1
|
Kumari P, Hegde V, Bakshi A, Suguna M, Prasad MD, Gnanesh Kumar BS, Usharani D, Sharan K, Kumar R. A novel regulatory motif at the hinge dimer interface of the MksB mediates dimerization and DNA binding activity. Biochimie 2025; 230:68-85. [PMID: 39550000 DOI: 10.1016/j.biochi.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/19/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
The Structural Maintenance of Chromosome (SMC) protein is essential for various cellular processes, including chromosome organization, DNA repair, and genome stability. MksB, an alternative SMC protein present in prokaryotes, comprises a hinge dimerization domain and an ABC ATPase head domain linked by a coiled-coil arm. While hinge dimerization in bacterial and eukaryotic SMCs is attributed to conserved glycines, our study unveils the critical role of a novel KDDR motif located at a loop near the hinge dimer interface in Mycobacterium smegmatis MksB (MsMksB). We demonstrate the regulatory role of this motif in MsMksB dimerization and DNA binding activity. The K600D mutation in the KDDR motif induces MsMksB dimer-to-monomer conversion, highlighting the significance of this motif in MsMksB dimerization. Mass spectrometry-based mapping of the DNA binding site revealed the lysine's involvement in protein-DNA interaction. Monomers of the hinge domain lose DNA binding activity, and MsMksB single-arm mutants exhibit reduced DNA binding and ATPase activity, underscoring the importance of hinge-mediated dimerization in MsMksB function. Notably, the R603D mutant retains dimerization but shows compromised ATPase and DNA binding activities. Mutants with defective ATPase activity exhibit impaired DNA condensation in vivo. These findings provide novel regulatory insight into the mechanism of MksB dimerization and DNA binding, uncovering the fundamental processes of chromosome condensation and segregation.
Collapse
Affiliation(s)
- Pratibha Kumari
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinayak Hegde
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India
| | - Anant Bakshi
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India
| | - M Suguna
- Prosetta Bioconformatics Private Limited, #67B, Hootagalli, Karnataka, 570018, India
| | - M Dharma Prasad
- Prosetta Bioconformatics Private Limited, #67B, Hootagalli, Karnataka, 570018, India
| | - B S Gnanesh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dandamudi Usharani
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Kumar
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
2
|
Multidrug ABC transporters in bacteria. Res Microbiol 2019; 170:381-391. [DOI: 10.1016/j.resmic.2019.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
|
3
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Chaves LAP, Gadsby DC. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels. ACTA ACUST UNITED AC 2015; 145:261-83. [PMID: 25825169 PMCID: PMC4380215 DOI: 10.1085/jgp.201411347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) channel opening and closing are driven by cycles of adenosine triphosphate (ATP) binding-induced formation and hydrolysis-triggered disruption of a heterodimer of its cytoplasmic nucleotide-binding domains (NBDs). Although both composite sites enclosed within the heterodimer interface contain ATP in an open CFTR channel, ATP hydrolysis in the sole catalytically competent site causes channel closure. Opening of the NBD interface at that site then allows ADP-ATP exchange. But how frequently, and how far, the NBD surfaces separate at the other, inactive composite site remains unclear. We assessed separation at each composite site by monitoring access of nucleotide-sized hydrophilic, thiol-specific methanothiosulfonate (MTS) reagents to interfacial target cysteines introduced into either LSGGQ-like ATP-binding cassette signature sequence (replacing equivalent conserved serines: S549 and S1347). Covalent MTS-dependent modification of either cysteine while channels were kept closed by the absence of ATP impaired subsequent opening upon ATP readdition. Modification while channels were opening and closing in the presence of ATP caused macroscopic CFTR current to decline at the same speed as when the unmodified channels shut upon sudden ATP withdrawal. These results suggest that the target cysteines can be modified only in closed channels; that after modification the attached MTS adduct interferes with ATP-mediated opening; and that modification in the presence of ATP occurs rapidly once channels close, before they can reopen. This interpretation was corroborated by the finding that, for either cysteine target, the addition of the hydrolysis-impairing mutation K1250R (catalytic site Walker A Lys) similarly slowed, by an order of magnitude, channel closing on ATP removal and the speed of modification by MTS reagent in ATP. We conclude that, in every CFTR channel gating cycle, the NBD dimer interface separates simultaneously at both composite sites sufficiently to allow MTS reagents to access both signature-sequence serines. Relatively rapid modification of S1347C channels by larger reagents-MTS-glucose, MTS-biotin, and MTS-rhodamine-demonstrates that, at the noncatalytic composite site, this separation must exceed 8 Å.
Collapse
Affiliation(s)
- Luiz A Poletto Chaves
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| | - David C Gadsby
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
5
|
Structural Features of the ATP-Binding Cassette (ABC) Transporter ABCA3. Int J Mol Sci 2015; 16:19631-44. [PMID: 26295388 PMCID: PMC4581316 DOI: 10.3390/ijms160819631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/23/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
In this review we reported and discussed the structural features of the ATP-Binding Cassette (ABC) transporter ABCA3 and how the use of bioinformatics tools could help researchers to obtain a reliable structural model of this important transporter. In fact, a model of ABCA3 is still lacking and no crystallographic structures (of the transporter or of its orthologues) are available. With the advent of next generation sequencing, many disease-causing mutations have been discovered and many more will be found in the future. In the last few years, ABCA3 mutations have been reported to have important pediatric implications. Thus, clinicians need a reliable structure to locate relevant mutations of this transporter and make genotype/phenotype correlations of patients affected by ABCA3-related diseases. In conclusion, we strongly believe that the model preliminarily generated by these novel bioinformatics tools could be the starting point to obtain more refined models of the ABCA3 transporter.
Collapse
|
6
|
de Araujo ED, Alvarez CP, López-Alonso JP, Sooklal CR, Stagljar M, Kanelis V. Phosphorylation-dependent changes in nucleotide binding, conformation, and dynamics of the first nucleotide binding domain (NBD1) of the sulfonylurea receptor 2B (SUR2B). J Biol Chem 2015. [PMID: 26198630 DOI: 10.1074/jbc.m114.636233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels.
Collapse
Affiliation(s)
- Elvin D de Araujo
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Claudia P Alvarez
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Jorge P López-Alonso
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Clarissa R Sooklal
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Marijana Stagljar
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Voula Kanelis
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
7
|
Furuta T, Yamaguchi T, Kato H, Sakurai M. Analysis of the structural and functional roles of coupling helices in the ATP-binding cassette transporter MsbA through enzyme assays and molecular dynamics simulations. Biochemistry 2014; 53:4261-72. [PMID: 24937232 DOI: 10.1021/bi500255j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ATP-binding cassette (ABC) transporters are constructed from some common structural units: the highly conserved nucleotide-binding domains (NBDs), which work as a nucleotide-dependent engine for driving substrate transport, the diverse transmembrane domains (TMDs), which create the translocation pathway, and the coupling helices (CHs), which are located at the NBD-TMD interface. Although the CHs are believed to be essential for NBD-TMD communication, their roles remain unclear. In this study, we performed enzyme assays and molecular dynamics (MD) simulations of the ABC transporter MsbA and two MsbA mutants in which the amino acid residues of one of the CHs were mutated to alanines: (i) wild type (Wt), (ii) CH1 mutant (Mt1), and (iii) CH2 mutant (Mt2). The experiments show that the CH2 mutation decreases the ATPase activity (kcat) compared with that of the Wt (a decrease of 32%), and a nearly equal degree of decrease in the ATP binding affinity (Km) was observed for both Mt1 and Mt2. The MD simulations successfully accounted for several structural and dynamical origins for these experimental observations. In addition, on the basis of collective motion and morphing analyses, we propose that the reverse-rotational motions and noddinglike motions between the NBDs and TMDs are indispensable for the conformational transition between the inward- and outward-facing conformations. In particular, CH2 is significantly important for the occurrence of the noddinglike motion. These findings provide important insights into the structure-function relationship of ABC transporters.
