1
|
Li M, Lin H, Wang L, Wang J. Complete genome sequence of the extreme-pH-resistant Salmonella bacteriophage αα of the family Microviridae. Arch Virol 2020; 166:325-329. [PMID: 33221988 DOI: 10.1007/s00705-020-04880-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
A novel Salmonella bacteriophage (phage), named αα, was the first reported member of the family Microviridae to exhibit tolerance to both extreme acidic and alkaline conditions (pH 2-12 for 1 h). Phage αα has a circular single-stranded DNA genome of 5,387 nt with a G+C content of 44.66%. A total of 11 putative gene products and no tRNA genes are encoded in the phage αα genome. Whole-genome sequence comparisons revealed that phage αα shares 95% identity with coliphage phiX174 and had a close evolutionary relationship to the phages NC1 and NC7. Phylogenetic analysis of the structural proteins of phage αα and 18 other phiX174-like phages showed that a phylogenetic tree based on protein B sequences had a topology similar to that obtained using whole genome sequences. In addition, variable sites in proteins F and G distributed on the surface of the mature capsid and the conserved protein J were probably involved in maintaining the structural integrity of the phage under extreme pH conditions. Our findings could open up new perspectives for identifying more extreme-pH-resistant phages and their structural proteins and understanding the mechanism of phage adaptation and evolution under extreme environmental stress.
Collapse
Affiliation(s)
- Mengzhe Li
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Hong Lin
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Luokai Wang
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jingxue Wang
- Food Safety Laboratory, Department of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
2
|
Wright BW, Ruan J, Molloy MP, Jaschke PR. Genome Modularization Reveals Overlapped Gene Topology Is Necessary for Efficient Viral Reproduction. ACS Synth Biol 2020; 9:3079-3090. [PMID: 33044064 DOI: 10.1021/acssynbio.0c00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sequence overlap between two genes is common across all genomes, with viruses having high proportions of these gene overlaps. Genome modularization and refactoring is the process of disrupting natural gene overlaps to separate coding sequences to enable their individual manipulation. The biological function and fitness effects of gene overlaps are not fully understood, and their effects on gene cluster and genome-level refactoring are unknown. The bacteriophage φX174 genome has ∼26% of nucleotides involved in encoding more than one gene. In this study we use an engineered φX174 phage containing a genome with all gene overlaps removed to show that gene overlap is critical to maintaining optimal viral fecundity. Through detailed phenotypic measurements we reveal that genome modularization in φX174 causes virion replication, stability, and attachment deficiencies. Quantitation of the complete phage proteome across an infection cycle reveals 30% of proteins display abnormal expression patterns. Taken together, we have for the first time comprehensively demonstrated that gene modularization severely perturbs the coordinated functioning of a bacteriophage replication cycle. This work highlights the biological importance of gene overlap in natural genomes and that reducing gene overlap disruption should be an integral part of future genome engineering projects.
Collapse
Affiliation(s)
- Bradley W. Wright
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark P. Molloy
- Kolling Institute, Northern Clinical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul R. Jaschke
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Mutagenic Analysis of a DNA Translocating Tube's Interior Surface. Viruses 2020; 12:v12060670. [PMID: 32580341 PMCID: PMC7354561 DOI: 10.3390/v12060670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
Bacteriophage ϕX174 uses a decamer of DNA piloting proteins to penetrate its host. These proteins oligomerize into a cell wall-spanning tube, wide enough for genome passage. While the inner surface of the tube is primarily lined with inward-facing amino acid side chains containing amide and guanidinium groups, there is a 28 Å-long section near the tube’s C-terminus that does not exhibit this motif. The majority of the inward-facing residues in this region are conserved across the three ϕX174-like clades, suggesting that they play an important role during genome delivery. To test this hypothesis, and explore the general function of the tube’s inner surface, non-glutamine residues within this region were mutated to glutamine, while existing glutamine residues were changed to serine. Four of the resulting mutants had temperature-dependent phenotypes. Virion assembly, host attachment, and virion eclipse, defined as the cell’s ability to inactivate the virus, were not affected. Genome delivery, however, was inhibited. The results support a model in which a balance of forces governs genome delivery: potential energy provided by the densely packaged viral genome and/or an osmotic gradient move the genome into the cell, while the tube’s inward facing glutamine residues exert a frictional force, or drag, that controls genome release.
