1
|
Grossman BD, Beyene BG, Tekle B, Sakowicz W, Ji X, Camacho JM, Vaishnav N, Ahmed A, Bhandari N, Desai K, Hardy J, Hollman NM, Marchant J, Summers MF. Optimized Preparation of Segmentally Labeled RNAs for NMR Structure Determination. J Mol Biol 2025; 437:169073. [PMID: 40054730 PMCID: PMC11964825 DOI: 10.1016/j.jmb.2025.169073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
RNA structures are significantly underrepresented in public repositories (∼ 100-fold compared to proteins) despite their importance for mechanistic understanding and for development of structure prediction/validation tools. A substantial portion of deposited RNA structures have been determined by NMR (∼30%), but most comprise fewer than 60 nucleotides due to complications associated with NMR signal overlap. A promising approach for applying NMR to larger RNAs involves use of a mutated DNA polymerase (TGK) that can extend "primer" RNA strands generated independently by synthetic or enzymatic methods [Haslecker et al., Nature Commun. 2023]. In attempts to employ this technology, we uncovered sequence- and enzyme-dependent complications for most constructs examined that prohibited preparation of homogeneous samples. By using TGK extension efficiency and NMR as guides, we identified non-templated run-on by wild-type T7-RNA polymerase (RNAPWT) as the primary source of product heterogeneity. Use of 2'-O-methylated DNA templates did not prevent RNAPWT run-on for most constructs examined. However, primer RNAs with appropriate 3' end homogeneity were obtained in high yield using a recently described T7 RNAP mutant designed for improved immunogenic behavior. Minor spectral heterogeneity sometimes observed for 3' residues, caused by partial premature TGK termination, could be moved to sites downstream of the RNA region of interest by employing extended template DNAs that encode additional non-interacting 3' nucleotides. We additionally present an approach for large-scale synthesis of homogeneous template DNA required for TGK extension. With these modifications, segmentally labeled RNAs appropriate for high resolution structural studies are now routinely obtainable.
Collapse
Affiliation(s)
- Brian D Grossman
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Bethel G Beyene
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Bersabel Tekle
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - William Sakowicz
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Xinjie Ji
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Joshua Miguele Camacho
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Nandini Vaishnav
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Amina Ahmed
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Naman Bhandari
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Kush Desai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Josiah Hardy
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Nele M Hollman
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
2
|
Neira JL. Nuclear Magnetic Resonance Spectroscopy to Study Virus Structure. Subcell Biochem 2024; 105:171-206. [PMID: 39738947 DOI: 10.1007/978-3-031-65187-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle. In this sense, NMR is also the only technique currently available to describe, in atomic detail, the conformational preferences of intrinsically disordered viral proteins. Furthermore, NMR can provide insights into the thermodynamic parameters governing binding reactions between different viral macromolecules. NMR has also complemented X-ray crystallography and has been combined with electron microscopy to obtain pseudo-atomic models of entire virus capsids. Finally, the joint use of liquid and solid-state NMR has allowed the identification of conformational changes in viral capsids upon insertion into host membranes.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| |
Collapse
|
3
|
Haslecker R, Pham VV, Glänzer D, Kreutz C, Dayie TK, D'Souza VM. Extending the toolbox for RNA biology with SegModTeX: a polymerase-driven method for site-specific and segmental labeling of RNA. Nat Commun 2023; 14:8422. [PMID: 38110450 PMCID: PMC10728113 DOI: 10.1038/s41467-023-44254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
RNA performs a wide range of functions regulated by its structure, dynamics, and often post-transcriptional modifications. While NMR is the leading method for understanding RNA structure and dynamics, it is currently limited by the inability to reduce spectral crowding by efficient segmental labeling. Furthermore, because of the challenging nature of RNA chemistry, the tools being developed to introduce site-specific modifications are increasingly complex and laborious. Here we use a previously designed Tgo DNA polymerase mutant to present SegModTeX - a versatile, one-pot, copy-and-paste approach to address these challenges. By precise, stepwise construction of a diverse set of RNA molecules, we demonstrate the technique to be superior to RNA polymerase driven and ligation methods owing to its substantially high yield, fidelity, and selectivity. We also show the technique to be useful for incorporating some fluorescent- and a wide range of other probes, which significantly extends the toolbox of RNA biology in general.
Collapse
Affiliation(s)
- Raphael Haslecker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Vincent V Pham
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Glänzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20782, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
4
|
Deng J, Fang X, Huang L, Li S, Xu L, Ye K, Zhang J, Zhang K, Zhang QC. RNA structure determination: From 2D to 3D. FUNDAMENTAL RESEARCH 2023; 3:727-737. [PMID: 38933295 PMCID: PMC11197651 DOI: 10.1016/j.fmre.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2024] Open
Abstract
RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lilei Xu
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
5
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Liu Y, Kotar A, Hodges TL, Abdallah K, Taleb MH, Bitterman BA, Jaime S, Schaubroeck KJ, Mathew E, Morgenstern NW, Lohmeier A, Page JL, Ratanapanichkich M, Arhin G, Johnson BL, Cherepanov S, Moss SC, Zuniga G, Tilson NJ, Yeoh ZC, Johnson BA, Keane SC. NMR chemical shift assignments of RNA oligonucleotides to expand the RNA chemical shift database. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:479-490. [PMID: 34449019 DOI: 10.1007/s12104-021-10049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
RNAs play myriad functional and regulatory roles in the cell. Despite their significance, three-dimensional structure elucidation of RNA molecules lags significantly behind that of proteins. NMR-based studies are often rate-limited by the assignment of chemical shifts. Automation of the chemical shift assignment process can greatly facilitate structural studies, however, accurate chemical shift predictions rely on a robust and complete chemical shift database for training. We searched the Biological Magnetic Resonance Data Bank (BMRB) to identify sequences that had no (or limited) chemical shift information. Here, we report the chemical shift assignments for 12 RNA hairpins designed specifically to help populate the BMRB.
