1
|
Structural Insight into Molecular Inhibitory Mechanism of InsP 6 on African Swine Fever Virus mRNA-Decapping Enzyme g5Rp. J Virol 2022; 96:e0190521. [PMID: 35481780 PMCID: PMC9131872 DOI: 10.1128/jvi.01905-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Removal of 5′ cap on cellular mRNAs by the African swine fever virus (ASFV) decapping enzyme g5R protein (g5Rp) is beneficial to viral gene expression during the early stages of infection. As the only nucleoside diphosphate-linked moiety X (Nudix) decapping enzyme encoded in the ASFV genome, g5Rp works in both the degradation of cellular mRNA and the hydrolyzation of the diphosphoinositol polyphosphates. Here, we report the structures of dimeric g5Rp and its complex with inositol hexakisphosphate (InsP6). The two g5Rp protomers interact head to head to form a dimer, and the dimeric interface is formed by extensive polar and nonpolar interactions. Each protomer is composed of a unique N-terminal helical domain and a C-terminal classic Nudix domain. As g5Rp is an mRNA-decapping enzyme, we identified key residues, including K8, K94, K95, K98, K175, R221, and K243 located on the substrate RNA binding interfaces of g5Rp which are important to RNA binding and decapping enzyme activity. Furthermore, the g5Rp-mediated mRNA decapping was inhibited by InsP6. The g5Rp-InsP6 complex structure showed that the InsP6 molecules occupy the same regions that primarily mediate g5Rp-RNA interaction, elucidating the roles of InsP6 in the regulation of the viral decapping activity of g5Rp in mRNA degradation. Collectively, these results provide the structural basis of interaction between RNA and g5Rp and highlight the inhibitory mechanism of InsP6 on mRNA decapping by g5Rp. IMPORTANCE ASF is a highly contagious hemorrhagic viral disease in domestic pigs which causes high mortality. Currently, there are still no effective vaccines or specific drugs available against this particular virus. The protein g5Rp is the only viral mRNA-decapping enzyme, playing an essential role in the machinery assembly of mRNA regulation and translation initiation. In this study, we solved the crystal structures of g5Rp dimer and complex with InsP6. Structure-based mutagenesis studies revealed critical residues involved in a candidate RNA binding region, which also play pivotal roles in complex with InsP6. Notably, InsP6 can inhibit g5Rp activity by competitively blocking the binding of substrate mRNA to the enzyme. Our structure-function studies provide the basis for potential anti-ASFV inhibitor designs targeting the critical enzyme.
Collapse
|
2
|
Bessman MJ. A cryptic activity in the Nudix hydrolase superfamily. Protein Sci 2019; 28:1494-1500. [PMID: 31173659 PMCID: PMC6635765 DOI: 10.1002/pro.3666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
The Nudix hydrolase superfamily is identified by a conserved cassette of 23 amino acids, and it is characterized by its pyrophosphorylytic activity on a wide variety of nucleoside diphosphate derivatives. Of the 13 members of the family in Escherichia coli, only one, Orf180, has not been identified with a substrate, although a host of nucleoside diphosphate compounds has been tested. Several reports have noted a strong similarity in the three-dimensional structure of the unrelated enzyme, isopentenyl diphosphate isomerase (IDI) to the Nudix structure, and the report that a Nudix enzyme was involved in the synthesis of geraniol, a product of the two substrates of IDI, prompted an investigation of whether the IDI substrates, isopentenyl diphosphate (IPP), and dimethylallyl diphosphate (DAPP) could be substrates of Orf180. This article demonstrates that Orf180 does have a very low activity on IPP, DAPP, and geranyl pyrophosphate (GPP). However, several of the other Nudix enzymes with established nucleoside diphosphate substrates hydrolyze these compounds at substantial rates. In fact, some Nudix hydrolases have higher activities on IPP, DAPP, and GPP than on their signature nucleoside diphosphate derivatives.