Collapse
|
4
|
Coat Protein Mutations That Alter the Flux of Morphogenetic Intermediates through the ϕX174 Early Assembly Pathway. J Virol 2017; 91:JVI.01384-17. [PMID: 28978706 DOI: 10.1128/jvi.01384-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/25/2017] [Indexed: 11/20/2022] Open
Abstract
Two scaffolding proteins orchestrate ϕX174 morphogenesis. The internal scaffolding protein B mediates the formation of pentameric assembly intermediates, whereas the external scaffolding protein D organizes 12 of these intermediates into procapsids. Aromatic amino acid side chains mediate most coat-internal scaffolding protein interactions. One residue in the internal scaffolding protein and three in the coat protein constitute the core of the B protein binding cleft. The three coat gene codons were randomized separately to ascertain the chemical requirements of the encoded amino acids and the morphogenetic consequences of mutation. The resulting mutants exhibited a wide range of recessive phenotypes, which could generally be explained within a structural context. Mutants with phenylalanine, tyrosine, and methionine substitutions were phenotypically indistinguishable from the wild type. However, tryptophan substitutions were detrimental at two sites. Charged residues were poorly tolerated, conferring extreme temperature-sensitive and lethal phenotypes. Eighteen lethal and conditional lethal mutants were genetically and biochemically characterized. The primary defect associated with the missense substitutions ranged from inefficient internal scaffolding protein B binding to faulty procapsid elongation reactions mediated by external scaffolding protein D. Elevating B protein concentrations above wild-type levels via exogenous, cloned-gene expression compensated for inefficient B protein binding, as did suppressing mutations within gene B. Similarly, elevating D protein concentrations above wild-type levels or compensatory mutations within gene D suppressed faulty elongation. Some of the parental mutations were pleiotropic, affecting multiple morphogenetic reactions. This progressively reduced the flux of intermediates through the pathway. Accordingly, multiple mechanisms, which may be unrelated, could restore viability.IMPORTANCE Genetic analyses have been instrumental in deciphering the temporal events of many biochemical pathways. However, pleiotropic effects can complicate analyses. Vis-à-vis virion morphogenesis, an improper protein-protein interaction within an early assembly intermediate can influence the efficiency of all subsequent reactions. Consequently, the flux of assembly intermediates cumulatively decreases as the pathway progresses. During morphogenesis, ϕX174 coat protein participates in at least four well-defined reactions, each one characterized by an interaction with a scaffolding or structural protein. In this study, genetic analyses, biochemical characterizations, and physiological assays, i.e., elevating the protein levels with which the coat protein interacts, were used to elucidate pleiotropic effects that may alter the flux of intermediates through a morphogenetic pathway.
Collapse
|
5
|
ϕX174 Procapsid Assembly: Effects of an Inhibitory External Scaffolding Protein and Resistant Coat Proteins In Vitro. J Virol 2017; 91:JVI.01878-16. [PMID: 27795440 DOI: 10.1128/jvi.01878-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. IMPORTANCE Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity.
Collapse
|
6
|
Elevating fitness after a horizontal gene exchange in bacteriophage φX174. Virology 2016; 501:25-34. [PMID: 27855283 DOI: 10.1016/j.virol.2016.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/11/2016] [Accepted: 10/30/2016] [Indexed: 11/24/2022]
Abstract
In an earlier study, protein-based barriers to horizontal gene transfer were investigated by placing the bacteriophage G4 G gene, encoding the major spike protein, into the φX174 genome. The foreign G protein promoted off-pathway assembly reactions, resulting in a lethal phenotype. After three targeted genetic selections, one of two foreign spike proteins was productively integrated into the φX174 system: the complete G4 or a recombinant G4/φX174 protein (94% G4:6% φX174). However, strain fitness was very low. In this study, the chimeras were characterized and experimentally evolved. Inefficient assembly was the primary contributor to low fitness: accordingly, mutations affecting assembly restored fitness. The spike protein preference of the ancestral and evolved strains was determined in competition experiments between the foreign and φX174G proteins. Before adaptation, both G proteins were incorporated into virions; afterwards, the foreign proteins were strongly preferred. Thus, a previously inhibitory protein became the preferred substrate during assembly.
