primary amino group in their headgroups. They are key components of mammalian cell membranes and play pivotal roles in cell signaling and apoptosis. In this study, a liquid chromatography-mass spectrometry (LC-MS) workflow for deep profiling of PEs, ether-PEs, and PSs has been developed by integrating two orthogonal derivatizations: (1) derivatization of the primary amino group by 4-trimethylammoniumbutyryl-N-hydroxysuccinimide (TMAB-NHS) for enhanced LC separation and MS detection and (2) the Paternò-Büchi (PB) reaction for carbon-carbon double bond (C═C) derivatization and localization. Significant improvement of the limit of identification down to the C═C location has been achieved for the standards of PSs (3 nM) and ether-PEs (20 nM). This workflow facilitates an identification of more than 200 molecular species of aminophospholipids in the porcine brain, two times more than those identified without TMAB-NHS derivatization. Importantly, we discovered that the n-10 isomers in C16:1 and C18:1 of aminophospholipids showed elevated contribution among other isomers, which correlated well with an increased transcription of the corresponding desaturase (FADS2) in the human breast cancer cell line (MDA-MB-231) relative to that in the normal cell line (HMEC). The abovementioned data suggest that lipid reprograming via forming different C═C location isomers might be an alternative mechanism in cancer cells.
Collapse
Affiliation(s)
- Qiaohong Lin
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Pengyun Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengxuan Fang
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China.,School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Donghui Zhang
- Department of Precision Instrument, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|