1
|
Jha M, McCarthy IR, Gelfand EV. Lipoprotein(a) - From Biomarker to Therapy: A Review for the Clinician. Am J Cardiol 2025; 245:42-53. [PMID: 40057218 DOI: 10.1016/j.amjcard.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Cardiovascular disease (CVD) remains the predominant cause of morbidity and mortality globally. Amid rising CVD rates, Lipoprotein(a) [Lp(a)] has been recognized as a critical biomarker identifying individuals at an increased risk of atherosclerotic cardiovascular disease (ASCVD) and calcific aortic valve stenosis (AS), independent of traditional risk factors. Lp(a) is a lipoprotein variant similar to LDL but includes apolipoprotein(a), which influences its pathogenic potential. Elevated Lp(a) levels are genetically determined and have been implicated in promoting vascular inflammation, atherogenesis, enhanced calcification, and thrombosis. Emerging antisense oligonucleotide (ASO)- and small interfering ribonucleic acids (siRNAs)- based therapies have been shown to lower Lp(a) concentrations, with ongoing trials underway to determine whether they reduce the risk of CVD. While guidelines on screening and management continue to evolve, the advent of specific Lp(a)-lowering therapies may transform CVD prevention and treatment. This review aims to consolidate the current knowledge on Lp(a) from its biological functions to its implications for clinical practice, focusing on its role as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Mawra Jha
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Inbar R McCarthy
- Department of Cardiovascular Medicine, Lahey Hospital & Medical Center, University of Massachusetts Chan Medical School, Burlington, Massachusetts
| | - Eli V Gelfand
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Kalwick M, Roth M. A Comprehensive Review of the Genetics of Dyslipidemias and Risk of Atherosclerotic Cardiovascular Disease. Nutrients 2025; 17:659. [PMID: 40004987 PMCID: PMC11858766 DOI: 10.3390/nu17040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Dyslipidemias are often diagnosed based on an individual's lipid panel that may or may not include Lp(a) or apoB. But these values alone omit key information that can underestimate risk and misdiagnose disease, which leads to imprecise medical therapies that reduce efficacy with unnecessary adverse events. For example, knowing whether an individual's dyslipidemia is monogenic can granularly inform risk and create opportunities for precision therapeutics. This review explores the canonical and non-canonical causes of dyslipidemias and how they impact atherosclerotic cardiovascular disease (ASCVD) risk. This review emphasizes the multitude of genetic causes that cause primary hypercholesterolemia, hypertriglyceridemia, and low or elevated high-density lipoprotein (HDL)-cholesterol levels. Within each of these sections, this review will explore the evidence linking these genetic conditions with ASCVD risk. Where applicable, this review will summarize approved therapies for a particular genetic condition.
Collapse
Affiliation(s)
| | - Mendel Roth
- GBinsight, GB Healthwatch, San Diego, CA 92122, USA;
| |
Collapse
|
3
|
Wang Q, McCormick S, Leask MP, Watson H, O'Sullivan C, Krebs JD, Hall R, Whitfield P, Merry TL, Murphy R, Shepherd PR. A Polynesian-specific SLC22A3 variant associates with low plasma lipoprotein(a) concentrations independent of apo(a) isoform size in males. Biosci Rep 2024; 44:BSR20240403. [PMID: 38896441 DOI: 10.1042/bsr20240403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL)-like particle in which the apolipoprotein B component is covalently linked to apolipoprotein(a) (apo(a)). Lp(a) is a well-established independent risk factor for cardiovascular diseases. Plasma Lp(a) concentrations vary enormously between individuals and ethnic groups. Several nucleotide polymorphisms in the SLC22A3 gene associate with Lp(a) concentration in people of different ethnicities. We investigated the association of a Polynesian-specific (Māori and Pacific peoples) SLC22A3 gene coding variant p.Thr44Met) with the plasma concentration of Lp(a) in a cohort of 302 healthy Polynesian males. An apo(a)-size independent assay assessed plasma Lp(a) concentrations; all other lipid and apolipoprotein concentrations were measured using standard laboratory techniques. Quantitative real-time polymerase chain reaction was used to determine apo(a) isoforms. The range of metabolic (HbA1c, blood pressure, and blood lipids) and blood lipid variables were similar between the non-carriers and carriers in age, ethnicity and BMI adjusted models. However, rs8187715 SLC22A3 variant was significantly associated with lower Lp(a) concentrations. Median Lp(a) concentration was 10.60 nmol/L (IQR: 5.40-41.00) in non-carrier group, and was 7.60 nmol/L (IQR: 5.50-12.10) in variant carrier group (P<0.05). Lp(a) concentration inversely correlated with apo(a) isoform size. After correction for apo(a) isoform size, metabolic parameters and ethnicity, the association between the SLC22A3 variant and plasma Lp(a) concentration remained. The present study is the first to identify the association of this gene variant and low plasma Lp(a) concentrations. This provides evidence for better guidance on ethnic specific cut-offs when defining 'elevated' and 'normal' plasma Lp(a) concentrations in clinical applications.