Collapse
|
7
|
Doore SM, Fane BA. The microviridae: Diversity, assembly, and experimental evolution. Virology 2016; 491:45-55. [PMID: 26874016 DOI: 10.1016/j.virol.2016.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/26/2016] [Indexed: 11/29/2022]
Abstract
The Microviridae, comprised of ssDNA, icosahedral bacteriophages, are a model system for studying morphogenesis and the evolution of assembly. Historically limited to the φX174-like viruses, recent results demonstrate that this richly diverse family is broadly divided into two groups. The defining feature appears to be whether one or two scaffolding proteins are required for assembly. The single-scaffolding systems contain an internal scaffolding protein, similar to many dsDNA viruses, and have a more complex coat protein fold. The two-scaffolding protein systems (φX174-like) encode an internal and external species, as well as an additional structural protein: a spike on the icosahedral vertices. Here, we discuss recent in silico and in vivo evolutionary analyses conducted with chimeric viruses and/or chimeric proteins. The results suggest 1) how double scaffolding systems can evolve into single and triple scaffolding systems; and 2) how assembly is the critical factor governing adaptation and the maintenance of species boundaries.
Collapse
Affiliation(s)
- Sarah M Doore
- School of Plant Sciences and the BIO5 Institute University of Arizona, 1657 E. Helen Street, Tucson, AZ 85721, USA
| | - Bentley A Fane
- School of Plant Sciences and the BIO5 Institute University of Arizona, 1657 E. Helen Street, Tucson, AZ 85721, USA.
| |
Collapse
|
8
|
Doore SM, Fane BA. The Kinetic and Thermodynamic Aftermath of Horizontal Gene Transfer Governs Evolutionary Recovery. Mol Biol Evol 2015; 32:2571-84. [PMID: 26025979 DOI: 10.1093/molbev/msv130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shared host cells can serve as melting pots for viral genomes, giving many phylogenies a web-like appearance due to horizontal gene transfer. However, not all virus families exhibit web-like phylogenies. Microviruses form three distinct clades, represented by φX174, G4, and α3. Here, we investigate protein-based barriers to horizontal gene transfer between clades. We transferred gene G, which encodes a structural protein, between φX174 and G4, and monitored the evolutionary recovery of the resulting chimeras. In both cases, particle assembly was the major barrier after gene transfer. The G4φXG chimera displayed a temperature-sensitive assembly defect that could easily be corrected through single mutations that promote productive assembly. Gene transfer in the other direction was more problematic. The initial φXG4G chimera required an exogenous supply of both the φX174 major spike G and DNA pilot H proteins. Elevated DNA pilot protein levels may be required to compensate for off-pathway reactions that may have become thermodynamically and/or kinetically favored when the foreign spike protein was present. After three targeted genetic selections, the foreign spike protein was productively integrated into the φX174 background. The first adaption involved a global decrease in gene expression. This was followed by modifications affecting key protein-protein interactions that govern assembly. Finally, gene expression was re-elevated. Although the first selection suppresses nonproductive reactions, subsequent selections promote productive assembly and ultimately viability. However, viable chimeric strains exhibited reduced fitness compared with wild-type. This chimera's path to recovery may partially explain how unusual recombinant viruses could persist long enough to naturally emerge.