Collapse
Affiliation(s)
- Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
8
|
|
9
|
Csanády L, Töröcsik B. Catalyst-like modulation of transition states for CFTR channel opening and closing: new stimulation strategy exploits nonequilibrium gating. ACTA ACUST UNITED AC 2014; 143:269-87. [PMID: 24420771 PMCID: PMC4001772 DOI: 10.1085/jgp.201311089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two gating transition states determine open probability of CFTR (the chloride channel mutated in cystic fibrosis), defining strategic targets for therapeutic intervention. Cystic fibrosis transmembrane conductance regulator (CFTR) is the chloride ion channel mutated in cystic fibrosis (CF) patients. It is an ATP-binding cassette protein, and its resulting cyclic nonequilibrium gating mechanism sets it apart from most other ion channels. The most common CF mutation (ΔF508) impairs folding of CFTR but also channel gating, reducing open probability (Po). This gating defect must be addressed to effectively treat CF. Combining single-channel and macroscopic current measurements in inside-out patches, we show here that the two effects of 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB) on CFTR, pore block and gating stimulation, are independent, suggesting action at distinct sites. Furthermore, detailed kinetic analysis revealed that NPPB potently increases Po, also of ΔF508 CFTR, by affecting the stability of gating transition states. This finding is unexpected, because for most ion channels, which gate at equilibrium, altering transition-state stabilities has no effect on Po; rather, agonists usually stimulate by stabilizing open states. Our results highlight how for CFTR, because of its unique cyclic mechanism, gating transition states determine Po and offer strategic targets for potentiator compounds to achieve maximal efficacy.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry and 2 MTA-SE Ion Channel Research Group, Semmelweis University, Budapest H-1094, Hungary
| | | |
Collapse
|
10
|
Ishii S, Yano T, Okamoto A, Murakawa T, Hayashi H. Boundary of the nucleotide-binding domain of Streptococcus ComA based on functional and structural analysis. Biochemistry 2013; 52:2545-55. [PMID: 23534432 DOI: 10.1021/bi3017069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ATP-binding cassette (ABC) transporter ComA is a key molecule essential for the first step of the quorum-sensing system of Streptococcus. The nucleotide binding domains (NBD) of Streptococcus mutans ComA with different N termini, NBD1 (amino acid residues 495-760), NBD2 (517-760), and NBD3 (528-760), were expressed, purified, and characterized. The shortest NBD3 corresponds to the region commonly defined as NBD in the database searches of ABC transporters. A kinetic analysis showed that the extra N-terminal region conferred a significantly higher ATP hydrolytic activity on the NBD at a neutral pH. Gel-filtration, X-ray crystallography, and mutational analyses suggest that at least four to five residues beyond the N-terminal boundary of NBD3 indeed participate in stabilizing the protein scaffold of the domain structure, thereby facilitating the ATP-dependent dimerization of NBD which is a prerequisite to the catalysis. These findings, together with the presence of a highly conserved glycine residue in this region, support the redefinition of the N-terminal boundary of the NBD of these types of ABC exporters.
Collapse
Affiliation(s)
- Seiji Ishii
- Department of Biochemistry, Faculty of Nursing, Osaka Medical College, Osaka 569-8686, Japan.
| | | | | | | | | |
Collapse
|
11
|
Jones PM, George AM. Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit Rev Biochem Mol Biol 2012; 48:39-50. [PMID: 23131203 DOI: 10.3109/10409238.2012.735644] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABC transporters comprise a large, diverse, and ubiquitous superfamily of membrane active transporters. Their core architecture is a dimer of dimers, comprising two transmembrane domains that bind substrate and form the channel, and two ATP-binding cassettes, which bind and hydrolyze ATP to energize the translocase function. The prevailing paradigm for the ABC transport mechanism is the Switch Model, in which the nucleotide binding domains are proposed to dimerise upon binding of two ATP molecules, and thence dissociate upon sequential hydrolysis of the ATP. This idea appears consistent with crystal structures of both isolated subunits and whole transporters, as well as with a significant body of biochemical data. Nonetheless, an alternative Constant Contact Model has been proposed, in which the nucleotide binding domains do not fully dissociate, and ATP hydrolysis occurs alternately at each of the two active sites. Here, we review the biochemical and biophysical data relating to the ABC catalytic mechanism, to show how they may be construed as consistent with a Constant Contact Model, and to assess to what extent they support the Switch Model.
Collapse
Affiliation(s)
- Peter M Jones
- School of Medical and Molecular Biosciences, University of Technology Sydney, Broadway, NSW, Australia
| | | |
Collapse
|
12
|
Prasad R, Sharma M, Rawal MK. Functionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic Candida albicans. JOURNAL OF AMINO ACIDS 2011; 2011:531412. [PMID: 22312462 PMCID: PMC3268037 DOI: 10.4061/2011/531412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 02/21/2011] [Indexed: 12/18/2022]
Abstract
Reduced intracellular accumulation of drugs (due to rapid efflux) mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette) and MFS (Major Facilitators) superfamily is one of the most common strategies adopted by multidrug resistance (MDR) pathogenic yeasts. To combat MDR, it is essential to understand the structure and function of these transporters so that inhibitors/modulators to these can be developed. The sequence alignments of the ABC transporters reveal selective divergence within much conserved domains of Nucleotide-Binding Domains (NBDs) which is unique to all fungal transporters. Recently, the role of conserved but divergent residues of Candida Drug Resistance 1 (CDR1), an ABC drug transporter of human pathogenic Candida albicans, has been examined with regard to ATP binding and hydrolysis. In this paper, we focus on some of the recent advances on the relevance of divergent and conserved amino acids of CaCdr1p and also discuss as to how drug interacts with Trans Membrane Domains (TMDs) residues for its extrusion from MDR cells.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
13
|
Kanelis V, Chong PA, Forman-Kay JD. NMR spectroscopy to study the dynamics and interactions of CFTR. Methods Mol Biol 2011; 741:377-403. [PMID: 21594798 DOI: 10.1007/978-1-61779-117-8_25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a multi-domain membrane chloride channel whose activity is regulated by ATP at two nucleotide-binding domains (NBD1 and NBD2) and by phosphorylation of the regulatory (R) region. The NBDs and the R region have functionally relevant motions that are critical for channel gating. Nuclear magnetic resonance (NMR) spectroscopy is a highly useful technique for obtaining information on the structure and interactions of CFTR and is extremely powerful for probing dynamics. NMR approaches for studying CFTR are reviewed, using our previous NBD1 and the R region results to provide examples. These NMR data are yielding insights into the dynamic properties and interactions that facilitate normal CFTR regulation as well as pathological effects of mutations, including the most common disease mutant, deletion of F508 in NBD1.