Collapse
Affiliation(s)
- Qian Wang
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, New Zealand
| | - Sally McCormick
- Maurice Wilkins Centre, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Huti Watson
- Paratene Ngata Research Centre, Ngati Porou Oranga, Te Puia Springs, New Zealand
| | - Conor O'Sullivan
- Maurice Wilkins Centre, New Zealand
- Moko Foundation, Kaitaia, New Zealand
| | - Jeremy D Krebs
- Centre for Endocrine, Diabetes and Obesity Research, Te Whatu Ora New Zealand Capital, Coast and Hutt Valley, Wellington, New Zealand
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Rosemary Hall
- Department of Medicine, University of Otago, Wellington, New Zealand
| | | | - Troy L Merry
- Maurice Wilkins Centre, New Zealand
- Department of Nutrition, University of Auckland, New Zealand
| | - Rinki Murphy
- Maurice Wilkins Centre, New Zealand
- Auckland Diabetes Center, Te Whatu Ora Health New Zealand, Te Tokai Tumai, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, New Zealand
| |
Collapse
|
4
|
Li Y, Kronenberg F, Coassin S, Vardarajan B, Reyes-Soffer G. Ancestry specific distribution of LPA Kringle IV-Type-2 genetic variants highlight associations to apo(a) copy number, glucose, and hypertension. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310176. [PMID: 39040175 PMCID: PMC11261928 DOI: 10.1101/2024.07.09.24310176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background High Lp(a) levels contribute to atherosclerotic cardiovascular disease and are tightly regulated by the LPA gene . Lp(a) levels have an inverse correlation with LPA Kringle IV Type-2 (KIV-2) copy number (CN). Black (B) and Hispanic (H) individuals exhibit higher levels of Lp(a), and rates of CVD compared to non-Hispanic Whites (NHW). Therefore, we investigated genetic variations in the LPA KIV-2 region across three ancestries and their associations with metabolic risk factors. Methods Using published pipelines, we analyzed a multi-ethnic whole exome dataset comprising 3,817 participants from the Washington Heights and Inwood Columbia Aging Project (WHICAP): 886 [NHW (23%), 1,811 Caribbean (C) H (47%), and 1,120 B individuals (29%). Rare and common variants (alternative allele carrier frequency, CF < 0.01 or > 0.99 and 0.01 < CF < 0.99, respectively) were identified and KIV-2 CN estimated. The associations of variants and CN with history of heart disease, hypertension (HTN), stroke, lipid levels and clinical diagnosis of Alzheimer's disease (AD) was assessed. A small pilot provided in-silico validation of study findings. Results We report 1421 variants in the LPA KIV-2 repeat region, comprising 267 exonic and 1154 intronic variants. 61.4% of the exonic variants have not been previously described. Three novel exonic variants significantly increase the risk of HTN across all ethnic groups: 4785-C/A (frequency = 78%, odds ratio [OR] = 1.45, p = 0.032), 727-T/C (frequency = 96%, OR = 2.11, p = 0.032), and 723-A/G (frequency = 96%, OR = 1.97, p = 0.038). Additionally, six intronic variants showed associations with HTN: 166-G/A, 387-G/C, 402-G/A, 4527-A/T, 4541-G/A, and 4653-A/T. One intronic variant, 412-C/T, was associated with decreased blood glucose levels (frequency = 72%, β = -14.52, p = 0.02).Three of the associations were not affected after adjusting for LPA KIV-2 CN: 412-C/T (β = -14.2, p = 0.03), 166-G/A (OR = 1.41, p = 0.05), and 387-G/C (OR = 1.40, p = 0.05). KIV CN itself was significantly associated with 314 variants and was negatively correlated with plasma total cholesterol levels. Conclusions In three ancestry groups, we identify novel rare and common LPA KIV-2 region variants. We report new associations of variants with HTN and Glucose levels. These results underscore the genetic complexity of the LPA KIV-2 region in influencing cardiovascular and metabolic health, suggesting potential genetic regulation of pathways that can be studied for research and therapeutic interventions.