Collapse
Affiliation(s)
- Maurice J. Bessman
- Department of BiologyJohns Hopkins UniversityBaltimoreMaryland21218‐2684
| |
Collapse
|
3
|
Srouji JR, Xu A, Park A, Kirsch JF, Brenner SE. The evolution of function within the Nudix homology clan. Proteins 2017; 85:775-811. [PMID: 27936487 PMCID: PMC5389931 DOI: 10.1002/prot.25223] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/15/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
The Nudix homology clan encompasses over 80,000 protein domains from all three domains of life, defined by homology to each other. Proteins with a domain from this clan fall into four general functional classes: pyrophosphohydrolases, isopentenyl diphosphate isomerases (IDIs), adenine/guanine mismatch-specific adenine glycosylases (A/G-specific adenine glycosylases), and nonenzymatic activities such as protein/protein interaction and transcriptional regulation. The largest group, pyrophosphohydrolases, encompasses more than 100 distinct hydrolase specificities. To understand the evolution of this vast number of activities, we assembled and analyzed experimental and structural data for 205 Nudix proteins collected from the literature. We corrected erroneous functions or provided more appropriate descriptions for 53 annotations described in the Gene Ontology Annotation database in this family, and propose 275 new experimentally-based annotations. We manually constructed a structure-guided sequence alignment of 78 Nudix proteins. Using the structural alignment as a seed, we then made an alignment of 347 "select" Nudix homology domains, curated from structurally determined, functionally characterized, or phylogenetically important Nudix domains. Based on our review of Nudix pyrophosphohydrolase structures and specificities, we further analyzed a loop region downstream of the Nudix hydrolase motif previously shown to contact the substrate molecule and possess known functional motifs. This loop region provides a potential structural basis for the functional radiation and evolution of substrate specificity within the hydrolase family. Finally, phylogenetic analyses of the 347 select protein domains and of the complete Nudix homology clan revealed general monophyly with regard to function and a few instances of probable homoplasy. Proteins 2017; 85:775-811. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John R. Srouji
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Present address: Molecular and Cellular Biology DepartmentHarvard UniversityCambridgeMassachusetts02138
| | - Anting Xu
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| | - Annsea Park
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
| | - Jack F. Kirsch
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| | - Steven E. Brenner
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| |
Collapse
|
4
|
Chang C, Tesar C, Li X, Kim Y, Rodionov DA, Joachimiak A. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria. Nucleic Acids Res 2015; 43:10546-59. [PMID: 26438537 PMCID: PMC4666351 DOI: 10.1093/nar/gkv1005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023] Open
Abstract
Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR-DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.
Collapse
Affiliation(s)
- Changsoo Chang
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Christine Tesar
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Xiaoqing Li
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Youngchang Kim
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Ospina-Villa JD, Zamorano-Carrillo A, Lopez-Camarillo C, Castañon-Sanchez CA, Soto-Sanchez J, Ramirez-Moreno E, Marchat LA. Amino acid residues Leu135 and Tyr236 are required for RNA binding activity of CFIm25 in Entamoeba histolytica. Biochimie 2015; 115:44-51. [PMID: 25941172 DOI: 10.1016/j.biochi.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
Abstract
Pre-mRNA 3' end processing in the nucleus is essential for mRNA stability, efficient nuclear transport, and translation in eukaryotic cells. In Human, the cleavage/polyadenylation machinery contains the 25 kDa subunit of the Cleavage Factor Im (CFIm25), which specifically recognizes two UGUA elements and regulates the assembly of polyadenylation factors, poly(A) site selection and polyadenylation. In Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, EhCFIm25 has been reported as a RNA binding protein that interacts with the Poly(A) Polymerase. Here, we follow-up with the study of EhCFIm25 to characterize its interaction with RNA. Using in silico strategy, we identified Leu135 and Tyr236 in EhCFIm25 as conserved amino acids among CFIm25 homologues. We therefore generated mutant EhCFIm25 proteins to investigate the role of these residues for RNA interaction. Results showed that RNA binding activity was totally abrogated when Leu135 and Tyr236 were replaced with Ala residue, and Tyr236 was changed for Phe. In contrast, RNA binding activity was less affected when Leu135 was substituted by Thr. Our data revealed for the first time -until we know-the functional relevance of the conserved Leu135 and Tyr236 in EhCFIm25 for RNA binding activity. They also gave some insights about the possible chemical groups that could be interacting with the RNA molecule.