Collapse
Affiliation(s)
- Voula Kanelis
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
| | | | | |
Collapse
|
14
|
Oliveira ASF, Baptista AM, Soares CM. Insights into the molecular mechanism of an ABC transporter: conformational changes in the NBD dimer of MJ0796. J Phys Chem B 2010; 114:5486-96. [PMID: 20369870 DOI: 10.1021/jp905735y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the rapid advances in the study of ABC transporters, many fundamental questions linked to ATP binding/hydrolysis and its relation to the transport cycle remain unanswered. In particular, it is still neither clear nor consensual how the ATP energy is used by the nucleotide binding domains (NBDs) to produce mechanical work and drive the substrate translocation. The major conformational changes in the NBDs following ATP hydrolysis during the transport cycle and the role played by the conserved family motifs in harnessing the energy associated with nucleotide hydrolysis are yet unknown. Additionally, the way energy is transmitted from the catalytic to the membrane domains, in order to drive substrate translocation, is also a fundamental question that remains unanswered. Due to the high structure similarities of the NBD architecture throughout the whole ABC family, it is likely that the mechanism of ATP binding, hydrolysis, and communication with the transmembrane domains is similar in all family members, independently of the nature of the transported substrate. In this work, we focused our attention on the consequences of ATP hydrolysis in the NBDs, especially on the structural changes that occur during this process. For that, we use molecular dynamics simulation techniques taking as a starting point the X-ray structure of the MJ0796 dimer from Methanococcus jannaschii. Several potential intermediate states of the ATP hydrolytic cycle are investigated, each consisting of different combinations of nucleotide-bound forms. The results obtained allowed us to identify the conformational rearrangements induced by hydrolysis on the catalytic subunits, as well as the residues involved in this reorganization. The major changes are localized at specific regions of the protein, namely, involving segments 11-19 and 93-124. Additionally, our results together with the knowledge of complete ABC transporter X-ray structures suggest a possible NBD:TMD signal transmission interface.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
15
|
Kumar A, Shukla S, Mandal A, Shukla S, Ambudkar SV, Prasad R. Divergent signature motifs of nucleotide binding domains of ABC multidrug transporter, CaCdr1p of pathogenic Candida albicans, are functionally asymmetric and noninterchangeable. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1757-66. [PMID: 20546701 DOI: 10.1016/j.bbamem.2010.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/03/2010] [Accepted: 05/17/2010] [Indexed: 02/04/2023]
Abstract
Nucleotide binding domains (NBDs) of the multidrug transporter of Candida albicans, CaCdr1p, possess unique divergent amino acids in their conserved motifs. For example, NBD1 (N-terminal-NBD) possesses conserved signature motifs, while the same motif is divergent in NBD2 (C-terminal-NBD). In this study, we have evaluated the contribution of these conserved and divergent signature motifs of CaCdr1p in ATP catalysis and drug transport. By employing site-directed mutagenesis, we made three categories of mutant variants. These included mutants where all the signature motif residues were replaced with either alanines or mutants with exchanged equipositional residues to mimic the conservancy and degeneracy in opposite domain. In addition, a set of mutants where signature motifs were swapped to have variants with either both the conserved or degenerated entire signature motif. We observed that conserved and equipositional residues of NBD1 and NBD2 and swapped signature motif mutants showed high susceptibility to all the tested drugs with simultaneous abrogation in ATPase and R6G efflux activities. However, some of the mutants displayed a selective increase in susceptibility to the drugs. Notably, none of the mutant variants and WT-CaCdr1p showed any difference in drug and nucleotide binding. Our mutational analyses show not only that certain conserved residues of NBD1 signature sequence (S304, G306, and E307) are important in ATP hydrolysis and R6G efflux but also that a few divergent residues (N1002 and E1004) of NBD2 signature motif have evolved to be functionally relevant and are not interchangeable. Taken together, our data suggest that the signature motifs of CaCdr1p, whether it is divergent or conserved, are nonexchangeable and are functionally critical for ATP hydrolysis.
Collapse
Affiliation(s)
- Antresh Kumar
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
16
|
Weng JW, Fan KN, Wang WN. The conformational transition pathway of ATP binding cassette transporter MsbA revealed by atomistic simulations. J Biol Chem 2010; 285:3053-63. [PMID: 19996093 PMCID: PMC2823423 DOI: 10.1074/jbc.m109.056432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 12/05/2009] [Indexed: 12/14/2022] Open
Abstract
ATP binding cassette transporters are integral membrane proteins that use the energy released from ATP hydrolysis at the two nucleotide binding domains (NBDs) to translocate a wide variety of substrates through a channel at the two transmembrane domains (TMDs) across the cell membranes. MsbA from Gram-negative bacteria is a lipid and multidrug resistance ATP binding cassette exporter that can undergo large scale conformational changes between the outward-facing and the inward-facing conformations revealed by crystal structures in different states. Here, we use targeted molecular dynamics simulation methods to explore the atomic details of the conformational transition from the outward-facing to the inward-facing states of MsbA. The molecular dynamics trajectories revealed a clear spatiotemporal order of the conformational movements. The disruption of the nucleotide binding sites at the NBD dimer interface is the very first event that initiates the following conformational changes, verifying the assumption that the conformational conversion is triggered by ATP hydrolysis. The conserved x-loops of the NBDs were identified to participate in the interaction network that stabilizes the cytoplasmic tetrahelix bundle of the TMDs and play an important role in mediating the cross-talk between the NBD and TMD. The movement of the NBD dimer is transmitted through x-loops to break the tetrahelix bundle, inducing the packing rearrangements of the transmembrane helices at the cytoplasmic side and the periplasmic side sequentially. The packing rearrangement within each periplasmic wing of TMD that results in exposure of the substrate binding sites occurred at the end stage of the trajectory, preventing the wrong timing of the binding site accessibility.
Collapse
Affiliation(s)
- Jing-Wei Weng
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
| | - Kang-Nian Fan
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
| | - Wen-Ning Wang
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
- Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Siarheyeva A, Liu R, Sharom FJ. Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides: implications for catalysis. J Biol Chem 2010; 285:7575-86. [PMID: 20061384 DOI: 10.1074/jbc.m109.047290] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (ABCB1), a member of the ABC superfamily, functions as an ATP-driven multidrug efflux pump. The catalytic cycle of ABC proteins is believed to involve formation of a sandwich dimer in which two ATP molecules are bound at the interface of the nucleotide binding domains (NBDs). However, such dimers have only been observed in isolated NBD subunits and catalytically arrested mutants, and it is still not understood how ATP hydrolysis is coordinated between the two NBDs. We report for the first time the characterization of an asymmetric state of catalytically active native P-glycoprotein with two bound molecules of adenosine 5'-(gamma-thio)triphosphate (ATPgammaS), one of low affinity (K(d) 0.74 mm), and one "occluded" nucleotide of 120-fold higher affinity (K(d) 6 microm). ATPgammaS also interacts with P-glycoprotein with high affinity as assessed by inhibition of ATP hydrolysis and protection from covalent labeling of a Walker A Cys residue, whereas other non-hydrolyzable ATP analogues do not. Binding of ATPgammaS (but not ATP) causes Trp residue heterogeneity, as indicated by collisional quenching, suggesting that it may induce conformational asymmetry. Asymmetric ATPgammaS-bound P-glycoprotein does not display reduced binding affinity for drugs, implying that transport is not driven by ATP binding and likely takes place at a later stage of the catalytic cycle. We propose that this asymmetric state with two bound nucleotides represents the next intermediate on the path toward ATP hydrolysis after nucleotide binding, and an alternating sites mode of action is achieved by simultaneous switching of the two active sites between high and low affinity states.
Collapse
Affiliation(s)
- Alena Siarheyeva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
18
|
Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Proc Natl Acad Sci U S A 2009; 107:1241-6. [PMID: 19966305 DOI: 10.1073/pnas.0911061107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CFTR, the ABC protein defective in cystic fibrosis, functions as an anion channel. Once phosphorylated by protein kinase A, a CFTR channel is opened and closed by events at its two cytosolic nucleotide binding domains (NBDs). Formation of a head-to-tail NBD1/NBD2 heterodimer, by ATP binding in two interfacial composite sites between conserved Walker A and B motifs of one NBD and the ABC-specific signature sequence of the other, has been proposed to trigger channel opening. ATP hydrolysis at the only catalytically competent interfacial site is suggested to then destabilize the NBD dimer and prompt channel closure. But this gating mechanism, and how tightly CFTR channel opening and closing are coupled to its catalytic cycle, remains controversial. Here we determine the distributions of open burst durations of individual CFTR channels, and use maximum likelihood to evaluate fits to equilibrium and nonequilibrium mechanisms and estimate the rate constants that govern channel closure. We examine partially and fully phosphorylated wild-type CFTR channels, and two mutant CFTR channels, each bearing a deleterious mutation in one or other composite ATP binding site. We show that the wild-type CFTR channel gating cycle is essentially irreversible and tightly coupled to the ATPase cycle, and that this coupling is completely destroyed by the NBD2 Walker B mutation D1370N but only partially disrupted by the NBD1 Walker A mutation K464A.