Collapse
Affiliation(s)
- Yihao Li
- Gertrude H. Sergievsky Center, Dept of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168 Street, PH19-306, New York, N.Y.10032
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, P&S 10-501,New York, NY, USA
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Badri Vardarajan
- Gertrude H. Sergievsky Center, Dept of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168 Street, PH19-306, New York, N.Y.10032
| | - Gissette Reyes-Soffer
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, P&S 10-501,New York, NY, USA
| |
Collapse
|
5
|
Pavlyha M, Hunter M, Nowygrod R, Patel V, Morrissey N, Bajakian D, Li Y, Reyes-Soffer G. Small apolipoprotein(a) isoforms may predict primary patency following peripheral arterial revascularization. JVS Vasc Sci 2024; 5:100211. [PMID: 39101011 PMCID: PMC11296070 DOI: 10.1016/j.jvssci.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/02/2024] [Indexed: 08/06/2024] Open
Abstract
Background High lipoprotein (a) [Lp(a)] is associated with adverse limb events in patients undergoing lower extremity revascularization. Lp(a) levels are genetically pre-determined, with LPA gene encoding for two apolipoprotein (a) [apo(a)] isoforms. Isoform size variations are driven by the number of kringle IV type 2 (KIV-2) repeats. Lp(a) levels are inversely correlated with isoform size. In this study, we examined the role of Lp(a) levels, apo(a) size, and inflammatory markers with lower extremity revascularization outcomes. Methods Twenty-five subjects with chronic peripheral arterial disease (PAD) underwent open or endovascular lower extremity revascularization (mean age, 66.7 ± 9.7 years; Female = 12; Male = 13; Black = 8; Hispanic = 5; and White = 12). Pre- and postoperative medical history, self-reported symptoms, ankle-brachial indices (ABIs), and lower extremity duplex ultrasounds were obtained. Plasma Lp(a), apoB100, lipid panel, and pro-inflammatory markers (IL-6, IL-18, hs-CRP, TNFα) were assayed preoperatively. Isoform size was estimated using gel electrophoresis and weighted isoform size (wIS) calculated based on % isoform expression. Firth logistic regression was used to examine the relationship between Lp(a) levels and wIS with procedural outcomes: symptoms (better/worse), early primary patency at 2 to 4 weeks, ABIs, and reintervention within 3 to 6 months. We controlled for age, sex, history of diabetes, smoking, statin, antiplatelet, and anticoagulation use. Results Median plasma Lp(a) level was 108 (interrquartile range, 44-301) nmol/L. The mean apoB100 level was 168.0 ± 65.8 mg/dL. These values were not statistically different among races. We found no association between Lp(a) levels and wIS with measured plasma pro-inflammatory markers. However, smaller apo(a) wIS was associated with occlusion of the treated lesion(s) in the postoperative period (odds ratio, 1.97; 95% confidence interval, 1.01-3.86; P < .05). The relationship of smaller apo(a) wIS with reintervention was not as strong (odds ratio, 1.57; 95% confidence interval, 0.96-2.56; P = .07). We observed no association between wIS with patient reported symptoms or change in ABIs. Conclusions In this small study, subjects with smaller apo(a) isoform size undergoing peripheral arterial revascularization were more likely to experience occlusion in the postoperative period and/or require reintervention. Larger cohort studies identifying the mechanism and validating these preliminary data are needed to improve understanding of long-term peripheral vascular outcomes.