Collapse
Affiliation(s)
- Yaping Liu
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Anita Kotar
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
- Current Address: Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Tracy L Hodges
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Kyrillos Abdallah
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Mallak H Taleb
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Brayden A Bitterman
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Sara Jaime
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Kyle J Schaubroeck
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Ethan Mathew
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Nicholas W Morgenstern
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Anthony Lohmeier
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Jordan L Page
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Matt Ratanapanichkich
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Grace Arhin
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Breanna L Johnson
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Stanislav Cherepanov
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Stephen C Moss
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Gisselle Zuniga
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Nicholas J Tilson
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Zoe C Yeoh
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sarah C Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021; 26:5581. [PMID: 34577051 PMCID: PMC8466439 DOI: 10.3390/molecules26185581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
RNA structural research lags behind that of proteins, preventing a robust understanding of RNA functions. NMR spectroscopy is an apt technique for probing the structures and dynamics of RNA molecules in solution at atomic resolution. Still, RNA analysis by NMR suffers from spectral overlap and line broadening, both of which worsen for larger RNAs. Incorporation of stable isotope labels into RNA has provided several solutions to these challenges. In this review, we summarize the benefits and limitations of various methods used to obtain isotope-labeled RNA building blocks and how they are used to prepare isotope-labeled RNA for NMR structure and dynamics studies.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Kehinde M. Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| |
Collapse
|
8
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
9
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
10
|
Asadi-Atoi P, Barraud P, Tisne C, Kellner S. Benefits of stable isotope labeling in RNA analysis. Biol Chem 2020; 400:847-865. [PMID: 30893050 DOI: 10.1515/hsz-2018-0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
RNAs are key players in life as they connect the genetic code (DNA) with all cellular processes dominated by proteins. They contain a variety of chemical modifications and many RNAs fold into complex structures. Here, we review recent progress in the analysis of RNA modification and structure on the basis of stable isotope labeling techniques. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the key tools and many breakthrough developments were made possible by the analysis of stable isotope labeled RNA. Therefore, we discuss current stable isotope labeling techniques such as metabolic labeling, enzymatic labeling and chemical synthesis. RNA structure analysis by NMR is challenging due to two major problems that become even more salient when the size of the RNA increases, namely chemical shift overlaps and line broadening leading to complete signal loss. Several isotope labeling strategies have been developed to provide solutions to these major issues, such as deuteration, segmental isotope labeling or site-specific labeling. Quantification of modified nucleosides in RNA by MS is only possible through the application of stable isotope labeled internal standards. With nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS), it is now possible to analyze the dynamic processes of post-transcriptional RNA modification and demodification. The trend, in both NMR and MS RNA analytics, is without doubt shifting from the analysis of snapshot moments towards the development and application of tools capable of analyzing the dynamics of RNA structure and modification profiles.
Collapse
Affiliation(s)
- Paria Asadi-Atoi
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Pierre Barraud
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Carine Tisne
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
11
|
Zhang H, Keane SC. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1541. [PMID: 31025514 PMCID: PMC7169810 DOI: 10.1002/wrna.1541] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/18/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The characterization of functional yet nonprotein coding (nc) RNAs has expanded the role of RNA in the cell from a passive player in the central dogma of molecular biology to an active regulator of gene expression. The misregulation of ncRNA function has been linked with a variety of diseases and disorders ranging from cancers to neurodegeneration. However, a detailed molecular understanding of how ncRNAs function has been limited; due, in part, to the difficulties associated with obtaining high-resolution structures of large RNAs. Tertiary structure determination of RNA as a whole is hampered by various technical challenges, all of which are exacerbated as the size of the RNA increases. Namely, RNAs tend to be highly flexible and dynamic molecules, which are difficult to crystallize. Biomolecular nuclear magnetic resonance (NMR) spectroscopy offers a viable alternative to determining the structure of large RNA molecules that do not readily crystallize, but is itself hindered by some technical limitations. Recently, a series of advancements have allowed the biomolecular NMR field to overcome, at least in part, some of these limitations. These advances include improvements in sample preparation strategies as well as methodological improvements. Together, these innovations pave the way for the study of ever larger RNA molecules that have important biological function. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Huaqun Zhang
- Biophysics Program, University of Michigan, Ann Arbor, Michigan
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Strickland M, Catazaro J, Rajasekaran R, Strub MP, O'Hern C, Bermejo GA, Summers MF, Marchant J, Tjandra N. Long-Range RNA Structural Information via a Paramagnetically Tagged Reporter Protein. J Am Chem Soc 2019; 141:1430-1434. [PMID: 30652860 DOI: 10.1021/jacs.8b11384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NMR has provided a wealth of structural and dynamical information for RNA molecules of up to ∼50 nucleotides, but its application to larger RNAs has been hampered in part by difficulties establishing global structural features. A potential solution involves measurement of NMR perturbations after site-specific paramagnetic labeling. Although the approach works well for proteins, the inability to place the label at specific sites has prevented its application to larger RNAs transcribed in vitro. Here, we present a strategy in which RNA loop residues are modified to promote binding to a paramagnetically tagged reporter protein. Lanthanide-induced pseudocontact shifts are demonstrated for a 232-nucleotide RNA bound to tagged derivatives of the spliceosomal U1A RNA-binding domain. Further, the method is validated with a 36-nucleotide RNA for which measured NMR values agreed with predictions based on the previously known protein and RNA structures. The ability to readily insert U1A binding sites into ubiquitous hairpin and/or loop structures should make this approach broadly applicable for the atomic-level study of large RNAs.
Collapse
Affiliation(s)
- Madeleine Strickland
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | - Rohith Rajasekaran
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Marie-Paule Strub
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | - Guillermo A Bermejo
- Office of Intramural Research, Center for Information Technology, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | | | - Nico Tjandra
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
13
|
Marchanka A, Kreutz C, Carlomagno T. Isotope labeling for studying RNA by solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 71:151-164. [PMID: 29651587 DOI: 10.1007/s10858-018-0180-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Alexander Marchanka
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hanover, Germany
| | - Christoph Kreutz
- Organic Chemistry, University of Innsbruck (CCB), Innrain 80/82, 6020, Innsbruck, Austria
| | - Teresa Carlomagno
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hanover, Germany.
- Helmholtz Centre for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstraße 7, 38124, Brunswick, Germany.
| |
Collapse
|
14
|
Marchant J, Bax A, Summers MF. Accurate Measurement of Residual Dipolar Couplings in Large RNAs by Variable Flip Angle NMR. J Am Chem Soc 2018; 140:6978-6983. [PMID: 29757635 PMCID: PMC6021016 DOI: 10.1021/jacs.8b03298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NMR approaches using nucleotide-specific deuterium labeling schemes have enabled structural studies of biologically relevant RNAs of increasing size and complexity. Although local structure is well-determined using these methods, definition of global structural features, including relative orientations of independent helices, remains a challenge. Residual dipolar couplings, a potential source of orientation information, have not been obtainable for large RNAs due to poor sensitivity resulting from rapid heteronuclear signal decay. Here we report a novel multiple quantum NMR method for RDC determination that employs flip angle variation rather than a coupling evolution period. The accuracy of the method and its utility for establishing interhelical orientations are demonstrated for a 36-nucleotide RNA, for which comparative data could be obtained. Applied to a 78 kDa Rev response element from the HIV-1 virus, which has an effective rotational correlation time of ca. 160 ns, the method yields sensitivity gains of an order of magnitude or greater over existing approaches. Solution-state access to structural organization in RNAs of at least 230 nucleotides is now possible.
Collapse
Affiliation(s)
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | |
Collapse
|
15
|
Chen B, Longhini AP, Nußbaumer F, Kreutz C, Dinman JD, Dayie TK. CCR5 RNA Pseudoknots: Residue and Site-Specific Labeling correlate Internal Motions with microRNA Binding. Chemistry 2018; 24:5462-5468. [PMID: 29412477 PMCID: PMC7640883 DOI: 10.1002/chem.201705948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Conformational dynamics of RNA molecules play a critical role in governing their biological functions. Measurements of RNA dynamic behavior sheds important light on sites that interact with their binding partners or cellular stimulators. However, such measurements using solution-state NMR are difficult for large RNA molecules (>70 nt; nt=nucleotides) owing to severe spectral overlap, homonuclear 13 C scalar couplings, and line broadening. Herein, a strategic combination of solid-phase synthesis, site-specific isotopic labeled phosphoramidites, and enzymatic ligation is introduced. This approach allowed the position-specific insertion of isotopic probes into a 96 nt CCR5 RNA fragment. Accurate measurements of functional dynamics using the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments enabled extraction of the exchange rates and populations of this RNA. NMR chemical shift perturbation analysis of the RNA/microRNA-1224 complex indicated that A90-C1' of the pseudoknot exhibits similar changes in chemical shift observed in the excited state. This work demonstrates the general applicability of a NMR-labeling strategy to probe functional RNA structural dynamics.