Collapse
|
19
|
Csanády L. Application of rate-equilibrium free energy relationship analysis to nonequilibrium ion channel gating mechanisms. ACTA ACUST UNITED AC 2009; 134:129-36. [PMID: 19635854 PMCID: PMC2717696 DOI: 10.1085/jgp.200910268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rate-equilibrium free energy relationship (REFER) analysis provides information on transition-state structures and has been applied to reveal the temporal sequence in which the different regions of an ion channel protein move during a closed-open conformational transition. To date, the theory used to interpret REFER relationships has been developed only for equilibrium mechanisms. Gating of most ion channels is an equilibrium process, but recently several ion channels have been identified to have retained nonequilibrium traits in their gating cycles, inherited from transporter-like ancestors. So far it has not been examined to what extent REFER analysis is applicable to such systems. By deriving the REFER relationships for a simple nonequilibrium mechanism, this paper addresses whether an equilibrium mechanism can be distinguished from a nonequilibrium one by the characteristics of their REFER plots, and whether information on the transition-state structures can be obtained from REFER plots for gating mechanisms that are known to be nonequilibrium cycles. The results show that REFER plots do not carry information on the equilibrium nature of the underlying gating mechanism. Both equilibrium and nonequilibrium mechanisms can result in linear or nonlinear REFER plots, and complementarity of REFER slopes for opening and closing transitions is a trivial feature true for any mechanism. Additionally, REFER analysis provides limited information about the transition-state structures for gating schemes that are known to be nonequilibrium cycles.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Jones PM, George AM. Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins 2009; 75:387-96. [PMID: 18831048 DOI: 10.1002/prot.22250] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABC transporters are ubiquitous, ATP-dependent transmembrane pumps. The mechanism by which ATP hydrolysis in the nucleotide-binding domain (NBD) effects conformational changes in the transmembrane domain that lead to allocrite translocation remains largely unknown. A possible aspect of this mechanism was suggested by previous molecular dynamics simulations of the MJ0796 NBD dimer, which revealed a novel, nucleotide-dependent intrasubunit conformational change involving the relative rotation of the helical and catalytic subdomains. Here, we find that in four of five simulations of the ADP/ATP-bound dimer, the relative rotation of the helical and catalytic subdomains in the ADP-bound monomer results in opening of the ADP-bound active site, probably sufficient or close to sufficient to allow nucleotide exchange. We also observe that in all five simulations of the ADP/ATP-bound dimer, the intimate contact of the LSGGQ signature sequence with the ATP gamma-phosphate is weakened by the intrasubunit conformational change within the ADP-bound monomer. We discuss how these results support a constant contact model for the function of the NBD dimer in contrast to switch models, in which the NBDs are proposed to fully disassociate during the catalytic cycle.
Collapse
Affiliation(s)
- Peter M Jones
- Department of Medical and Molecular Biosciences, University of Technology Sydney, Broadway, NSW, Australia
| | | |
Collapse
|
21
|
Asymmetric conformational flexibility in the ATP-binding cassette transporter HI1470/1. Biophys J 2009; 96:1918-30. [PMID: 19254551 DOI: 10.1016/j.bpj.2008.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022] Open
Abstract
Putative metal-chelate-type ABC transporter HI1470/1 is homologous with vitamin B(12) importer BtuCD but exhibits a distinct inward-facing conformation in contrast to the outward-facing conformation of BtuCD. Normal-mode analysis of HI1470/1 reveals the intrinsic asymmetric conformational flexibility in this transporter and demonstrates that the transition from the inward-facing to the outward-facing conformation is realized through the asymmetric motion of individual subunits of the transporter. This analysis suggests that the asymmetric arrangement of the BtuC dimer in the crystal structure of the BtuCD-F complex represents an intermediate state relating HI1470/1 and BtuCD. Furthermore, a twisting motion between transmembrane domains and nucleotide-binding domains encoded in the lowest-frequency normal mode of this type of importer is found to contribute to the conformational transitions during the whole cycle of substrate transportation. A more complete translocation mechanism of the BtuCD type importer is proposed.
Collapse
|
22
|
Seeger MA, van Veen HW. Molecular basis of multidrug transport by ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:725-37. [DOI: 10.1016/j.bbapap.2008.12.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 01/15/2023]
|
23
|
Mares-Sámano S, Badhan R, Penny J. Identification of putative steroid-binding sites in human ABCB1 and ABCG2. Eur J Med Chem 2009; 44:3601-11. [PMID: 19303670 DOI: 10.1016/j.ejmech.2009.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 02/17/2009] [Accepted: 02/26/2009] [Indexed: 12/17/2022]
Abstract
Homology modelling was used to generate three-dimensional structures of the nucleotide-binding domains (NBDs) of human ABCB1 and ABCG2. Interactions between a series of steroidal ligands and transporter NBDs were investigated using an in silico docking approach. C-terminal ABCB1 NBD (ABCB1 NBD2) was predicted to bind steroids within a cavity formed partly by the P-Loop, Tyr1044 and Ile1050. The P-Loop within ABCG2 NBD was also predicted to be involved in steroid binding. No overlap between ATP- and RU-486-binding sites was predicted in either NBD, though overlaps between ATP- and steroid-binding sites were predicted in the vicinity of the P-Loop in both nucleotide-binding domains.
Collapse
Affiliation(s)
- Sergio Mares-Sámano
- University of Manchester, School of Pharmacy & Pharmaceutical Sciences, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
24
|
Muallem D, Vergani P. Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator. Philos Trans R Soc Lond B Biol Sci 2009; 364:247-55. [PMID: 18957373 DOI: 10.1098/rstb.2008.0191] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Proteins belonging to the ATP-binding cassette superfamily couple ATP binding and hydrolysis at conserved nucleotide-binding domains (NBDs) to diverse cellular functions. Most superfamily members are transporters, while cystic fibrosis transmembrane conductance regulator (CFTR), alone, is an ion channel. Despite this functional difference, recent results have suggested that CFTR shares a common molecular mechanism with other members. ATP binds to partial binding sites on the surface of the two NBDs, which then associate to form a NBD dimer, with complete composite catalytic sites now buried at the interface. ATP hydrolysis and gamma-phosphate dissociation, with the loss of molecular contacts linking the two sides of the composite site, trigger dimer dissociation. The conformational signals generated by NBD dimer formation and dissociation are transmitted to the transmembrane domains where, in transporters, they drive the cycle of conformational changes that translocate the substrate across the membrane; in CFTR, they result in opening and closing (gating) of the ion-permeation pathway.