Collapse
Affiliation(s)
- Marianna Pavlyha
- Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Madeleine Hunter
- Department of Surgery, Division of Vascular Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Roman Nowygrod
- Department of Surgery, Division of Vascular Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Virenda Patel
- Department of Surgery, Division of Vascular Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Nicholas Morrissey
- Department of Surgery, Division of Vascular Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Danielle Bajakian
- Department of Surgery, Division of Vascular Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Yihao Li
- Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Gissette Reyes-Soffer
- Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
6
|
Reyes-Soffer G, Yeang C, Michos ED, Boatwright W, Ballantyne CM. High lipoprotein(a): Actionable strategies for risk assessment and mitigation. Am J Prev Cardiol 2024; 18:100651. [PMID: 38646021 PMCID: PMC11031736 DOI: 10.1016/j.ajpc.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
High levels of lipoprotein(a) [Lp(a)] are causal for atherosclerotic cardiovascular disease (ASCVD). Lp(a) is the most prevalent inherited dyslipidemia and strongest genetic ASCVD risk factor. This risk persists in the presence of at target, guideline-recommended, LDL-C levels and adherence to lifestyle modifications. Epidemiological and genetic evidence supporting its causal role in ASCVD and calcific aortic stenosis continues to accumulate, although various facets regarding Lp(a) biology (genetics, pathophysiology, and expression across race/ethnic groups) are not yet fully understood. The evolving nature of clinical guidelines and consensus statements recommending universal measurements of Lp(a) and the scientific data supporting its role in multiple disease states reinforce the clinical merit to start population screening for Lp(a) now. There is a current gap in the implementation of recommendations for primary and secondary cardiovascular disease (CVD) prevention in those with high Lp(a), in part due to a lack of protocols for management strategies. Importantly, targeted apolipoprotein(a) [apo(a)]-lowering therapies that reduce Lp(a) levels in patients with high Lp(a) are in phase 3 clinical development. This review focuses on the identification and clinical management of patients with high Lp(a). Specifically, we highlight the clinical value of measuring Lp(a) and its use in determining Lp(a)-associated CVD risk by providing actionable guidance, based on scientific knowledge, that can be utilized now to mitigate risk caused by high Lp(a).
Collapse
Affiliation(s)
| | - Calvin Yeang
- Department of Medicine, UC San Diego Health, CA, USA
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, MD, USA
| | | | | |
Collapse
|
7
|
Groenen AG, Matveyenko A, Matienzo N, Halmos B, Zhang H, Westerterp M, Reyes-Soffer G. Apolipoprotein(a) production and clearance are associated with plasma IL-6 and IL-18 levels, dependent on ethnicity. Atherosclerosis 2024; 391:117474. [PMID: 38428286 DOI: 10.1016/j.atherosclerosis.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS High plasma lipoprotein (a) [Lp(a)] levels are associated with increased atherosclerotic cardiovascular disease (ASCVD), in part attributed to elevated inflammation. High plasma Lp(a) levels inversely correlate with apolipoprotein (a) [(APO(a)] isoform size. APO(a) isoform size is negatively associated with APO(a) production rate (PR) and positively associated with APO(a) fractional catabolic rate (FCR). We asked whether APO(a) PR and FCR (kinetics) are associated with plasma levels of interleukin (IL)-6 and IL-18, pro-inflammatory interleukins that promote ASCVD. METHODS We used samples from existing data of APO(a) kinetic studies from an ethnically diverse cohort (n = 25: 10 Black, 9 Hispanic, and 6 White subjects) and assessed IL-6 and IL-18 plasma levels. We performed multivariate linear regression analyses to examine the relationships between predictors APO(a) PR or APO(a) FCR, and outcome variables IL-6 or IL-18. In these analyses, we adjusted for parameters known to affect Lp(a) levels and APO(a) PR and FCR, including race/ethnicity and APO(a) isoform size. RESULTS APO(a) PR and FCR were positively associated with plasma IL-6, independent of isoform size, and dependent on race/ethnicity. APO(a) PR was positively associated with plasma IL-18, independent of isoform size and race/ethnicity. APO(a) FCR was not associated with plasma IL-18. CONCLUSIONS Our studies demonstrate a relationship between APO(a) PR and FCR and plasma IL-6 or IL-18, interleukins that promote ASCVD. These studies provide new insights into Lp(a) pro-inflammatory properties and are especially relevant in view of therapies targeting APO(a) to decrease cardiovascular risk.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anastasiya Matveyenko
- Columbia University Irving Medical Center, College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, New York, NY, USA
| | - Nelsa Matienzo
- Columbia University Irving Medical Center, College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, New York, NY, USA
| | - Benedek Halmos
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hanrui Zhang
- Columbia University Irving Medical Center, Division of Cardiology, New York, NY, USA
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Gissette Reyes-Soffer
- Columbia University Irving Medical Center, College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, New York, NY, USA.