Collapse
Affiliation(s)
- Bin Chen
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Dr., College Park, MD, 20742, USA
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| | - Andrew P Longhini
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Dr., College Park, MD, 20742, USA
| | - T Kwaku Dayie
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| |
Collapse
|
16
|
Olson ED, Musier-Forsyth K. Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly. Semin Cell Dev Biol 2018; 86:129-139. [PMID: 29580971 DOI: 10.1016/j.semcdb.2018.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 02/04/2023]
Abstract
Retroviral Gag proteins are responsible for coordinating many aspects of virion assembly. Gag possesses two distinct nucleic acid binding domains, matrix (MA) and nucleocapsid (NC). One of the critical functions of Gag is to specifically recognize, bind, and package the retroviral genomic RNA (gRNA) into assembling virions. Gag interactions with cellular RNAs have also been shown to regulate aspects of assembly. Recent results have shed light on the role of MA and NC domain interactions with nucleic acids, and how they jointly function to ensure packaging of the retroviral gRNA. Here, we will review the literature regarding RNA interactions with NC, MA, as well as overall mechanisms employed by Gag to interact with RNA. The discussion focuses on human immunodeficiency virus type-1, but other retroviruses will also be discussed. A model is presented combining all of the available data summarizing the various factors and layers of selection Gag employs to ensure specific gRNA packaging and correct virion assembly.
Collapse
Affiliation(s)
- Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH, 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
17
|
Dubois N, Marquet R, Paillart JC, Bernacchi S. Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol 2018; 9:527. [PMID: 29623074 PMCID: PMC5874298 DOI: 10.3389/fmicb.2018.00527] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 01/18/2023] Open
Abstract
The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA) molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…), the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.
Collapse
Affiliation(s)
- Noé Dubois
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Serena Bernacchi
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Zhang K, Keane SC, Su Z, Irobalieva RN, Chen M, Van V, Sciandra CA, Marchant J, Heng X, Schmid MF, Case DA, Ludtke SJ, Summers MF, Chiu W. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure 2018; 26:490-498.e3. [PMID: 29398526 PMCID: PMC5842133 DOI: 10.1016/j.str.2018.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
Abstract
Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS]2; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs.
Collapse
Affiliation(s)
- Kaiming Zhang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Keane
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Zhaoming Su
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rossitza N Irobalieva
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Verna Van
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Carly A Sciandra
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA.
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Abstract
Dynamic programming methods for predicting RNA secondary structure often use thermodynamics and experimental restraints and/or constraints to limit folding space. Chemical mapping results typically restrain certain nucleotides not to be in AU or GC pairs. Two-dimensional nuclear magnetic resonance (NMR) spectra can reveal the order of AU, GC, and GU pairs in double helixes. This chapter describes a program, NMR-assisted prediction of secondary structure and chemical shifts (NAPSS-CS), that constrains possible secondary structures on the basis of the NMR determined order and 5'-3' direction of AU, GC, and GU pairs in helixes. NAPSS-CS minimally requires input of the order of base pairs as determined from nuclear Overhauser effect spectroscopy (NOESY) of imino protons. The program deduces the 5'-3' direction of the base pairs if certain chemical shifts are also input. Secondary structures predicted by the program provide assignments of input chemical shifts to particular nucleotides in the sequence, thus facilitating an important step for determination of the three dimensional structure by NMR. The method is particularly useful for revealing pseudoknots and an example is provided. The method may also allow determination of secondary structures when a sequence folds into two structures that exchange slowly.
Collapse
|
20
|
Lim CS, Brown CM. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs. Front Microbiol 2018; 8:2582. [PMID: 29354101 PMCID: PMC5758548 DOI: 10.3389/fmicb.2017.02582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
LeBlanc RM, Longhini AP, Le Grice SF, Johnson BA, Dayie TK. Combining asymmetric 13C-labeling and isotopic filter/edit NOESY: a novel strategy for rapid and logical RNA resonance assignment. Nucleic Acids Res 2017; 45:e146. [PMID: 28934505 PMCID: PMC5766159 DOI: 10.1093/nar/gkx591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
Although ∼98% of the human genomic output is transcribed as non-protein coding RNA, <2% of the protein data bank structures comprise RNA. This huge structural disparity stems from combined difficulties of crystallizing RNA for X-ray crystallography along with extensive chemical shift overlap and broadened linewidths associated with NMR of RNA. While half of the deposited RNA structures in the PDB were solved by NMR methods, the usefulness of NMR is still limited by the high cost of sample preparation and challenges of resonance assignment. Here we propose a novel strategy for resonance assignment that combines new strategic 13C labeling technologies with filter/edit type NOESY experiments to greatly reduce spectral complexity and crowding. This new strategy allowed us to assign important non-exchangeable resonances of proton and carbon (1', 2', 2, 5, 6 and 8) nuclei using only one sample and <24 h of NMR instrument time for a 27 nt model RNA. The method was further extended to assigning a 6 nt bulge from a 61 nt viral RNA element justifying its use for a wide range RNA chemical shift resonance assignment problems.
Collapse
Affiliation(s)
- Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrew P. Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | - Bruce A. Johnson
- One Moon Scientific, Inc., Westfield, NJ 07090, USA
- Structural Biology Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
22
|
Applications of NMR to structure determination of RNAs large and small. Arch Biochem Biophys 2017; 628:42-56. [PMID: 28600200 DOI: 10.1016/j.abb.2017.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to investigate the structure and dynamics of RNA, because many biologically important RNAs have conformationally flexible structures, which makes them difficult to crystallize. Functional, independently folded RNA domains, range in size between simple stem-loops of as few as 10-20 nucleotides, to 50-70 nucleotides, the size of tRNA and many small ribozymes, to a few hundred nucleotides, the size of more complex RNA enzymes and of the functional domains of non-coding transcripts. In this review, we discuss new methods for sample preparation, assignment strategies and structure determination for independently folded RNA domains of up to 100 kDa in molecular weight.