Collapse
Affiliation(s)
| | - Absalom Zamorano-Carrillo
- Biotechnology Program, ENMH-IPN, Mexico City, Mexico; Molecular Biomedicine Program, ENMH-IPN, Mexico City, Mexico
| | | | - Carlos A Castañon-Sanchez
- Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Oaxaca, Oaxaca, Mexico
| | | | - Esther Ramirez-Moreno
- Biotechnology Program, ENMH-IPN, Mexico City, Mexico; Molecular Biomedicine Program, ENMH-IPN, Mexico City, Mexico
| | - Laurence A Marchat
- Biotechnology Program, ENMH-IPN, Mexico City, Mexico; Molecular Biomedicine Program, ENMH-IPN, Mexico City, Mexico.
| |
Collapse
|
6
|
Hong MK, Ribeiro AJM, Kim JK, Ngo HPT, Kim J, Lee CH, Ahn YJ, Fernandes PA, Li Q, Ramos MJ, Kang LW. Divalent metal ion-based catalytic mechanism of the Nudix hydrolase Orf153 (YmfB) from Escherichia coli. ACTA ACUST UNITED AC 2014; 70:1297-310. [PMID: 24816099 DOI: 10.1107/s1399004714002570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022]
Abstract
YmfB from Escherichia coli is the Nudix hydrolase involved in the metabolism of thiamine pyrophosphate, an important compound in primary metabolism and a cofactor of many enzymes. In addition, it hydrolyzes (d)NTPs to (d)NMPs and inorganic orthophosphates in a stepwise manner. The structures of YmfB alone and in complex with three sulfates and two manganese ions determined by X-ray crystallography, when compared with the structures of other Nudix hydrolases such as MutT, Ap4Aase and DR1025, provide insight into the unique hydrolysis mechanism of YmfB. Mass-spectrometric analysis confirmed that water attacks the terminal phosphates of GTP and GDP sequentially. Kinetic analysis of binding-site mutants showed that no individual residue is absolutely required for catalytic activity, suggesting that protein residues do not participate in the deprotonation of the attacking water. Thermodynamic integration calculations show that a hydroxyl ion bound to two divalent metal ions attacks the phosphate directly without the help of a nearby catalytic base.
Collapse
Affiliation(s)
- Myoung-Ki Hong
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - António J M Ribeiro
- Requimte/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Jin-Kwang Kim
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jiyoung Kim
- Department of Bioscience and Biotechnology and Bio/Molecular Informatics Center, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology and Bio/Molecular Informatics Center, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yeh-Jin Ahn
- Department of Green Life Science, College of Convergence, Sangmyung University, 7 Hongji-dong, Jongno-gu, Seoul 110-743, Republic of Korea
| | - Pedro Alexandrino Fernandes
- Requimte/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Qing Li
- School of Pharmaceutical Sciences, Center for Cellular and Structural Biology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Maria Joao Ramos
- Requimte/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
7
|
Pezet-Valdez M, Fernández-Retana J, Ospina-Villa JD, Ramírez-Moreno ME, Orozco E, Charcas-López S, Soto-Sánchez J, Mendoza-Hernández G, López-Casamicha M, López-Camarillo C, Marchat LA. The 25 kDa subunit of cleavage factor Im Is a RNA-binding protein that interacts with the poly(A) polymerase in Entamoeba histolytica. PLoS One 2013; 8:e67977. [PMID: 23840799 PMCID: PMC3695940 DOI: 10.1371/journal.pone.0067977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/23/2013] [Indexed: 01/03/2023] Open
Abstract
In eukaryotes, polyadenylation of pre-mRNA 3' end is essential for mRNA export, stability and translation. Taking advantage of the knowledge of genomic sequences of Entamoeba histolytica, the protozoan responsible for human amoebiasis, we previously reported the putative polyadenylation machinery of this parasite. Here, we focused on the predicted protein that has the molecular features of the 25 kDa subunit of the Cleavage Factor Im (CFIm25) from other organisms, including the Nudix (nucleoside diphosphate linked to another moiety X) domain, as well as the RNA binding domain and the PAP/PAB interacting region. The recombinant EhCFIm25 protein (rEhCFIm25) was expressed in bacteria and used to generate specific antibodies in rabbit. Subcellular localization assays showed the presence of the endogenous protein in nuclear and cytoplasmic fractions. In RNA electrophoretic mobility shift assays, rEhCFIm25 was able to form specific RNA-protein complexes with the EhPgp5 mRNA 3´ UTR used as probe. In addition, Pull-Down and LC/ESI-MS/MS tandem mass spectrometry assays evidenced that the putative EhCFIm25 was able to interact with the poly(A) polymerase (EhPAP) that is responsible for the synthesis of the poly(A) tail in other eukaryotic cells. By Far-Western experiments, we confirmed the interaction between the putative EhCFIm25 and EhPAP in E. histolytica. Taken altogether, our results showed that the putative EhCFIm25 is a conserved RNA binding protein that interacts with the poly(A) polymerase, another member of the pre-mRNA 3' end processing machinery in this protozoan parasite.