| |
Collapse
|
8
|
Pavlyha M, Hunter M, Nowygrod R, Patel V, Morrissey N, Bajakian D, Li Y, Reyes-Soffer G. Small apolipoprotein(a) isoforms may predict primary patency following peripheral arterial revascularization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304485. [PMID: 38562737 PMCID: PMC10984047 DOI: 10.1101/2024.03.18.24304485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background High lipoprotein (a) [Lp(a)] is associated with adverse limb events in patients undergoing lower extremity revascularization. Lp(a) levels are genetically pre-determined, with LPA gene encoding for two apolipoprotein (a) [apo(a)] isoforms. Isoform size variations are driven by the number of kringle IV type 2 (KIV-2) repeats. Lp(a) levels are inversely correlated with isoform size. In this study, we examined the role of Lp(a) levels, apo(a) size and inflammatory markers with lower extremity revascularization outcomes. Methods 25 subjects with chronic peripheral arterial disease (PAD), underwent open or endovascular lower extremity revascularization (mean age of 66.7±9.7 years; F=12, M=13; Black=8, Hispanic=5, and White=12). Pre- and post-operative medical history, self-reported symptoms, ankle brachial indices (ABIs), and lower extremity duplex ultrasounds were obtained. Plasma Lp(a), apoB100, lipid panel, and pro-inflammatory markers (IL-6, IL-18, hs-CRP, TNFα) were assayed preoperatively. Isoform size was estimated using gel electrophoresis and weighted isoform size ( wIS ) calculated based on % isoform expression. Firth logistic regression was used to examine the relationship between Lp(a) levels, and wIS with procedural outcomes: symptoms (better/worse), primary patency at 2-4 weeks, ABIs, and re-intervention within 3-6 months. We controlled for age, sex, history of diabetes, smoking, statin, antiplatelet and anticoagulation use. Results Median plasma Lp(a) level was 108 (44, 301) nmol/L. The mean apoB100 level was 168.0 ± 65.8 mg/dL. These values were not statistically different among races. We found no association between Lp(a) levels and w IS with measured plasma pro-inflammatory markers. However, smaller apo(a) wIS was associated with occlusion of the treated lesion(s) in the postoperative period [OR=1.97 (95% CI 1.01 - 3.86, p<0.05)]. The relationship of smaller apo(a) wIS with re-intervention was not as strong [OR=1.57 (95% CI 0.96 - 2.56), p=0.07]. We observed no association between wIS with patient reported symptoms or change in ABIs. Conclusions In this small study, subjects with smaller apo(a) isoform size undergoing peripheral arterial revascularization were more likely to experience occlusion in the perioperative period and/or require re-intervention. Larger cohort studies identifying the mechanism and validating these preliminary data are needed to improve understanding of long-term peripheral vascular outcomes. Key Findings 25 subjects with symptomatic PAD underwent open or endovascular lower extremity revascularization in a small cohort. Smaller apo(a) isoforms were associated with occlusion of the treated lesion(s) within 2-4 weeks [OR=1.97 (95% CI 1.01 - 3.86, p<0.05)], suggesting apo(a) isoform size as a predictor of primary patency in the early period after lower extremity intervention. Take Home Message Subjects with high Lp(a) levels, generally have smaller apo(a) isoform sizes. We find that, in this small cohort, patients undergoing peripheral arterial revascularization subjects with small isoforms are at an increased risk of treated vessel occlusion in the perioperative period. Table of Contents Summary Subjects with symptomatic PAD requiring lower extremity revascularization have high median Lp(a) levels. Individuals with smaller apo(a) weighted isoform size (wIS) have lower primary patency rates and/or require re-intervention.