Collapse
Affiliation(s)
- Daniella Muallem
- Neuroscience, Physiology and Pharmacology, Faculty of Life Sciences, University College London, Gower Street, London, UK
| | | |
Collapse
|
25
|
Qin L, Zheng J, Grant CE, Jia Z, Cole SPC, Deeley RG. Residues responsible for the asymmetric function of the nucleotide binding domains of multidrug resistance protein 1. Biochemistry 2009; 47:13952-65. [PMID: 19063607 DOI: 10.1021/bi801532g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The two nucleotide binding domains (NBDs) of ATP binding cassette (ABC) transporters dimerize to form composite nucleotide binding sites (NBSs) each containing Walker A and B motifs from one domain and the ABC "C" signature from the other. In many ABC proteins, the NBSs are thought to be functionally equivalent. However, this is not the case for ABCC proteins, such as MRP1, in which NBS1 containing the Walker A and B motifs from the N-proximal NBD1 typically binds ATP with high affinity but has low hydrolytic activity, while the reverse is true of NBS2. A notable feature of NBD1 of the ABCC proteins is the lack of a catalytic Glu residue following the core Walker B motif. In multidrug resistance protein (MRP) 1, this residue is Asp (D793). Previously, we demonstrated that mutation of D793 to Glu was sufficient to increase ATP hydrolysis at NBS1, but paradoxically, transport activity decreased by 50-70% as a result of tight binding of ADP at the mutated NBS1. Here, we identify two atypical amino acids in NBD1 that contribute to the retention of ADP. We found that conversion of Trp653 to Tyr and/or Pro794 to Ala enhanced transport activity of the D793E mutant and the release of ADP from NBS1. Moreover, introduction of the P794A mutation into wild-type MRP1 increased transport of leukotriene C(4) approximately 2-fold. Molecular dynamic simulations revealed that, while the D793E mutation increased hydrolysis of ATP, the presence of the adjacent Pro794, rather than the more typical Ala, decreased flexibility of the region linking Walker B and the D-loop, markedly diminishing the rate of release of Mg(2+) and ADP. Overall, these results suggest that the rate of release of ADP by NBD1 in the D793E background may be the rate-limiting step in the transport cycle of MRP1.
Collapse
Affiliation(s)
- Lei Qin
- Division of Cancer Biology and Genetics, Cancer Research Institute, Departments of Biochemistry, Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Biophys J 2008; 95:5100-10. [PMID: 18790847 DOI: 10.1529/biophysj.108.139444] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ABC transporters constitute one of the most abundant membrane transporter families. The most common feature shared in the family is the highly conserved nucleotide binding domains (NBDs) that drive the transport process through binding and hydrolysis of ATP. Molecular dynamics simulations are used to investigate the effect of ATP hydrolysis in the NBDs. Starting with the ATP-bound, closed dimer of MalK, four simulation systems with all possible combinations of ATP or ADP-P(i) bound to the two nucleotide binding sites are constructed and simulated with equilibrium molecular dynamics for approximately 70 ns each. The results suggest that the closed form of the NBD dimer can only be maintained with two bound ATP molecules; in other words, hydrolysis of one ATP can lead to the opening of the dimer interface of the NBD dimer. Furthermore, we observed that the opening is an immediate effect of hydrolysis of ATP into ADP and P(i) rather than the dissociation of hydrolysis products. In addition, the opening is mechanistically triggered by the dissociation of the LSGGQ motif from the bound nucleotide. A metastable ADP-P(i) bound conformational state is consistently observed before the dimer opening in all the simulation systems.
Collapse
|
27
|
ATP-binding cassette transporters in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1757-71. [DOI: 10.1016/j.bbamem.2008.06.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 12/14/2022]
|
28
|
Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc Natl Acad Sci U S A 2008; 105:12837-42. [PMID: 18725638 DOI: 10.1073/pnas.0803799105] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The maltose transporter MalFGK(2) of Escherichia coli is a member of the ATP-binding cassette superfamily. A periplasmic maltose-binding protein (MBP) delivers maltose to MalFGK(2) and stimulates its ATPase activity. Site-directed spin labeling EPR spectroscopy was used to study the opening and closing of the nucleotide-binding interface of MalFGK(2) during the catalytic cycle. In the intact transporter, closure of the interface coincides not just with the binding of ATP, as seen with isolated nucleotide-binding domains, but requires both MBP and ATP, implying that MBP stimulates ATPase activity by promoting the closure of the nucleotide-binding interface. After ATP hydrolysis, with MgADP and MBP bound, the nucleotide-binding interface resides in a semi-open configuration distinct from the fully open configuration seen in the absence of any ligand. We propose that P(i) release coincides with the reorientation of transmembrane helices to an inward-facing conformation and the final step of maltose translocation into the cell.
Collapse
|
29
|
Abstract
The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.
Collapse
|
30
|
Jacquet E, Girard JM, Ramaen O, Pamlard O, Lévaique H, Betton JM, Dassa E, Chesneau O. ATP hydrolysis and pristinamycin IIA inhibition of the Staphylococcus aureus Vga(A), a dual ABC protein involved in streptogramin A resistance. J Biol Chem 2008; 283:25332-25339. [PMID: 18562322 DOI: 10.1074/jbc.m800418200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Gram-positive bacteria, a large subfamily of dual ATP-binding cassette proteins confers acquired or intrinsic resistance to macrolide, lincosamide, and streptogramin antibiotics by a far from well understood mechanism. Here, we report the first biochemical characterization of one such protein, Vga(A), which is involved in streptogramin A (SgA) resistance among staphylococci. Vga(A) is composed of two nucleotide-binding domains (NBDs), separated by a charged linker, with a C-terminal extension and without identified transmembrane domains. Highly purified Vga(A) displays a strong ATPase activity (K(m) = 78 mum, V(m) = 6.8 min(-1)) that was hardly inhibited by orthovanadate. Using mutants of the conserved catalytic glutamate residues, the two NBDs of Vga(A) were shown to contribute unequally to the total ATPase activity, the mutation at NBD2 being more detrimental than the other. ATPase activity of both catalytic sites was essential for Vga(A) biological function because each single Glu mutant was unable to confer SgA resistance in the staphylococcal host. Of great interest, Vga(A) ATPase was specifically inhibited in a non-competitive manner by the SgA substrate, pristinamycin IIA (PIIA). A deletion of the last 18 amino acids of Vga(A) slightly affected the ATPase activity without modifying the PIIA inhibition values. In contrast, this deletion reduced 4-fold the levels of SgA resistance. Altogether, our results suggest a role for the C terminus in regulation of the SgA antibiotic resistance mechanism conferred by Vga(A) and demonstrate that this dual ATP-binding cassette protein interacts directly and specifically with PIIA, its cognate substrate.
Collapse
Affiliation(s)
- Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, avenue de la Terrasse, Gif-sur-Yvette 91190 and the.
| | - Jean-Marie Girard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, avenue de la Terrasse, Gif-sur-Yvette 91190 and the
| | - Odile Ramaen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, avenue de la Terrasse, Gif-sur-Yvette 91190 and the
| | - Olivier Pamlard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, avenue de la Terrasse, Gif-sur-Yvette 91190 and the
| | - Hélène Lévaique
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, avenue de la Terrasse, Gif-sur-Yvette 91190 and the
| | | | - Elie Dassa
- Unité des Membranes Bactériennes, Institut Pasteur, CNRS URA 2172, 25 rue du Docteur Roux, Paris 75724 Cedex 15, France
| | - Olivier Chesneau
- Unité des Membranes Bactériennes, Institut Pasteur, CNRS URA 2172, 25 rue du Docteur Roux, Paris 75724 Cedex 15, France
| |
Collapse
|
31
|
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 PMCID: PMC2415747 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 979] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
32
|
Carrier I, Gros P. Investigating the role of the invariant carboxylate residues E552 and E1197 in the catalytic activity of Abcb1a (mouse Mdr3). FEBS J 2008; 275:3312-24. [PMID: 18489584 DOI: 10.1111/j.1742-4658.2008.06479.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The invariant carboxylate residue which follows the Walker B motif (hyd(4)DE/D) in the nucleotide-binding domains (NBDs) of ATP-binding cassette transporters is thought to be involved in the hydrolysis of the gamma-phosphate of MgATP, either by activating the attacking water molecule or by promoting substrate-assisted catalysis. In Abcb1a, this invariant carboxylate residue corresponds to E552 in NBD1 and E1197 in NBD2. To further characterize the role of these residues in catalysis, we created in Abcb1a the single-site mutants E552D, N and A in NBD1, and E1197D, N and A in NBD2, as well as the double-mutant E552Q/E1197Q. In addition, we created mutants in which the Walker A K --> R mutation known to abolish ATPase activity was introduced in the non-mutant NBD of E552Q and E1197Q. ATPase activity, binding affinity and trapping properties were tested for each Abcb1a variant. The results suggest that the length of the invariant carboxylate residue is important for the catalytic activity, whereas the charge of the side chain is critical for full turnover to occur. Moreover, in the double-mutants where the K --> R mutation is introduced in the 'wild-type' NBD of the E --> Q mutants, single-site turnover is observed, especially when NBD2 can undergo gamma-P(i) cleavage. The results further support the idea that the NBDs are not symmetric and suggest that the invariant carboxylates are involved both in NBD-NBD communication and transition-state formation through orientation of the linchpin residue.