Collapse
|
23
|
Chu W, Weerasekera A, Kim CH. On the conformational stability of the smallest RNA kissing complexes maintained through two G·C base pairs. Biochem Biophys Res Commun 2017; 483:39-44. [PMID: 28063925 DOI: 10.1016/j.bbrc.2017.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
Abstract
Two identical 5'GACG3' tetra-loop motifs with different stem sequences (called H2 and H3) are found in the 5' end region of Moloney Murine Leukemia Virus (MMLV) genomic RNA. They play important roles in RNA dimerization and encapsidation through two identical tetra-loops (5'GACG3') forming a loop-to-loop kissing complex, the smallest RNA kissing complex ever found in nature. We examined the effects of a loop-closing base pair as well as a stem sequence on the conformational stability of the kissing complex. UV melting analysis and gel electrophoresis were performed on eight RNA sequences mimicking the H2 and H3 hairpin tetra-loops with variation in loop-closing base pairs. Our results show that changing the loop-closing base pair from the wildtype (5'A·U3' for H3, 5'U·A3' for H2) to 5'G·C3'/5'C·G3' has significant effect on the stability of the kissing complexes: the substitution to 5'C·G3' significantly decreases both thermal and mechanical stability, while switching to the 5'G·C3' significantly increases the mechanical stability only. The kissing complexes with the wildtype loop-closing base pairs (5'A·U3' for H3 and 5'U·A3' for H2) show different stability when attached to a different stem sequence (H2 stem vs. H3 stem). This suggests that not only the loop-closing base pair itself, but also the stem sequence, affects the conformational stability of the RNA kissing complex.
Collapse
Affiliation(s)
- Wally Chu
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, United States
| | - Akila Weerasekera
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, United States
| | - Chul-Hyun Kim
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, United States.
| |
Collapse
|
24
|
Post K, Olson ED, Naufer MN, Gorelick RJ, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG. Mechanistic differences between HIV-1 and SIV nucleocapsid proteins and cross-species HIV-1 genomic RNA recognition. Retrovirology 2016; 13:89. [PMID: 28034301 PMCID: PMC5198506 DOI: 10.1186/s12977-016-0322-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nucleocapsid (NC) domain of HIV-1 Gag is responsible for specific recognition and packaging of genomic RNA (gRNA) into new viral particles. This occurs through specific interactions between the Gag NC domain and the Psi packaging signal in gRNA. In addition to this critical function, NC proteins are also nucleic acid (NA) chaperone proteins that facilitate NA rearrangements during reverse transcription. Although the interaction with Psi and chaperone activity of HIV-1 NC have been well characterized in vitro, little is known about simian immunodeficiency virus (SIV) NC. Non-human primates are frequently used as a platform to study retroviral infection in vivo; thus, it is important to understand underlying mechanistic differences between HIV-1 and SIV NC. RESULTS Here, we characterize SIV NC chaperone activity for the first time. Only modest differences are observed in the ability of SIV NC to facilitate reactions that mimic the minus-strand annealing and transfer steps of reverse transcription relative to HIV-1 NC, with the latter displaying slightly higher strand transfer and annealing rates. Quantitative single molecule DNA stretching studies and dynamic light scattering experiments reveal that these differences are due to significantly increased DNA compaction energy and higher aggregation capability of HIV-1 NC relative to the SIV protein. Using salt-titration binding assays, we find that both proteins are strikingly similar in their ability to specifically interact with HIV-1 Psi RNA. In contrast, they do not demonstrate specific binding to an RNA derived from the putative SIV packaging signal. CONCLUSIONS Based on these studies, we conclude that (1) HIV-1 NC is a slightly more efficient NA chaperone protein than SIV NC, (2) mechanistic differences between the NA interactions of highly similar retroviral NC proteins are revealed by quantitative single molecule DNA stretching, and (3) SIV NC demonstrates cross-species recognition of the HIV-1 Psi RNA packaging signal.
Collapse
Affiliation(s)
- Klara Post
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| | - Erik D. Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - M. Nabuan Naufer
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201 USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Judith G. Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| |
Collapse
|
25
|
Transcriptional start site heterogeneity modulates the structure and function of the HIV-1 genome. Proc Natl Acad Sci U S A 2016; 113:13378-13383. [PMID: 27834211 DOI: 10.1073/pnas.1616627113] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The promoter in HIV type 1 (HIV-1) proviral DNA contains three sequential guanosines at the U3-R boundary that have been proposed to function as sites for transcription initiation. Here we show that all three sites are used in cells infected with HIV-1 and that viral RNAs containing a single 5' capped guanosine (Cap1G) are specifically selected for packaging in virions, consistent with a recent report [Masuda et al. (2015) Sci Rep 5:17680]. In addition, we now show that transcripts that begin with two or three capped guanosines (Cap2G or Cap3G) are enriched on polysomes, indicating that RNAs synthesized from different transcription start sites have different functions in viral replication. Because genomes are selected for packaging as dimers, we examined the in vitro monomer-dimer equilibrium properties of Cap1G, Cap2G, and Cap3G 5'-leader RNAs in the NL4-3 strain of HIV-1. Strikingly, under physiological-like ionic conditions in which the Cap1G 5'-leader RNA adopts a dimeric structure, the Cap2G and Cap3G 5'-leader RNAs exist predominantly as monomers. Mutagenesis studies designed to probe for base-pairing interactions suggest that the additional guanosines of the 2G and 3G RNAs remodel the base of the PolyA hairpin, resulting in enhanced sequestration of dimer-promoting residues and stabilization of the monomer. Our studies suggest a mechanism through which the structure, function, and fate of the viral genome can be modulated by the transcriptionally controlled presence or absence of a single 5' guanosine.
Collapse
|
26
|
Chemo-enzymatic labeling for rapid assignment of RNA molecules. Methods 2016; 103:11-7. [PMID: 27090003 DOI: 10.1016/j.ymeth.2016.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
Even though Nuclear Magnetic Resonance (NMR) spectroscopy is one of the few techniques capable of determining atomic resolution structures of RNA, it is constrained by two major problems of chemical shift overlap of resonances and rapid signal loss due to line broadening. Emerging tools to tackle these problems include synthesis of atom specifically labeled or chemically modified nucleotides. Herein we review the synthesis of these nucleotides, the design and production of appropriate RNA samples, and the application and analysis of the NMR experiments that take advantage of these labels.
Collapse
|
27
|
Sochor F, Silvers R, Müller D, Richter C, Fürtig B, Schwalbe H. (19)F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2016; 64:63-74. [PMID: 26704707 DOI: 10.1007/s10858-015-0006-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/20/2015] [Indexed: 05/24/2023]
Abstract
In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus (19)F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5'-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the (19)F isotope. The thermal stability of the (19)F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a (1)H,(15)N-HSQC allow the identification of Watson-Crick base paired uridine signals and the (19)F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of (19)F-labeling even for sizeable RNAs in the range of 70 nucleotides.
Collapse
Affiliation(s)
- F Sochor
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - R Silvers
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - D Müller
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - C Richter
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - B Fürtig
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| | - H Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| |
Collapse
|
28
|
Abstract
Knowledge of RNA secondary structure is often sufficient to identify relationships between the structure of RNA and processing pathways, and the design of therapeutics. Nuclear magnetic resonance (NMR) can identify types of nucleotide base pairs and the sequence, thus limiting possible secondary structures. Because NMR experiments, like chemical mapping, are performed in solution, not in single crystals, experiments can be initiated as soon as the biomolecule is expressed and purified. This chapter summarizes NMR methods that permit rapid identification of RNA secondary structure, information that can be used as supplements to chemical mapping, and/or as preliminary steps required for 3D structure determination. The primary aim is to provide guidelines to enable a researcher with minimal knowledge of NMR to quickly extract secondary structure information from basic datasets. Instrumental and sample considerations that can maximize data quality are discussed along with some details for optimal data acquisition and processing parameters. Approaches for identifying base pair types in both unlabeled and isotopically labeled RNA are covered. Common problems, such as missing signals and overlaps, and approaches to address them are considered. Programs under development for merging NMR data with structure prediction algorithms are briefly discussed.