Collapse
Affiliation(s)
- Sarah M Doore
- School of Plant Sciences and the BIO5 Institute, University of Arizona
| | - Bentley A Fane
- School of Plant Sciences and the BIO5 Institute, University of Arizona
| |
Collapse
|
9
|
Effects of an early conformational switch defect during ϕX174 morphogenesis are belatedly manifested late in the assembly pathway. J Virol 2012; 87:2518-25. [PMID: 23255785 DOI: 10.1128/jvi.02839-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-terminal, aromatic amino acids in the ϕX174 internal scaffolding protein B mediate conformational switches in the viral coat protein. These switches direct the coat protein through early assembly. In addition to the aromatic amino acids, two acidic residues, D111 and E113, form salt bridges with basic, coat protein side chains. Although salt bridge formation did not appear to be critical for assembly, the substitution of an aromatic amino acid for D111 produced a lethal phenotype. This side chain is uniquely oriented toward the center of the coat-scaffolding binding pocket, which is heavily dominated by aromatic ring-ring interactions. Thus, the D111Y substitution may restructure pocket contacts. Previously characterized B(-) mutants blocked assembly before procapsid formation. However, the D111Y mutant produced an assembled particle, which contained the structural and external scaffolding proteins but lacked protein B and DNA. A suppressor within the external scaffolding protein, which mediates the later stages of particle morphogenesis, restored viability. The unique formation of a postprocapsid particle and the novel suppressor may be indicative of a novel B protein function. However, genetic data suggest that the particle represents the delayed manifestation of an early assembly error. This seemingly late-acting defect was rescued by previously characterized suppressors of early, preprocapsid, B(-) assembly mutations, which act on the level of coat protein flexibility. Likewise, the newly isolated suppressor in the external scaffolding protein also exhibited a global suppressing phenotype. Thus, the off-pathway product isolated from infected cells may not accurately reflect the temporal nature of the initial defect.
Collapse
|
10
|
Conformational switch-defective X174 internal scaffolding proteins kinetically trap assembly intermediates before procapsid formation. J Virol 2012; 86:9911-8. [PMID: 22761377 DOI: 10.1128/jvi.01120-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conformational switching is an overarching paradigm in which to describe scaffolding protein-mediated virus assembly. However, rapid morphogenesis with small assembly subunits hinders the isolation of early morphogenetic intermediates in most model systems. Consequently, conformational switches are often defined by comparing the structures of virions, procapsids and aberrantly assembled particles. In contrast, X174 morphogenesis proceeds through at least three preprocapsid intermediates, which can be biochemically isolated. This affords a detailed analysis of early morphogenesis and internal scaffolding protein function. Amino acid substitutions were generated for the six C-terminal, aromatic amino acids that mediate most coat-internal scaffolding protein contacts. The biochemical characterization of mutant assembly pathways revealed two classes of molecular defects, protein binding and conformational switching, a novel phenotype. The conformational switch mutations kinetically trapped assembly intermediates before procapsid formation. Although mutations trapped different particles, they shared common second-site suppressors located in the viral coat protein. This suggests a fluid assembly pathway, one in which the scaffolding protein induces a single, coat protein conformational switch and not a series of sequential reactions. In this model, an incomplete or improper switch would kinetically trap intermediates.
Collapse
|
11
|
Building the Machines: Scaffolding Protein Functions During Bacteriophage Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:325-50. [DOI: 10.1007/978-1-4614-0980-9_14] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
From resistance to stimulation: the evolution of a virus in the presence of a dominant lethal inhibitory scaffolding protein. J Virol 2011; 85:6589-93. [PMID: 21490088 DOI: 10.1128/jvi.00261-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By acquiring resistance to an inhibitor, viruses can become dependent on that inhibitor for optimal fitness. However, inhibitors rarely, if ever, stimulate resistant strain fitness to values that equal or exceed the uninhibited wild-type level. This would require an adaptive mechanism that converts the inhibitor into a beneficial replication factor. Using a plasmid-encoded inhibitory external scaffolding protein that blocks ϕX174 assembly, we previously demonstrated that such mechanisms are possible. The resistant strain, referred to as the evolved strain, contains four mutations contributing to the resistance phenotype. Three mutations confer substitutions in the coat protein, whereas the fourth mutation alters the virus-encoded external scaffolding protein. To determine whether stimulation by the inhibitory protein coevolved with resistance or whether it was acquired after resistance was firmly established, the strain temporally preceding the previously characterized mutant, referred to as the intermediary strain, was isolated and characterized. The results of the analysis indicated that the mutation in the virus-encoded external scaffolding protein was primarily responsible for stimulating strain fitness. When the mutation was placed in a wild-type background, it did not confer resistance. The mutation was also placed in cis with the plasmid-encoded dominant lethal mutation. In this configuration, the stimulating mutation exhibited no activity, regardless of the genotype (wild type, evolved, or intermediary) of the infecting virus. Thus, along with the coat protein mutations, stimulation required two external scaffolding protein genes: the once inhibitory gene and the mutant gene acquired during evolution.