Collapse
Affiliation(s)
- Isabelle Carrier
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, Canada
| | | |
Collapse
|
33
|
Cheung JC, Kim Chiaw P, Pasyk S, Bear CE. Molecular basis for the ATPase activity of CFTR. Arch Biochem Biophys 2008; 476:95-100. [PMID: 18417076 DOI: 10.1016/j.abb.2008.03.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/24/2008] [Accepted: 03/26/2008] [Indexed: 12/24/2022]
Abstract
CFTR is a member of the ABC (ATP binding cassette) superfamily of transporters. It is a multidomain membrane protein, which utilizes ATP to regulate the flux of its substrate through the membrane. CFTR is distinct in that it functions as a channel and it possesses a unique regulatory R domain. There has been significant progress in understanding the molecular basis for CFTR activity as an ATPase. The dimeric complex of NBD structures seen in prokaryotic ABC transporters, together with the structure of an isolated CF-NBD1, provide a unifying molecular template to model the structural basis for the ATPase activity of CFTR. The dynamic nature of the interaction between the NBDs and the R domain has been revealed in NMR studies. On the other hand, understanding the mechanisms mediating the transmission of information from the cytosolic domains to the membrane and the channel gate of CFTR remains a central challenge.
Collapse
Affiliation(s)
- Joanne C Cheung
- Programme in Molecular Structure & Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ont., Canada
| | | | | | | |
Collapse
|
34
|
Orelle C, Gubellini F, Durand A, Marco S, Lévy D, Gros P, Di Pietro A, Jault JM. Conformational change induced by ATP binding in the multidrug ATP-binding cassette transporter BmrA. Biochemistry 2008; 47:2404-12. [PMID: 18215075 DOI: 10.1021/bi702303s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.
Collapse
Affiliation(s)
- Cédric Orelle
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université de Lyon 1 and IFR 128 BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Imaging CFTR in its native environment. Pflugers Arch 2007; 456:163-77. [DOI: 10.1007/s00424-007-0399-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Accepted: 11/09/2007] [Indexed: 12/18/2022]
|
36
|
Prakash T, Sandhu KS, Singh NK, Bhasin Y, Ramakrishnan C, Brahmachari SK. Structural assessment of glycyl mutations in invariantly conserved motifs. Proteins 2007; 69:617-32. [PMID: 17623846 DOI: 10.1002/prot.21488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motifs that are evolutionarily conserved in proteins are crucial to their structure and function. In one of our earlier studies, we demonstrated that the conserved motifs occurring invariantly across several organisms could act as structural determinants of the proteins. We observed the abundance of glycyl residues in these invariantly conserved motifs. The role of glycyl residues in highly conserved motifs has not been studied extensively. Thus, it would be interesting to examine the structural perturbations induced by mutation in these conserved glycyl sites. In this work, we selected a representative set of invariant signature (IS) peptides for which both the PDB structure and mutation information was available. We thoroughly analyzed the conformational features of the glycyl sites and their local interactions with the surrounding residues. Using Ramachandran angles, we showed that the glycyl residues occurring in these IS peptides, which have undergone mutation, occurred more often in the L-disallowed as compared with the L-allowed region of the Ramachandran plot. Short range contacts around the mutation site were analyzed to study the steric effects. With the results obtained from our analysis, we hypothesize that any change of activity arising because of such mutations must be attributed to the long-range interaction(s) of the new residue if the glycyl residue in the IS peptide occurred in the L-allowed region of the Ramachandran plot. However, the mutation of those conserved glycyl residues that occurred in the L-disallowed region of the Ramachandran plot might lead to an altered activity of the protein as a result of an altered conformation of the backbone in the immediate vicinity of the glycyl residue, in addition to long range effects arising from the long side chains of the new residue. Thus, the loss of activity because of mutation in the conserved glycyl site might either relate to long range interactions or to local perturbations around the site depending upon the conformational preference of the glycyl residue.
Collapse
Affiliation(s)
- Tulika Prakash
- G. N. Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi 110007, India
| | | | | | | | | | | |
Collapse
|
37
|
Pretz MG, van der Does C, Albers SV, Schuurman-Wolters G, Driessen AJM. Structural stability of GlcV, the nucleotide binding domain of the glucose ABC transporter of Sulfolobus solfataricus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:324-33. [PMID: 17980144 DOI: 10.1016/j.bbamem.2007.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/01/2007] [Accepted: 10/05/2007] [Indexed: 11/17/2022]
Abstract
GlcV is the nucleotide binding domain of the ABC-type glucose transporter of the hyperthermoacidophile Sulfolobus solfataricus. GlcV consists of two domains, an N-terminal domain containing the typical nucleotide binding-fold and a C-terminal beta-barrel domain with unknown function. The unfolding and structural stability of the wild-type (wt) protein and three mutants that are blocked at different steps in the ATP hydrolytic cycle were studied. The G144A mutant is unable to dimerize, while the E166A and E166Q mutants are defective in ATP hydrolysis and dimer dissociation. Unfolding of the wt GlcV and G144A GlcV occurred with a single transition, whereas the E166A and E166Q mutants showed a second transition at a higher melting temperature indicating an increased stability of the ABCalpha/beta subdomain. The structural stability of GlcV was increased in the presence of nucleotides suggesting that the transition corresponds to the unfolding of the NBD domain. Unfolding of the C-terminal domain appears to occur at temperatures above the unfolding of the NBD which coincides with the aggregation of the protein. Analysis of the domain organization of GlcV by trypsin digestion demonstrates cleavage of the NBD domain into three fragments, while nucleotides protect against proteolysis. The cleaved GlcV protein retained the ability to bind nucleotides and to dimerize. These data indicate that the wt GlcV NBD domain unfolds as a single domain protein, and that its stability is modified by mutations in the glutamate after the Walker B motif and by nucleotide binding.
Collapse
Affiliation(s)
- Monika G Pretz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Abstract
ATP binding cassette transporters are ubiquitous integral membrane proteins that actively transport ligands across biological membranes, a process critical for most aspects of cell physiology. These proteins are important clinically and economically. Their dysfunction underlies a number of human genetic diseases, and the ability of some to pump cytotoxic molecules from cells confers resistance to antibiotics, herbicides, and chemotherapeutic drugs. Recent structure analyses interpreted in light of a large body of biochemistry has resulted in the ATP-switch model for function in which the paired nucleotide binding domains switch between an ATP-dependent closed conformation and a nucleotide-free, open conformation to drive the translocation of ligand.