Collapse
Affiliation(s)
- Scott D Kennedy
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
29
|
Longhini AP, LeBlanc RM, Becette O, Salguero C, Wunderlich CH, Johnson BA, D'Souza VM, Kreutz C, Dayie TK. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations. Nucleic Acids Res 2015; 44:e52. [PMID: 26657632 PMCID: PMC4824079 DOI: 10.1093/nar/gkv1333] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/16/2015] [Indexed: 11/12/2022] Open
Abstract
Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis (48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.
Collapse
Affiliation(s)
- Andrew P Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Regan M LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Owen Becette
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Carolina Salguero
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christoph H Wunderlich
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA One Moon Scientific, Inc., 839 Grant Avenue, Westfield, NJ 07090-2322, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - T Kwaku Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| |
Collapse
|
30
|
Chen JL, Bellaousov S, Tubbs JD, Kennedy SD, Lopez MJ, Mathews DH, Turner DH. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints. Biochemistry 2015; 54:6769-82. [PMID: 26451676 PMCID: PMC4666457 DOI: 10.1021/acs.biochem.5b00833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Knowledge
of RNA
structure is necessary to determine structure–function relationships
and to facilitate design of potential therapeutics.
RNA secondary structure prediction can be improved by applying constraints
from nuclear magnetic resonance (NMR) experiments to a dynamic programming
algorithm. Imino proton walks from NOESY spectra reveal double-stranded
regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs,
UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to
identify constraints for the 5′ to 3′ directionality
of base pairs in helices. The 5′ to 3′ directionality
constraints were incorporated into an NMR-assisted prediction of secondary
structure (NAPSS-CS) program. When it was tested on 18 structures,
including nine pseudoknots, the sensitivity and positive predictive
value were improved relative to those of three unrestrained programs.
The prediction accuracy for the pseudoknots improved the most. The
program also facilitates assignment of chemical shifts to individual
nucleotides, a necessary step for determining three-dimensional structure.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | - Jason D Tubbs
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Scott D Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | - Michael J Lopez
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - David H Mathews
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States.,Center for RNA Biology, University of Rochester , Rochester, New York 14642, United States
| | - Douglas H Turner
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States.,Center for RNA Biology, University of Rochester , Rochester, New York 14642, United States
| |
Collapse
|
31
|
Bonneau E, Girard N, Lemieux S, Legault P. The NMR structure of the II-III-VI three-way junction from the Neurospora VS ribozyme reveals a critical tertiary interaction and provides new insights into the global ribozyme structure. RNA (NEW YORK, N.Y.) 2015; 21:1621-32. [PMID: 26124200 PMCID: PMC4536322 DOI: 10.1261/rna.052076.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 05/04/2023]
Abstract
As part of an effort to structurally characterize the complete Neurospora VS ribozyme, NMR solution structures of several subdomains have been previously determined, including the internal loops of domains I and VI, the I/V kissing-loop interaction and the III-IV-V junction. Here, we expand this work by determining the NMR structure of a 62-nucleotide RNA (J236) that encompasses the VS ribozyme II-III-VI three-way junction and its adjoining stems. In addition, we localize Mg(2+)-binding sites within this structure using Mn(2+)-induced paramagnetic relaxation enhancement. The NMR structure of the J236 RNA displays a family C topology with a compact core stabilized by continuous stacking of stems II and III, a cis WC/WC G•A base pair, two base triples and two Mg(2+) ions. Moreover, it reveals a remote tertiary interaction between the adenine bulges of stems II and VI. Additional NMR studies demonstrate that both this bulge-bulge interaction and Mg(2+) ions are critical for the stable folding of the II-III-VI junction. The NMR structure of the J236 RNA is consistent with biochemical studies on the complete VS ribozyme, but not with biophysical studies performed with a minimal II-III-VI junction that does not contain the II-VI bulge-bulge interaction. Together with previous NMR studies, our findings provide important new insights into the three-dimensional architecture of this unique ribozyme.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Nicolas Girard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Sébastien Lemieux
- Département d'Informatique et de Recherche Opérationnelle et Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
32
|
Olson ED, Cantara WA, Musier-Forsyth K. New Structure Sheds Light on Selective HIV-1 Genomic RNA Packaging. Viruses 2015; 7:4826-35. [PMID: 26305251 PMCID: PMC4576207 DOI: 10.3390/v7082846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/21/2022] Open
Abstract
Two copies of unspliced human immunodeficiency virus (HIV)-1 genomic RNA (gRNA) are preferentially selected for packaging by the group-specific antigen (Gag) polyprotein into progeny virions as a dimer during the late stages of the viral lifecycle. Elucidating the RNA features responsible for selective recognition of the full-length gRNA in the presence of an abundance of other cellular RNAs and spliced viral RNAs remains an area of intense research. The recent nuclear magnetic resonance (NMR) structure by Keane et al. [1] expands upon previous efforts to determine the conformation of the HIV-1 RNA packaging signal. The data support a secondary structure wherein sequences that constitute the major splice donor site are sequestered through base pairing, and a tertiary structure that adopts a tandem 3-way junction motif that exposes the dimerization initiation site and unpaired guanosines for specific recognition by Gag. While it remains to be established whether this structure is conserved in the context of larger RNA constructs or in the dimer, this study serves as the basis for characterizing large RNA structures using novel NMR techniques, and as a major advance toward understanding how the HIV-1 gRNA is selectively packaged.
Collapse
Affiliation(s)
- Erik D Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - William A Cantara
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Combining NMR and EPR to Determine Structures of Large RNAs and Protein–RNA Complexes in Solution. Methods Enzymol 2015; 558:279-331. [DOI: 10.1016/bs.mie.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Cantara WA, Olson ED, Musier-Forsyth K. Progress and outlook in structural biology of large viral RNAs. Virus Res 2014; 193:24-38. [PMID: 24956407 PMCID: PMC4252365 DOI: 10.1016/j.virusres.2014.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 02/05/2023]
Abstract
The field of viral molecular biology has reached a precipice for which pioneering studies on the structure of viral RNAs are beginning to bridge the gap. It has become clear that viral genomic RNAs are not simply carriers of hereditary information, but rather are active players in many critical stages during replication. Indeed, functions such as cap-independent translation initiation mechanisms are, in some cases, primarily driven by RNA structural determinants. Other stages including reverse transcription initiation in retroviruses, nuclear export and viral packaging are specifically dependent on the proper 3-dimensional folding of multiple RNA domains to recruit necessary viral and host factors required for activity. Furthermore, a large-scale conformational change within the 5'-untranslated region of HIV-1 has been proposed to regulate the temporal switch between viral protein synthesis and packaging. These RNA-dependent functions are necessary for replication of many human disease-causing viruses such as severe acute respiratory syndrome (SARS)-associated coronavirus, West Nile virus, and HIV-1. The potential for antiviral development is currently hindered by a poor understanding of RNA-driven molecular mechanisms, resulting from a lack of structural information on large RNAs and ribonucleoprotein complexes. Herein, we describe the recent progress that has been made on characterizing these large RNAs and provide brief descriptions of the techniques that will be at the forefront of future advances. Ongoing and future work will contribute to a more complete understanding of the lifecycles of retroviruses and RNA viruses and potentially lead to novel antiviral strategies.