Collapse
|
13
|
Cherwa JE, Young LN, Fane BA. Uncoupling the functions of a multifunctional protein: the isolation of a DNA pilot protein mutant that affects particle morphogenesis. Virology 2011; 411:9-14. [PMID: 21227478 DOI: 10.1016/j.virol.2010.12.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/07/2010] [Accepted: 12/15/2010] [Indexed: 11/28/2022]
Abstract
Defective øX174 H protein-mediated DNA piloting indirectly influences the entire viral lifecycle. Faulty piloting can mask the H protein's other functions or inefficient penetration may be used to explain defects in post-piloting phenomena. For example, optimal synthesis of other viral proteins requires de novo H protein biosynthesis. As low protein concentrations affect morphogenesis, protein H's assembly functions remain obscure. An H protein mutant was isolated that allowed morphogenetic effects to be characterized independent of its other functions. The mutant protein aggregates assembly intermediates. Although excess internal scaffolding protein restores capsid assembly, the resulting mutant H protein-containing particles are less infectious. In addition, nonviable phenotypes of am(H) mutants in Su+ hosts, which insert non-wild-type amino acids, do not always correlate with a lack of missense protein function. Phenotypes are highly influenced by host and phage physiology. This phenomenon was unique to am(H) mutants, not observed with amber mutants in other genes.
Collapse
Affiliation(s)
- James E Cherwa
- Department of Plant Sciences and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
14
|
Brown CJ, Zhao L, Evans KJ, Ally D, Stancik AD. Positive selection at high temperature reduces gene transcription in the bacteriophage ϕX174. BMC Evol Biol 2010; 10:378. [PMID: 21129199 PMCID: PMC3003669 DOI: 10.1186/1471-2148-10-378] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/03/2010] [Indexed: 12/13/2022] Open
Abstract
Background Gene regulation plays a central role in the adaptation of organisms to their environments. There are many molecular components to gene regulation, and it is often difficult to determine both the genetic basis of adaptation and the evolutionary forces that influence regulation. In multiple evolution experiments with the bacteriophage ϕX174, adaptive substitutions in cis-acting regulatory sequences sweep through the phage population as the result of strong positive selection at high temperatures that are non-permissive for laboratory-adapted phage. For one cis-regulatory region, we investigate the individual effects of four adaptive substitutions on transcript levels and fitness for phage growing on three hosts at two temperatures. Results The effect of the four individual substitutions on transcript levels is to down-regulate gene expression, regardless of temperature or host. To ascertain the conditions under which these substitutions are adaptive, fitness was measured by a variety of methods for several bacterial hosts growing at two temperatures, the control temperature of 37°C and the selective temperature of 42°C. Time to lysis and doublings per hour indicate that the four substitutions individually improve fitness over the ancestral strain at high temperature independent of the bacterial host in which the fitness was measured. Competition assays between the ancestral strain and either of two mutant strains indicate that both mutants out-compete the ancestor at high temperature, but the relative frequencies of each phage remain the same at the control temperature. Conclusions Our results strongly suggest that gene transcription plays an important role in influencing fitness in the bacteriophage ϕX174, and different point mutations in a single cis-regulatory region provided the genetic basis for this role in adaptation to high temperature. We speculate that the adaptive nature of these substitutions is due to the physiology of the host at high temperature or the need to maintain particular ratios of phage proteins during capsid assembly. Our investigation of regulatory evolution contributes to interpreting genome-level assessments of regulatory variation, as well as to understanding the molecular basis of adaptation.