Collapse
Affiliation(s)
- Kenneth J Linton
- MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital Campus, London, United Kingdom.
| |
Collapse
|
39
|
Ivetac A, Campbell JD, Sansom MSP. Dynamics and function in a bacterial ABC transporter: simulation studies of the BtuCDF system and its components. Biochemistry 2007; 46:2767-78. [PMID: 17302441 DOI: 10.1021/bi0622571] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ABC transporters are integral membrane proteins which couple the energy of ATP hydrolysis to the translocation of solutes across cell membranes. BtuCD is a approximately 1100-residue protein found in the inner membrane of Gram-negative bacteria which transports vitamin B12. Vitamin B12 is bound in the periplasm by BtuF, which delivers the solute to the periplasmic entrance of the transporter protein complex BtuCD. Molecular dynamics simulations of the BtuCD and BtuCDF complexes (in a lipid bilayer) and of the isolated BtuD and BtuF proteins (in water) have been used to explore the conformational dynamics of this complex transport system. Overall, seven simulations have been performed, with and without bound ATP, corresponding to a total simulation time of 0.1 micros. Binding of ATP drives closure of the nucleotide-binding domains (NBDs) in BtuD in a symmetrical fashion, but not in BtuCD. It seems that ATP constrains the flexibility of the NBDs in BtuCD such that their closure may only occur upon binding of BtuF to the complex. Upon introduction of BtuF, and concomitant with NBD association, one ATP-binding site displays a closure, while the opposite site remains relatively unchanged. This asymmetry may reflect an initial step in the "alternating hydrolysis" mechanism and is consistent with measurements of nucleotide-binding stoichiometries. Principal components analysis of the simulation of BtuCD reveals motions that are comparable to those suggested in current transport models.
Collapse
Affiliation(s)
- Anthony Ivetac
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | |
Collapse
|
40
|
Procko E, Ferrin-O'Connell I, Ng SL, Gaudet R. Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter. Mol Cell 2006; 24:51-62. [PMID: 17018292 DOI: 10.1016/j.molcel.2006.07.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/10/2006] [Accepted: 07/26/2006] [Indexed: 12/31/2022]
Abstract
The ABC transporter associated with antigen processing (TAP) shuttles cytosolic peptides into the endoplasmic reticulum for loading onto class I MHC molecules. Transport is fueled by ATP binding and hydrolysis at two distinct cytosolic ATPase sites. One site comprises consensus motifs shared among most ABC transporters, while the second has substituted, degenerate motifs. Biochemical and crystallography experiments with a TAP cytosolic domain demonstrate that the consensus ATPase site has high catalytic activity and facilitates ATP-dependent dimerization of the cytosolic domains, which is an important conformational change during transport. In contrast, the degenerate site is defective in dimerization and ATP hydrolysis. Full-length TAP mutagenesis demonstrates the necessity for at least one consensus site, supporting our conclusion that the consensus site is the principal facilitator of substrate transport. Since asymmetry of the ATPase site motifs is a feature of many mammalian homologs, our proposed model has broad implications for ABC transporters.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
41
|
Perria CL, Rajamanickam V, Lapinski PE, Raghavan M. Catalytic site modifications of TAP1 and TAP2 and their functional consequences. J Biol Chem 2006; 281:39839-51. [PMID: 17068338 DOI: 10.1074/jbc.m605492200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transporter associated with antigen processing (TAP), a member of the ATP binding cassette (ABC) family of transmembrane transporters, transports peptides across the endoplasmic reticulum membrane for assembly of major histocompatibility complex class I molecules. Two subunits, TAP1 and TAP2, are required for peptide transport, and ATP hydrolysis by TAP1.TAP2 complexes is important for transport activity. Two nucleotide binding sites are present in TAP1.TAP2 complexes. Compared with other ABC transporters, the first nucleotide binding site contains non-consensus catalytic site residues, including Asp(668) in the Walker B region of TAP1 (in place of a highly conserved glutamic acid), and Gln(701) in the switch region of TAP1 (in place of a highly conserved histidine). At the second nucleotide binding site, a glutamic acid (TAP2 Glu(632)) follows the Walker B motif, and the switch region contains a histidine (TAP2 His(661)). We found that alterations at Glu(632) and His(661) of TAP2 significantly reduced peptide translocation and/or TAP-induced major histocompatibility complex class I surface expression. Alterations of TAP1 Asp(668) alone or in combination with TAP1 Gln(701) had only small effects on TAP activity. Thus, the naturally occurring Asp(668) and Gln(701) alterations of TAP1 are likely to contribute to attenuated catalytic activity at the first nucleotide binding site (the TAP1 site) of TAP complexes. Due to its enhanced catalytic activity, the second nucleotide binding site (the TAP2 site) appears to be the main site driving peptide transport. A mechanistic model involving one main active site is likely to apply to other ABC transporters that have an asymmetric distribution of catalytic site residues within the two nucleotide binding sites.
Collapse
Affiliation(s)
- Christopher L Perria
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
42
|
Ernst R, Koch J, Horn C, Tampé R, Schmitt L. Engineering ATPase Activity in the Isolated ABC Cassette of Human TAP1. J Biol Chem 2006; 281:27471-80. [PMID: 16864587 DOI: 10.1074/jbc.m601131200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticulum lumen. The functional unit of TAP is a heterodimer composed of the TAP1 and TAP2 subunits, both of which are members of the ABC-transporter family. ABC-transporters are ATP-dependent pumps, channels, or receptors that are composed of four modules: two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Although the TMDs are rather divergent in sequence, the NBDs are conserved with respect to structure and function. Interestingly, the NBD of TAP1 contains mutations at amino acid positions that have been proposed to be essential for catalytic activity. Instead of a glutamate, proposed to act as a general base, TAP1 contains an aspartate and a glutamine instead of the conserved histidine, which has been suggested to act as the linchpin. We used this degeneration to evaluate the individual contribution of these two amino acids to the ATPase activity of the engineered TAP1-NBD mutants. Based on our results a catalytic hierarchy of these two fundamental amino acids in ATP hydrolysis of the mutated TAP1 motor domain was deduced.
Collapse
Affiliation(s)
- Robert Ernst
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
We review recent work on E552A/E1197A P-glycoprotein. This ATPase-defective mutant occludes MgATP tightly with maximal 1/1 stoichiometry in drug-sensitive fashion. The occluded nucleotide conformation appears to represent a transient, asymmetric, catalytic intermediate. We present a model for catalysis incorporating nucleotide binding domain (NBD) dimerization and the occluded nucleotide conformation, and we speculate as to how catalysis seen in P-glycoprotein might be harmonized with symmetrical dimer structures of isolated NBDs.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712, Rochester, New York 14642, USA
| | | |
Collapse
|
44
|
Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86:849-99. [PMID: 16816140 DOI: 10.1152/physrev.00035.2005] [Citation(s) in RCA: 533] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Biochemistry, Queen's University Kingdom, Ontario, Canada.
| | | | | |
Collapse
|
45
|
Zaitseva J, Oswald C, Jumpertz T, Jenewein S, Wiedenmann A, Holland IB, Schmitt L. A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J 2006; 25:3432-43. [PMID: 16858415 PMCID: PMC1523178 DOI: 10.1038/sj.emboj.7601208] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 05/30/2006] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC)-transporter haemolysin (Hly)B, a central element of a Type I secretion machinery, acts in concert with two additional proteins in Escherichia coli to translocate the toxin HlyA directly from the cytoplasm to the exterior. The basic set of crystal structures necessary to describe the catalytic cycle of the isolated HlyB-NBD (nucleotide-binding domain) has now been completed. This allowed a detailed analysis with respect to hinge regions, functionally important key residues and potential energy storage devices that revealed many novel features. These include a structural asymmetry within the ATP dimer that was significantly enhanced in the presence of Mg2+, indicating a possible functional asymmetry in the form of one open and one closed phosphate exit tunnel. Guided by the structural analysis, we identified two amino acids, closing one tunnel by an apparent salt bridge. Mutation of these residues abolished ATP-dependent cooperativity of the NBDs. The implications of these new findings for the coupling of ATP binding and hydrolysis to functional activity are discussed.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christine Oswald
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Thorsten Jumpertz
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Stefan Jenewein
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Alexander Wiedenmann
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - I Barry Holland
- Institut de Génétique et Microbiologie, Université de Paris XI, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
46
|
Ramaen O, Leulliot N, Sizun C, Ulryck N, Pamlard O, Lallemand JY, Tilbeurgh HV, Jacquet E. Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site. J Mol Biol 2006; 359:940-9. [PMID: 16697012 DOI: 10.1016/j.jmb.2006.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/31/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Human multidrug resistance protein 1 (MRP1) is a membrane protein that belongs to the ATP-binding cassette (ABC) superfamily of transport proteins. MRP1 contributes to chemotherapy failure by exporting a wide range of anti-cancer drugs when over expressed in the plasma membrane of cells. Here, we report the first high-resolution crystal structure of human MRP1-NBD1. Drug efflux requires energy resulting from hydrolysis of ATP by nucleotide binding domains (NBDs). Contrary to the prokaryotic NBDs, the extremely low intrinsic ATPase activity of isolated MRP1-NBDs allowed us to obtain the structure of wild-type NBD1 in complex with Mg2+/ATP. The structure shows that MRP1-NBD1 adopts a canonical fold, but reveals an unexpected non-productive conformation of the catalytic site, providing an explanation for the low intrinsic ATPase activity of NBD1 and new hypotheses on the cooperativity of ATPase activity between NBD1 and NBD2 upon heterodimer formation.