Collapse
|
9
|
Fogacci F, Di Micoli V, Avagimyan A, Giovannini M, Imbalzano E, Cicero AFG. Assessment of Apolipoprotein(a) Isoform Size Using Phenotypic and Genotypic Methods. Int J Mol Sci 2023; 24:13886. [PMID: 37762189 PMCID: PMC10531419 DOI: 10.3390/ijms241813886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Apolipoprotein(a) (apo(a)) is the protein component that defines lipoprotein(a) (Lp(a)) particles and is encoded by the LPA gene. The apo(a) is extremely heterogeneous in size due to the copy number variations in the kringle-IV type 2 (KIV2) domains. In this review, we aim to discuss the role of genetics in establishing Lp(a) as a risk factor for coronary heart disease (CHD) by examining a series of molecular biology techniques aimed at identifying the best strategy for a possible application in clinical research and practice, according to the current gold standard.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Valentina Di Micoli
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Ashot Avagimyan
- Pathological Anatomy Department, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
- Cardiovascular Medicine Unit, Heart, Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40100 Bologna, Italy
| |
Collapse
|
10
|
Matveyenko A, Seid H, Kim K, Ramakrishnan R, Thomas T, Matienzo N, Reyes-Soffer G. Association of free-living diet composition with plasma lipoprotein(a) levels in healthy adults. Lipids Health Dis 2023; 22:144. [PMID: 37670291 PMCID: PMC10478368 DOI: 10.1186/s12944-023-01884-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] is an apoB100-containing lipoprotein with high levels being positively associated with atherosclerotic cardiovascular disease. Lp(a) levels are genetically determined. However, previous studies report a negative association between Lp(a) and saturated fatty acid intake. Currently, apoB100 lowering therapies are used to lower Lp(a) levels, and apheresis therapy is FDA approved for patients with extreme elevations of Lp(a). The current study analyzed the association of free-living diet components with plasma Lp(a) levels. METHODS Dietary composition data was collected during screening visits for enrollment in previously completed lipid and lipoprotein metabolism studies at Columbia University Irving Medical Center via a standardized protocol by registered dietitians using 24 hour recalls. Data were analyzed with the Nutrition Data System for Research (Version 2018). Diet quality was calculated using the Healthy Eating Index (HEI) score. Fasting plasma Lp(a) levels were measured via an isoform-independent ELISA and apo(a) isoforms were measured using gel electrophoresis. RESULTS We enrolled 28 subjects [Black (n = 18); Hispanic (n = 7); White (n = 3)]. The mean age was 48.3 ± 12.5 years with 17 males. Median level of Lp(a) was 79.9 nmol/L (34.4-146.0) and it was negatively associated with absolute (grams/day) and relative (percent of total calories) intake of dietary saturated fatty acids (SFA) (R = -0.43, P = 0.02, SFA …(% CAL): R = -0.38, P = 0.04), palmitic acid intake (R = -0.38, P = 0.05), and stearic acid intake (R = -0.40, P = 0.03). Analyses of associations with HEI score when stratified based on Lp(a) levels > or ≤ 100 nmol/L revealed no significant associations with any of the constituent factors. CONCLUSIONS Using 24 hour recall, we confirm previous findings that Lp(a) levels are negatively associated with dietary saturated fatty acid intake. Additionally, Lp(a) levels are not related to diet quality, as assessed by the HEI score. The mechanisms underlying the relationship of SFA with Lp(a) require further investigation.
Collapse
Affiliation(s)
- Anastasiya Matveyenko
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, N.Y, USA
| | - Heather Seid
- Irving Institute for Clinical and Translational Research, Columbia University, New York, N.Y, USA
| | - Kyungyeon Kim
- Institute of Human Nutrition, Columbia University, New York, N.Y, USA
| | - Rajasekhar Ramakrishnan
- Center for Biomathematics, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, N.Y, USA
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, N.Y, USA
| | - Nelsa Matienzo
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, N.Y, USA
| | - Gissette Reyes-Soffer
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, N.Y, USA.