Collapse
Affiliation(s)
- Celeste J Brown
- Department of Biological Sciences, PO Box 443051, University of Idaho, Moscow, ID 83843-3051, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Horizontal gene transfer and recombination play a major role in microbial evolution and have been detected in diverse groups, including many of medical relevance such as HIV and dengue virus. In the absence of mechanistic barriers, the evolutionary success of a particular recombination event is determined by whether the recombinant genotype suffers a fitness cost through the disruption of favorable epistatic interactions within the genome, and if so, the extent to which this fitness cost might be mitigated by subsequent compensatory evolution. To investigate the importance of epistatic interactions between genes and the evolutionary viability of a homologous recombination event between diverged ancestral genotypes, we constructed two recombinant microvirid bacteriophages by exchanging their alleles of the gene encoding the coat protein. The coding sequences for this gene differ by approximately 8% at the amino acid level and were interchanged between two ancestral phages related to varphiX174 and well adapted to their culture conditions. Because the recombinant phages showed drastically reduced fitnesses, we further explored their evolutionary viability by subjecting replicate lines of each of them to selection. We found that all four lineages achieved fitnesses commensurate with ancestral fitnesses in as few as 60 generations, and on average, the first substitution accounted for more than half of the total fitness recovery. Fitness recovery required three to five substitutions in each lineage, and overall eight of the nine essential phage genes were involved, suggesting extensive epistatic interactions throughout the genome. Interestingly, the proteins with the most extensive and apparent physical interactions with the exchanged protein in the viral capsid did not appear to have much of a role in fitness recovery. This result appears to be a consequence of the conservation of the amino acid residues involved in the interactions. It suggests that strong epistatic interactions are less important than weaker, transient ones in producing genic incompatibilities because they preclude variability in the interacting regions of the proteins.
Collapse
Affiliation(s)
- Darin R Rokyta
- Department of Biological Science, Florida State University, USA.
| | | |
Collapse
|
16
|
The expression of N-terminal deletion DNA pilot proteins inhibits the early stages of phiX174 replication. J Virol 2009; 83:9952-6. [PMID: 19640994 DOI: 10.1128/jvi.01077-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phiX174 DNA pilot protein H contains four predicted C-terminal coiled-coil domains. The region of the gene encoding these structures was cloned, expressed in vivo, and found to strongly inhibit wild-type replication. DNA and protein synthesis was investigated in the absence of de novo H protein synthesis and in wild-type-infected cells expressing the inhibitory proteins (DeltaH). The expression of the DeltaH proteins interfered with early stages of DNA replication, which did not require de novo H protein synthesis, suggesting that the inhibitory proteins interfere with the wild-type H protein that enters the cell with the penetrating DNA. As transcription and protein synthesis are dependent on DNA replication in positive single-stranded DNA life cycles, viral protein synthesis was also reduced. However, unlike DNA synthesis, efficient viral protein synthesis required de novo H protein synthesis, a novel function for this protein. A single amino acid change in the C terminus of protein H was both necessary and sufficient to confer resistance to the inhibitory DeltaH proteins, restoring both DNA and protein synthesis to wild-type levels. DeltaH proteins derived from the resistant mutant did not inhibit wild-type or resistant mutant replication. The inhibitory effects of the DeltaH proteins were lessened by the coexpression of the internal scaffolding protein, which may suppress H-H protein interactions. While coexpression relieved the block in DNA biosynthesis, viral protein synthesis remained suppressed. These data indicate that protein H's role in DNA replication and stimulating viral protein synthesis can be uncoupled.
Collapse
|
17
|
Chen M, Uchiyama A, Fane BA. Eliminating the Requirement of an Essential Gene Product in an Already Very Small Virus: Scaffolding Protein B-free øX174, B-free. J Mol Biol 2007; 373:308-14. [PMID: 17825320 DOI: 10.1016/j.jmb.2007.07.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/15/2007] [Accepted: 07/25/2007] [Indexed: 10/23/2022]
Abstract
Unlike most viral assembly systems, two scaffolding proteins, B and D, mediate bacteriophage øX174 morphogenesis. The external scaffolding protein D is highly ordered in the atomic structure and proper function is very sensitive to mutation. In contrast, the internal scaffolding protein B is relatively unordered and extensive alterations do not eliminate function. Despite this genetic laxity, protein B is absolutely required for virus assembly. Thus, this system, with its complex arrangements of overlapping reading frames, can be regarded as an example of "irreducible complexity." To address the biochemical functions of a dual scaffolding protein system and the evolution of complexity, progressive and targeted genetic selections were employed to lessen and finally eliminate B protein-dependence. The biochemical and genetic bases of adaptation were characterized throughout the analysis that led to the sextuple mutant with a B-independent phenotype, as evaluated by plaque formation in wild-type cells. The primary adaptation appears to be the over-expression of a mutant external scaffolding protein. Progeny production was followed in lysis-resistant cells. The ability to produce infectious virions does not require all six mutations. However, the lag phase before progeny production is shortened as mutations accumulate. The results suggest that the primary function of the internal scaffolding protein may be to lower the critical concentration of the external scaffolding protein needed to nucleate procapsid formation. Moreover, they demonstrate a novel mechanism by which a stringently required gene product can be bypassed, even in a system encoding only eight strictly essential proteins.