Collapse
Affiliation(s)
| | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
35
|
Progress in oncolytic virotherapy for the treatment of thyroid malignant neoplasm. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:91. [PMID: 25366264 PMCID: PMC4242545 DOI: 10.1186/s13046-014-0091-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
Thyroid malignant neoplasm develops from follicular or parafollicular thyroid cells. A higher proportion of anaplastic thyroid cancer has an adverse prognosis. New drugs are being used in clinical treatment. However, for advanced thyroid malignant neoplasm such as anaplastic thyroid carcinoma, the major impediment to successful control of the disease is the absence of effective therapies. Oncolytic virotherapy has significantly progressed as therapeutics in recent years. The advance is that oncolytic viruses can be designed with biological specificity to infect, replicate and lyse tumor cells. Significant advances in virotherapy have being achieved to improve the accessibility, safety and efficacy of the treatment. Therefore, it is necessary to summarize and bring together the main areas covered by these investigations for the virotherapy of thyroid malignant neoplasm. We provide an overview of the progress in virotherapy research and clinical trials, which employ virotherapy for thyroid malignant neoplasm as well as the future prospect for virotherapy of thyroid malignant neoplasms.
Collapse
|
36
|
Frank AT, Law SM, Brooks CL. A simple and fast approach for predicting (1)H and (13)C chemical shifts: toward chemical shift-guided simulations of RNA. J Phys Chem B 2014; 118:12168-75. [PMID: 25255209 PMCID: PMC4207130 DOI: 10.1021/jp508342x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We introduce a simple and fast approach
for predicting RNA chemical
shifts from interatomic distances that performs with an accuracy similar
to existing predictors and enables the first chemical shift-restrained
simulations of RNA to be carried out. Our analysis demonstrates that
the applied restraints can effectively guide conformational sampling
toward regions of space that are more consistent with chemical shifts
than the initial coordinates used for the simulations. As such, our
approach should be widely applicable in mapping the conformational
landscape of RNAs via chemical shift-guided molecular dynamics simulations.
The simplicity and demonstrated sensitivity to three-dimensional structure
should also allow our method to be used in chemical shift-based RNA
structure prediction, validation, and refinement.
Collapse
Affiliation(s)
- Aaron T Frank
- Department of Chemistry and Biophysics, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | | | | |
Collapse
|
37
|
A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing. Nature 2014; 515:591-5. [PMID: 25209668 DOI: 10.1038/nature13709] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023]
Abstract
To prime reverse transcription, retroviruses require annealing of a transfer RNA molecule to the U5 primer binding site (U5-PBS) region of the viral genome. The residues essential for primer annealing are initially locked in intramolecular interactions; hence, annealing requires the chaperone activity of the retroviral nucleocapsid (NC) protein to facilitate structural rearrangements. Here we show that, unlike classical chaperones, the Moloney murine leukaemia virus NC uses a unique mechanism for remodelling: it specifically targets multiple structured regions in both the U5-PBS and tRNA(Pro) primer that otherwise sequester residues necessary for annealing. This high-specificity and high-affinity binding by NC consequently liberates these sequestered residues--which are exactly complementary--for intermolecular interactions. Furthermore, NC utilizes a step-wise, entropy-driven mechanism to trigger both residue-specific destabilization and residue-specific release. Our structures of NC bound to U5-PBS and tRNA(Pro) reveal the structure-based mechanism for retroviral primer annealing and provide insights as to how ATP-independent chaperones can target specific RNAs amidst the cellular milieu of non-target RNAs.
Collapse
|
38
|
Battistel MD, Azurmendi HF, Yu B, Freedberg DI. NMR of glycans: shedding new light on old problems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 79:48-68. [PMID: 24815364 DOI: 10.1016/j.pnmrs.2014.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
The diversity in molecular arrangements and dynamics displayed by glycans renders traditional NMR strategies, employed for proteins and nucleic acids, insufficient. Because of the unique properties of glycans, structural studies often require the adoption of a different repertoire of tailor-made experiments and protocols. We present an account of recent developments in NMR techniques that will deepen our understanding of structure-function relations in glycans. We open with a survey and comparison of methods utilized to determine the structure of proteins, nucleic acids and carbohydrates. Next, we discuss the structural information obtained from traditional NMR techniques like chemical shifts, NOEs/ROEs, and coupling-constants, along with the limitations imposed by the unique intrinsic characteristics of glycan structure on these approaches: flexibility, range of conformers, signal overlap, and non-first-order scalar (strong) coupling. Novel experiments taking advantage of isotopic labeling are presented as an option for overcoming spectral overlap and raising sensitivity. Computational tools used to explore conformational averaging in conjunction with NMR parameters are described. In addition, recent developments in hydroxyl detection and hydrogen bond detection in protonated solvents, in contrast to traditional sample preparations in D2O for carbohydrates, further increase the tools available for both structure information and chemical shift assignments. We also include previously unpublished data in this context. Accurate determination of couplings in carbohydrates has been historically challenging due to the common presence of strong-couplings. We present new strategies proposed for dealing with their influence on NMR signals. We close with a discussion of residual dipolar couplings (RDCs) and the advantages of using (13)C isotope labeling that allows gathering one-bond (13)C-(13)C couplings with a recently improved constant-time COSY technique, in addition to the commonly measured (1)H-(13)C RDCs.
Collapse
Affiliation(s)
- Marcos D Battistel
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852-1448, United States
| | - Hugo F Azurmendi
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852-1448, United States
| | - Bingwu Yu
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852-1448, United States
| | - Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852-1448, United States.
| |
Collapse
|
39
|
Abstract
RNAs play pivotal roles in the cell, ranging from catalysis (e.g., RNase P), acting as adaptor molecule (tRNA) to regulation (e.g., riboswitches). Precise understanding of its three-dimensional structures has given unprecedented insight into the molecular basis for all of these processes. Nevertheless, structural studies on RNA are still limited by the very special nature of this polymer. The most common methods for the determination of 3D RNA structures are NMR and X-ray crystallography. Both methods have their own set of requirements and give different amounts of information about the target RNA. For structural studies, the major bottleneck is usually obtaining large amounts of highly pure and homogeneously folded RNA. Especially for X-ray crystallography it can be necessary to screen a large number of variants to obtain well-ordered single crystals. In this mini-review we give an overview about strategies for the design, in vitro production, and purification of RNA for structural studies.