| |
Collapse
|
11
|
Conlon DM, Welty FK, Reyes-Soffer G, Amengual J. Sex-Specific Differences in Lipoprotein Production and Clearance. Arterioscler Thromb Vasc Biol 2023; 43:1617-1625. [PMID: 37409532 PMCID: PMC10527393 DOI: 10.1161/atvbaha.122.318247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Therapeutic approaches to reduce atherogenic lipid and lipoprotein levels remain the most effective and assessable strategies to prevent and treat cardiovascular disease. The discovery of novel research targets linked to pathways associated with cardiovascular disease development has enhanced our ability to decrease disease burden; however, residual cardiovascular disease risks remain. Advancements in genetics and personalized medicine are essential to understand some of the factors driving residual risk. Biological sex is among the most relevant factors affecting plasma lipid and lipoprotein profiles, playing a pivotal role in the development of cardiovascular disease. This minireview summarizes the most recent preclinical and clinical studies covering the effect of sex on plasma lipid and lipoprotein levels. We highlight the recent advances in the mechanisms regulating hepatic lipoprotein production and clearance as potential drivers of disease presentation. We focus on using sex as a biological variable in studying circulating lipid and lipoprotein levels.
Collapse
Affiliation(s)
| | | | - Gissette Reyes-Soffer
- Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons
| | - Jaume Amengual
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences. University of Illinois Urbana Champaign
| |
Collapse
|
12
|
Poudel B, Rosenson RS, Kent ST, Bittner V, Gutiérrez OM, Anderson AH, Woodward M, Jackson EA, Monda KL, Bajaj A, Huang L, Kansal M, Rahman M, He J, Muntner P, Colantonio LD. Lipoprotein(a) and the Risk for Recurrent Atherosclerotic Cardiovascular Events Among Adults With CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. Kidney Med 2023; 5:100648. [PMID: 37492110 PMCID: PMC10363548 DOI: 10.1016/j.xkme.2023.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Rationale & Objective Many adults with chronic kidney disease (CKD) and atherosclerotic cardiovascular disease (ASCVD) have high lipoprotein(a) levels. It is unclear whether high lipoprotein(a) levels confer an increased risk for recurrent ASCVD events in this population. We estimated the risk for recurrent ASCVD events associated with lipoprotein(a) in adults with CKD and prevalent ASCVD. Study Design Observational cohort study. Setting & Participants We included 1,439 adults with CKD and prevalent ASCVD not on dialysis enrolled in the Chronic Renal Insufficiency Cohort study between 2003 and 2008. Exposure Baseline lipoprotein(a) mass concentration, measured using a latex-enhanced immunoturbidimetric assay. Outcomes Recurrent ASCVD events (primary outcome), kidney failure, and death (exploratory outcomes) through 2019. Analytical Approach We used Cox proportional-hazards regression models to estimate adjusted HR (aHRs) and 95% CIs. Results Among participants included in the current analysis (mean age 61.6 years, median lipoprotein(a) 29.4 mg/dL [25th-75th percentiles 9.9-70.9 mg/dL]), 641 had a recurrent ASCVD event, 510 developed kidney failure, and 845 died over a median follow-up of 6.6 years. The aHR for ASCVD events associated with 1 standard deviation (SD) higher log-transformed lipoprotein(a) was 1.04 (95% CI, 0.95-1.15). In subgroup analyses, 1 SD higher log-lipoprotein(a) was associated with an increased risk for ASCVD events in participants without diabetes (aHR, 1.23; 95% CI, 1.02-1.48), but there was no evidence of an association among those with diabetes (aHR, 0.99; 95% CI, 0.88-1.10, P comparing aHRs = 0.031). The aHR associated with 1 SD higher log-lipoprotein(a) in the overall study population was 1.16 (95% CI, 1.04-1.28) for kidney failure and 1.02 (95% CI, 0.94-1.11) for death. Limitations Lipoprotein(a) was not available in molar concentration. Conclusions Lipoprotein(a) was not associated with the risk for recurrent ASCVD events in adults with CKD, although it was associated with a risk for kidney failure.
Collapse
Affiliation(s)
- Bharat Poudel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert S. Rosenson
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shia T. Kent
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Vera Bittner
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M. Gutiérrez
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Mark Woodward
- The George Institute for Global Health, Imperial College London, United Kingdom
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Elizabeth A. Jackson
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Keri L. Monda
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Archna Bajaj
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Huang
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mayank Kansal
- Department of Medicine, Division of Cardiology, University of Illinois-Chicago, Chicago, Illinois
| | - Mahboob Rahman
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, Ohio
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - CRIC Study Investigators∗
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
- The George Institute for Global Health, Imperial College London, United Kingdom
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Division of Cardiology, University of Illinois-Chicago, Chicago, Illinois
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, Ohio
| |
Collapse
|