Collapse
Affiliation(s)
- Min Chen
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson AZ 85721, USA
| | | | | |
Collapse
|
18
|
Abstract
Quasispecies are clouds of genotypes that appear in a population at mutation–selection balance. This concept has recently attracted the attention of virologists, because many RNA viruses appear to generate high levels of genetic variation that may enhance the evolution of drug resistance and immune escape. The literature on these important evolutionary processes is, however, quite challenging. Here we use simple models to link mutation–selection balance theory to the most novel property of quasispecies: the error threshold—a mutation rate below which populations equilibrate in a traditional mutation–selection balance and above which the population experiences an error catastrophe, that is, the loss of the favored genotype through frequent deleterious mutations. These models show that a single fitness landscape may contain multiple, hierarchically organized error thresholds and that an error threshold is affected by the extent of back mutation and redundancy in the genotype-to-phenotype map. Importantly, an error threshold is distinct from an extinction threshold, which is the complete loss of the population through lethal mutations. Based on this framework, we argue that the lethal mutagenesis of a viral infection by mutation-inducing drugs is not a true error catastophe, but is an extinction catastrophe.
Collapse
|
19
|
Uchiyama A, Fane BA. Identification of an interacting coat-external scaffolding protein domain required for both the initiation of phiX174 procapsid morphogenesis and the completion of DNA packaging. J Virol 2005; 79:6751-6. [PMID: 15890913 PMCID: PMC1112155 DOI: 10.1128/jvi.79.11.6751-6756.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phiX174 external scaffolding protein D mediates the assembly of coat protein pentamers into procapsids. There are four external scaffolding subunits per coat protein. Organized as pairs of asymmetric dimers, the arrangement is unrelated to quasi-equivalence. The external scaffolding protein contains seven alpha-helices. The protein's core, alpha-helices 2 to 6, mediates the vast majority of intra- and interdimer contacts and is strongly conserved in all Microviridae (canonical members are phiX174, G4, and alpha3) external scaffolding proteins. On the other hand, the primary sequences of the first alpha-helices have diverged. The results of previous studies with alpha3/phiX174 chimeric external scaffolding proteins suggest that alpha-helix 1 may act as a substrate specificity domain, mediating the initial coat scaffolding protein recognition in a species-specific manner. However, the low sequence conservation between the two phages impeded genetic analyses. In an effort to elucidate a more mechanistic model, chimeric external scaffolding proteins were constructed between the more closely related phages G4 and phiX174. The results of biochemical analyses indicate that the chimeric external scaffolding protein inhibits two morphogenetic steps: the initiation of procapsid formation and DNA packaging. phiX174 mutants that can efficiently utilize the chimeric protein were isolated and characterized. The substitutions appear to suppress both morphogenetic defects and are located in threefold-related coat protein sequences that most likely form the pores in the viral procapsid. These results identify coat-external scaffolding domains needed to initiate procapsid formation and provide more evidence, albeit indirect, that the pores are the site of DNA entry during the packaging reaction.