Collapse
Affiliation(s)
- Yasar Luqman Ahmed
- Department of Molecular Structural Biology; Institute for Microbiology and Genetics; Georg-August University; Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology; Institute for Microbiology and Genetics; Georg-August University; Göttingen, Germany
| |
Collapse
|
40
|
Aeschbacher T, Schmidt E, Blatter M, Maris C, Duss O, Allain FHT, Güntert P, Schubert M. Automated and assisted RNA resonance assignment using NMR chemical shift statistics. Nucleic Acids Res 2013; 41:e172. [PMID: 23921634 PMCID: PMC3794610 DOI: 10.1093/nar/gkt665] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and 1H and 13C chemical shifts. Statistics of resonances from regularly Watson–Crick base-paired RNA revealed highly characteristic chemical shift clusters. We developed two approaches using these statistics for chemical shift assignment of double-stranded RNA (dsRNA): a manual approach that yields starting points for resonance assignment and simplifies decision trees and an automated approach based on the recently introduced automated resonance assignment algorithm FLYA. Both strategies require only unlabeled RNAs and three 2D spectra for assigning the H2/C2, H5/C5, H6/C6, H8/C8 and H1′/C1′ chemical shifts. The manual approach proved to be efficient and robust when applied to the experimental data of RNAs with a size between 20 nt and 42 nt. The more advanced automated assignment approach was successfully applied to four stem-loop RNAs and a 42 nt siRNA, assigning 92–100% of the resonances from dsRNA regions correctly. This is the first automated approach for chemical shift assignment of non-exchangeable protons of RNA and their corresponding 13C resonances, which provides an important step toward automated structure determination of RNAs.
Collapse
Affiliation(s)
- Thomas Aeschbacher
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, 60438 Frankfurt am Main, Germany and Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Neira JL. Nuclear magnetic resonance spectroscopy to study virus structure. Subcell Biochem 2013; 68:145-76. [PMID: 23737051 DOI: 10.1007/978-94-007-6552-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) is a spectroscopic technique based in the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits. NMR has been instrumental to describe conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle; in this sense, NMR is also the only technique currently available to describe, in atomic detail, the conformational preferences of natively unfolded viral proteins. NMR has also complemented X-ray crystallography and has been combined with electron microscopy to obtain pseudo-atomic models of entire virus capsids. Finally, the joint use of liquid and solid-state NMR has allowed the identification of conformational changes in intact viral capsids on insertion in host membranes.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain,
| |
Collapse
|
42
|
Choo YC, Seki Y, Machinaga A, Ogita N, Takase-Yoden S. The 0.3-kb fragment containing the R-U5-5'leader sequence of Friend murine leukemia virus influences the level of protein expression from spliced mRNA. Virol J 2013; 10:124. [PMID: 23602143 PMCID: PMC3651342 DOI: 10.1186/1743-422x-10-124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/12/2013] [Indexed: 12/04/2022] Open
Abstract
Background A neuropathogenic variant of Friend murine leukemia virus (Fr-MLV) clone A8 induces spongiform neurodegeneration when infected into neonatal rats. Studies with chimeras constructed from the A8 virus and the non-neuropathogenic Fr-MLV clone 57 identified a 0.3-kb KpnI-AatII fragment containing a R-U5-5’leader sequence as an important determinant for inducing spongiosis, in addition to the env gene of A8 as the primary determinant. This 0.3-kb fragment contains a 17-nucleotide difference between the A8 and 57 sequences. We previously showed that the 0.3-kb fragment influences expression levels of Env protein in both cultured cells and rat brain, but the corresponding molecular mechanisms are not well understood. Results Studies with expression vectors constructed from the full-length proviral genome of Fr-MLV that incorporated the luciferase (luc) gene instead of the env gene found that the vector containing the A8-0.3-kb fragment yielded a larger amount of spliced luc-mRNA and showed higher expression of luciferase when compared to the vector containing the 57-0.3-kb fragment. The amount of total transcripts from the vectors, the poly (A) tail length of their mRNAs, and the nuclear-cytoplasm distribution of luc-mRNA in transfected cells were also evaluated. The 0.3-kb fragment did not influence transcription efficiency, mRNA polyadenylation or nuclear export of luc-mRNA. Mutational analyses were carried out to determine the importance of nucleotides that differ between the A8 and 57 sequences within the 0.3-kb fragment. In particular, seven nucleotides upstream of the 5’splice site (5’ss) were found to be important in regulating the level of protein expression from spliced messages. Interestingly, these nucleotides reside within the stem-loop structure that has been speculated to limit the recognition of 5’ss. Conclusions The 0.3-kb fragment containing the R-U5-5’leader sequence of Fr-MLV influences the level of protein expression from the spliced-mRNA by regulating the splicing efficiency rather than transcription, nuclear export of spliced-mRNA, or poly (A) addition to mRNA. Seven nucleotides in the 0.3-kb fragment, which reside within the stem-loop structure that has been speculated to limit recognition of the 5’ss, could pinpoint the function of this region.
Collapse
Affiliation(s)
- Yeng Cheng Choo
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | |
Collapse
|
43
|
Barton S, Heng X, Johnson BA, Summers MF. Database proton NMR chemical shifts for RNA signal assignment and validation. JOURNAL OF BIOMOLECULAR NMR 2013; 55. [PMID: 23180050 PMCID: PMC3555346 DOI: 10.1007/s10858-012-9683-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4(3) possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA (1)H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.
Collapse
Affiliation(s)
- Shawn Barton
- Howard Hughes Medical Institute, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Xiao Heng
- Howard Hughes Medical Institute, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Bruce A. Johnson
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
- One Moon Scientific, Inc., 839 Grant Ave., Westfield, NJ 07090 USA
| | - Michael F. Summers
- Howard Hughes Medical Institute, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| |
Collapse
|
44
|
Gao S, Zhang R, Yu Z, Xi Z. Antofine Analogues Can Inhibit Tobacco Mosaic Virus Assembly through Small-Molecule-RNA Interactions. Chembiochem 2012; 13:1622-7. [DOI: 10.1002/cbic.201200313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Indexed: 11/10/2022]
|
45
|
Bahrami A, Clos LJ, Markley JL, Butcher SE, Eghbalnia HR. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts. JOURNAL OF BIOMOLECULAR NMR 2012; 52:289-302. [PMID: 22359049 PMCID: PMC3480180 DOI: 10.1007/s10858-012-9603-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/08/2012] [Indexed: 05/13/2023]
Abstract
The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ((1)H-(15)N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ((1)H-(1)H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a majority of the NMR resonances, even when the initial predictions are only modestly accurate. RNA-PAIRS is available as a public web-server at http://pine.nmrfam.wisc.edu/RNA/.