Collapse
Affiliation(s)
- Odile Ramaen
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Unique among ABC (ATP-binding cassette) protein family members, CFTR (cystic fibrosis transmembrane conductance regulator), also termed ABCC7, encoded by the gene mutated in cystic fibrosis patients, functions as an ion channel. Opening and closing of its anion-selective pore are linked to ATP binding and hydrolysis at CFTR's two NBDs (nucleotide-binding domains), NBD1 and NBD2. Isolated NBDs of prokaryotic ABC proteins form homodimers upon binding ATP, but separate after hydrolysis of the ATP. By combining mutagenesis with single-channel recording and nucleotide photolabelling on intact CFTR molecules, we relate opening and closing of the channel gates to ATP-mediated events in the NBDs. In particular, we demonstrate that two CFTR residues, predicted to lie on opposite sides of its anticipated NBD1-NBD2 heterodimer interface, are energetically coupled when the channels open but are independent of each other in closed channels. This directly links ATP-driven tight dimerization of CFTR's cytoplasmic NBDs to opening of the ion channel in the transmembrane domains. Evolutionary conservation of the energetically coupled residues in a manner that preserves their ability to form a hydrogen bond argues that this molecular mechanism, involving dynamic restructuring of the NBD dimer interface, is shared by all members of the ABC protein superfamily.
Collapse
Affiliation(s)
- P Vergani
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
48
|
Guo X, Harrison RW, Tai PC. Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion. J Bacteriol 2006; 188:2383-91. [PMID: 16547024 PMCID: PMC1428426 DOI: 10.1128/jb.188.7.2383-2391.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cytoplasmic membrane proteins CvaB and CvaA and the outer membrane protein TolC constitute the bacteriocin colicin V secretion system in Escherichia coli. CvaB functions as an ATP-binding cassette transporter, and its C-terminal domain (CTD) contains typical motifs for the nucleotide-binding and Walker A and B sites and the ABC signature motif. To study the role of the CvaB CTD in the secretion of colicin V, a truncated construct of this domain was made and overexpressed. Different forms of the CvaB CTD were found during purification and identified as monomer, dimer, and oligomer forms by gel filtration and protein cross-linking. Nucleotide binding was shown to be critical for CvaB CTD dimerization. Oligomers could be converted to dimers by nucleotide triphosphate-Mg, and nucleotide release from dimers resulted in transient formation of monomers, followed by oligomerization and aggregation. Site-directed mutagenesis showed that the ABC signature motif was involved in the nucleotide-dependent dimerization. The spatial proximity of the Walker A site and the signature motif was shown by disulfide cross-linking a mixture of the A530C and L630C mutant proteins, while the A530C or L630C mutant protein did not dimerize on its own. Taken together, these results indicate that the CvaB CTD formed a nucleotide-dependent head-to-tail dimer.
Collapse
Affiliation(s)
- Xiangxue Guo
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, 402 Kell Hall, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
49
|
Oswald C, Holland IB, Schmitt L. The motor domains of ABC-transporters. What can structures tell us? Naunyn Schmiedebergs Arch Pharmacol 2006; 372:385-99. [PMID: 16541253 DOI: 10.1007/s00210-005-0031-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/19/2005] [Indexed: 01/21/2023]
Abstract
The transport of substrates across a cellular membrane is a vitally important biological function essential for cell survival. ATP-binding cassette (ABC) transporters constitute one of the largest subfamilies of membrane proteins, accomplishing this task. Mutations in genes encoding for ABC transporters cause different diseases, for example, Adrenoleukodystrophy, Stargardt disease or Cystic Fibrosis. Furthermore, some ABC transporters are responsible for multidrug resistance, presenting a major obstacle in modern cancer chemotherapy. In order to translocate the enormous variety of substrates, ranging from ions, nutrients, small peptides to large toxins, different ABC-transporters utilize the energy gained from ATP binding and hydrolysis. The ATP binding cassette, also called the motor domain of ABC transporters, is highly conserved among all ABC transporters. The ability to purify this domain rather easily presents a perfect possibility to investigate the mechanism of ATP hydrolysis, thus providing us with a detailed picture of this process. Recently, many crystal structures of the ATP-binding domain and the full-length structures of two ABC transporters have been solved. Combining these structural data, we have now the opportunity to analyze the hydrolysis event on a molecular level. This review provides an overview of the structural investigations of the ATP-binding domains, highlighting molecular changes upon ATP binding and hydrolysis.
Collapse
Affiliation(s)
- Christine Oswald
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germanye
| | | | | |
Collapse
|
50
|
Ramaen O, Sizun C, Pamlard O, Jacquet E, Lallemand JY. Attempts to characterize the NBD heterodimer of MRP1: transient complex formation involves Gly771 of the ABC signature sequence but does not enhance the intrinsic ATPase activity. Biochem J 2006; 391:481-90. [PMID: 16014004 PMCID: PMC1276949 DOI: 10.1042/bj20050897] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MRP1 (multidrug-resistance-associated protein 1; also known as ABCC1) is a member of the human ABC (ATP-binding cassette) transporter superfamily that confers cell resistance to chemotherapeutic agents. Considering the structural and functional similarities to the other ABC proteins, the interaction between its two NBDs (nucleotide-binding domains), NBD1 (N-terminal NBD) and NBD2 (C-terminal NBD), is proposed to be essential for the regulation of the ATP-binding/ATP-hydrolysis cycle of MRP1. We were interested in the ability of recombinant NBD1 and NBD2 to interact with each other and to influence ATPase activity. We purified NBD1 (Asn642-Ser871) and NBD2 (Ser1286-Val1531) as soluble monomers under native conditions. We measured extremely low intrinsic ATPase activity of NBD1 (10(-5) s(-1)) and NBD2 (6x10(-6) s(-1)) and no increase in the ATP-hydrolysis rate could be detected in an NBD1+NBD2 mixture, with concentrations up to 200 microM. Despite the fact that both monomers bind ATP, no stable NBD1.NBD2 heterodimer could be isolated by gel-filtration chromatography or native-PAGE, but we observed some significant modifications of the heteronuclear single-quantum correlation NMR spectrum of 15N-NBD1 in the presence of NBD2. This apparent NBD1.NBD2 interaction only occurred in the presence of Mg2+ and ATP. Partial sequential assignment of the NBD1 backbone resonances shows that residue Gly771 of the LSGGQ sequence is involved in NBD1.NBD2 complex formation. This is the first NMR observation of a direct interaction between the ABC signature and the opposite NBD. Our study also reveals that the NBD1.NBD2 heterodimer of MRP1 is a transient complex. This labile interaction is not sufficient to induce an ATPase co-operativity of the NBDs and suggests that other structures are required for the ATPase activation mechanism.
Collapse
Affiliation(s)
- Odile Ramaen
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Pamlard
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- To whom correspondence should be addressed (email )
| | - Jean-Yves Lallemand
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|