Collapse
Affiliation(s)
- Asako Uchiyama
- Department of Veterinary Science and Microbiology, Building 90, University of Arizona, Tucson AZ 85721-0090, USA
| | | |
Collapse
|
20
|
Abstract
A compensatory mutation occurs when the fitness loss caused by one mutation is remedied by its epistatic interaction with a second mutation at a different site in the genome. This poorly understood biological phenomenon has important implications, not only for the evolutionary consequences of mutation, but also for the genetic complexity of adaptation. We have carried out the first direct experimental measurement of the average rate of compensatory mutation. An arbitrary selection of 21 missense substitutions with deleterious effects on fitness was introduced by site-directed mutagenesis into the bacteriophage phiX174. For each deleterious mutation, we evolved 8-16 replicate populations to determine the frequency at which a compensatory mutation, instead of the back mutation, was acquired to recover fitness. The overall frequency of compensatory mutation was approximately 70%. Deleterious mutations that were more severe were significantly more likely to be compensated for. Furthermore, experimental reversion of deleterious mutations revealed that compensatory mutations have deleterious effects in a wild-type background. A large diversity of intragenic compensatory mutations was identified from sequencing fitness-recovering genotypes. Subsequent analyses of intragenic mutation diversity revealed a significant degree of clustering around the deleterious mutation in the linear sequence and also within folded protein structures. Moreover, a likelihood analysis of mutation diversity predicts that, on average, a deleterious mutation can be compensated by about nine different intragenic compensatory mutations. We estimate that about half of all compensatory mutations are located extragenically in this organism.
Collapse
Affiliation(s)
- Art Poon
- Division of Biological Sciences, Section of Ecology, Behavior and Evolution, University of California, San Diego, California 92093-0116, USA.
| | | |
Collapse
|
21
|
Wichman HA, Millstein J, Bull JJ. Adaptive molecular evolution for 13,000 phage generations: a possible arms race. Genetics 2005; 170:19-31. [PMID: 15687276 PMCID: PMC1449705 DOI: 10.1534/genetics.104.034488] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage phiX174 was evolved on a continuous supply of sensitive hosts for 180 days ( approximately 13,000 phage generations). The average rate of nucleotide substitution was nearly 0.2% (11 substitutions)/20 days, and, surprisingly, substitutions accumulated in a clock-like manner throughout the study, except for a low rate during the first 20 days. Rates of silent and missense substitutions varied over time and among genes. Approximately 40% of the 71 missense changes and 25% of the 58 silent changes have been observed in previous adaptations; the rate of parallel substitution was highest in the early phase of the evolution, but 7% of the later changes had evolved in previous studies of much shorter duration. Several lines of evidence suggest that most of the changes were adaptive, even many of the silent substitutions. The sustained, high rate of adaptive evolution for 180 days defies a model of adaptation to a constant environment. We instead suggest that continuing molecular evolution reflects a potentially indefinite arms race, stemming from high levels of co-infection and the resulting conflict among genomes competing within the same cell.
Collapse
Affiliation(s)
- Holly A Wichman
- Department of Biological Sciences, University of Idaho, Moscow, 83844-3051, USA.
| | | | | |
Collapse
|
22
|
Clarke IN, Cutcliffe LT, Everson JS, Garner SA, Lambden PR, Pead PJ, Pickett MA, Brentlinger KL, Fane BA. Chlamydiaphage Chp2, a skeleton in the phiX174 closet: scaffolding protein and procapsid identification. J Bacteriol 2004; 186:7571-4. [PMID: 15516569 PMCID: PMC524887 DOI: 10.1128/jb.186.22.7571-7574.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydiaphage Chp2 is a member of the family Microviridae, of which bacteriophage phiX174 is the type species. Although grouped in the same family, the relationship between the Microviridae coliphages and the Chp2-like viruses, which infect obligate intracellular parasitic bacteria, is quite distant, with major differences in structural protein content and scaffolding protein dependence. To investigate the morphogenesis of Chp2, large particles were isolated from infected Chlamydophila abortus by equilibrium and rate zonal sedimentation. A monoclonal antibody that recognizes only assembled viral coat proteins was used in these detection assays. Thus, the detected particles represent virions and/or postcapsid formation assembly intermediates. Two distinct particle types were detected, differing in both protein and DNA content. Filled particles lacked VP3, the putative internal scaffolding protein, whereas empty particles contained this protein. These results indicate that VP3 is a scaffolding protein and that the isolated VP3-containing particles most likely represent Chp2 procapsids.
Collapse
Affiliation(s)
- Ian N Clarke
- Molecular Microbiology Group, University of Medical School, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|