Collapse
Affiliation(s)
- Arash Bahrami
- National Magnetic Resonance Facility at Madison, Madison, WI, USA
| | - Lawrence J. Clos
- National Magnetic Resonance Facility at Madison, Madison, WI, USA
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, Madison, WI, USA. Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel E. Butcher
- National Magnetic Resonance Facility at Madison, Madison, WI, USA. Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hamid R. Eghbalnia
- Department of Molecular and Cellular Physiology, University of Cincinnati, P.O. Box 670576, Cincinnati, OH 45267-0576, USA
| |
Collapse
|
46
|
Identification of a minimal region of the HIV-1 5'-leader required for RNA dimerization, NC binding, and packaging. J Mol Biol 2012; 417:224-39. [PMID: 22306406 DOI: 10.1016/j.jmb.2012.01.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/13/2012] [Accepted: 01/21/2012] [Indexed: 11/23/2022]
Abstract
Assembly of human immunodeficiency virus type 1 (HIV-1) particles is initiated in the cytoplasm by the formation of a ribonucleoprotein complex comprising the dimeric RNA genome and a small number of viral Gag polyproteins. Genomes are recognized by the nucleocapsid (NC) domains of Gag, which interact with packaging elements believed to be located primarily within the 5'-leader (5'-L) of the viral RNA. Recent studies revealed that the native 5'-L exists as an equilibrium of two conformers, one in which dimer-promoting residues and NC binding sites are sequestered and packaging is attenuated, and one in which these sites are exposed and packaging is promoted. To identify the elements within the dimeric 5'-L that are important for packaging, we generated HIV-1 5'-L RNAs containing mutations and deletions designed to eliminate substructures without perturbing the overall structure of the leader and examined effects of the mutations on RNA dimerization, NC binding, and packaging. Our findings identify a 159-residue RNA packaging signal that possesses dimerization and NC binding properties similar to those of the intact 5'-L and contains elements required for efficient RNA packaging.
Collapse
|
47
|
Duss O, Lukavsky PJ, Allain FHT. Isotope labeling and segmental labeling of larger RNAs for NMR structural studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:121-44. [PMID: 23076582 DOI: 10.1007/978-94-007-4954-2_7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NMR spectroscopy has become substantial in the elucidation of RNA structures and their complexes with other nucleic acids, proteins or small molecules. Almost half of the RNA structures deposited in the Protein Data Bank were determined by NMR spectroscopy, whereas NMR accounts for only 11% for proteins. Recent improvements in isotope labeling of RNA have strongly contributed to the high impact of NMR in RNA structure determination. In this book chapter, we review the advances in isotope labeling of RNA focusing on larger RNAs. We start by discussing several ways for the production and purification of large quantities of pure isotope labeled RNA. We continue by reviewing different strategies for selective deuteration of nucleotides. Finally, we present a comparison of several approaches for segmental isotope labeling of RNA. Selective deuteration of nucleotides in combination with segmental isotope labeling is paving the path for studying RNAs of ever increasing size.
Collapse
Affiliation(s)
- Olivier Duss
- Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
48
|
Levengood JD, Rollins C, Mishler CHJ, Johnson CA, Miner G, Rajan P, Znosko BM, Tolbert BS. Solution structure of the HIV-1 exon splicing silencer 3. J Mol Biol 2011; 415:680-98. [PMID: 22154809 DOI: 10.1016/j.jmb.2011.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022]
Abstract
Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic RNA is necessary to produce the complete viral protein complement, and aberrations in the splicing pattern impair HIV-1 replication. Genome splicing in HIV-1 is tightly regulated by the dynamic assembly/disassembly of trans host factors with cis RNA control elements. The host protein, heterogeneous nuclear ribonucleoprotein (hnRNP) A1, regulates splicing at several highly conserved HIV-1 3' splice sites by binding 5'-UAG-3' elements embedded within regions containing RNA structure. The physical determinants of hnRNP A1 splice site recognition remain poorly defined in HIV-1, thus precluding a detailed understanding of the molecular basis of the splicing pattern. Here, the three-dimensional structure of the exon splicing silencer 3 (ESS3) from HIV-1 has been determined using NMR spectroscopy. ESS3 adopts a 27-nucleotide hairpin with a 10-bp A-form stem that contains a pH-sensitive A(+)C wobble pair. The seven-nucleotide hairpin loop contains the high-affinity hnRNP-A1-responsive 5'-UAGU-3' element and a proximal 5'-GAU-3' motif. The NMR structure shows that the heptaloop adopts a well-organized conformation stabilized primarily by base stacking interactions reminiscent of a U-turn. The apex of the loop is quasi-symmetric with UA dinucleotide steps from the 5'-GAU-3' and 5'-UAGU-3' motifs stacking on opposite sides of the hairpin. As a step towards understanding the binding mechanism, we performed calorimetric and NMR titrations of several hnRNP A1 subdomains into ESS3. The data show that the UP1 domain forms a high-affinity (K(d)=37.8±1.1 nM) complex with ESS3 via site-specific interactions with the loop.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Houck-Loomis B, Durney MA, Salguero C, Shankar N, Nagle JM, Goff SP, D'Souza VM. An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature 2011; 480:561-4. [PMID: 22121021 DOI: 10.1038/nature10657] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/20/2011] [Indexed: 01/15/2023]
Abstract
Most retroviruses require translational recoding of a viral messenger RNA stop codon to maintain a precise ratio of structural (Gag) and enzymatic (Pol) proteins during virus assembly. Pol is expressed exclusively as a Gag-Pol fusion either by ribosomal frameshifting or by read-through of the gag stop codon. Both of these mechanisms occur infrequently and only affect 5-10% of translating ribosomes, allowing the virus to maintain the critical Gag to Gag-Pol ratio. Although it is understood that the frequency of the recoding event is regulated by cis RNA motifs, no mechanistic explanation is currently available for how the critical protein ratio is maintained. Here we present the NMR structure of the murine leukaemia virus recoding signal and show that a protonation-dependent switch occurs to induce the active conformation. The equilibrium is such that at physiological pH the active, read-through permissive conformation is populated at approximately 6%: a level that correlates with in vivo protein quantities. The RNA functions by a highly sensitive, chemo-mechanical coupling tuned to ensure an optimal read-through frequency. Similar observations for a frameshifting signal indicate that this novel equilibrium-based mechanism may have a general role in translational recoding.
Collapse
Affiliation(s)
- Brian Houck-Loomis
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Puglisi EV, Puglisi JD. Secondary structure of the HIV reverse transcription initiation complex by NMR. J Mol Biol 2011; 410:863-74. [PMID: 21763492 DOI: 10.1016/j.jmb.2011.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 01/11/2023]
Abstract
Initiation of reverse transcription of genomic RNA is a key early step in replication of the human immunodeficiency virus (HIV) upon infection of a host cell. Viral reverse transcriptase initiates from a specific RNA-RNA complex formed between a host transfer RNA (tRNA(Lys)(3)) and a region at the 5' end of genomic RNA; the 3' end of the tRNA acts as a primer for reverse transcription of genomic RNA. We report here the secondary structure of the HIV genomic RNA-human tRNA(Lys)(3) initiation complex using heteronuclear nuclear magnetic resonance methods. We show that both RNAs undergo large-scale conformational changes upon complex formation. Formation of the 18-bp primer helix with the 3' end of tRNA(Lys)(3) drives large conformational rearrangements of the tRNA at the 5' end while maintaining the anticodon loop for potential loop-loop interactions. HIV RNA forms an intramolecular helix adjacent to the intermolecular primer helix. This helix, which must be broken by reverse transcription, likely acts as a kinetic block to reverse transcription.
Collapse
Affiliation(s)
- Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
| | | |
Collapse
|