Collapse
Affiliation(s)
- Marisol Pezet-Valdez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Jorge Fernández-Retana
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Juan David Ospina-Villa
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - María Esther Ramírez-Moreno
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
- Doctorado en Biotecnología en Red, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, México D.F., Mexico
| | - Socorro Charcas-López
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Jacqueline Soto-Sánchez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Guillermo Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Mavil López-Casamicha
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México D.F., Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México D.F., Mexico
| | - Laurence A. Marchat
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
- Doctorado en Biotecnología en Red, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| |
Collapse
|
8
|
Pozharski E, Weichenberger CX, Rupp B. Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:150-67. [PMID: 23385452 DOI: 10.1107/s0907444912044423] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/26/2012] [Indexed: 11/10/2022]
Abstract
As a result of substantial instrumental automation and the continuing improvement of software, crystallographic studies of biomolecules are conducted by non-experts in increasing numbers. While improved validation almost ensures that major mistakes in the protein part of structure models are exceedingly rare, in ligand-protein complex structures, which in general are most interesting to the scientist, ambiguous ligand electron density is often difficult to interpret and the modelled ligands are generally more difficult to properly validate. Here, (i) the primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) the most common categories of building errors or overinterpretation are classified; (iii) a few instructive and specific examples are discussed in detail, including an electron-density-based analysis of ligand structures that do not contain any ligands; (iv) means of avoiding such mistakes are suggested and the implications for database validity are discussed and (v) a user-friendly software tool that allows non-expert users to conveniently inspect ligand density is provided.
Collapse
Affiliation(s)
- Edwin Pozharski
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA.
| | | | | |
Collapse
|
9
|
Engelhardt BE, Jordan MI, Srouji JR, Brenner SE. Genome-scale phylogenetic function annotation of large and diverse protein families. Genome Res 2011; 21:1969-80. [PMID: 21784873 PMCID: PMC3205580 DOI: 10.1101/gr.104687.109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 07/11/2011] [Indexed: 11/25/2022]
Abstract
The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function prediction. Here we present a revised approach (SIFTER version 2.0) that enables annotations on a genomic scale. SIFTER 2.0 produces equivalently precise predictions compared to the earlier version on a carefully studied family and on a collection of 100 protein families. We have added an approximation method to SIFTER 2.0 and show a 500-fold improvement in speed with minimal impact on prediction results in the functionally diverse sulfotransferase protein family. On the Nudix protein family, previously inaccessible to the SIFTER framework because of the 66 possible molecular functions, SIFTER achieved 47.4% accuracy on experimental data (where BLAST achieved 34.0%). Finally, we used SIFTER to annotate all of the Schizosaccharomyces pombe proteins with experimental functional characterizations, based on annotations from proteins in 46 fungal genomes. SIFTER precisely predicted molecular function for 45.5% of the characterized proteins in this genome, as compared with four current function prediction methods that precisely predicted function for 62.6%, 30.6%, 6.0%, and 5.7% of these proteins. We use both precision-recall curves and ROC analyses to compare these genome-scale predictions across the different methods and to assess performance on different types of applications. SIFTER 2.0 is capable of predicting protein molecular function for large and functionally diverse protein families using an approximate statistical model, enabling phylogenetics-based protein function prediction for genome-wide analyses. The code for SIFTER and protein family data are available at http://sifter.berkeley.edu.
Collapse
Affiliation(s)
- Barbara E Engelhardt
- Electrical Engineering and Computer Science Department, University of California, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
10
|
Gonçalves AMD, de Sanctis D, McSweeney SM. Structural and functional insights into DR2231 protein, the MazG-like nucleoside triphosphate pyrophosphohydrolase from Deinococcus radiodurans. J Biol Chem 2011; 286:30691-30705. [PMID: 21733847 PMCID: PMC3162430 DOI: 10.1074/jbc.m111.247999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/01/2011] [Indexed: 11/06/2022] Open
Abstract
Deinococcus radiodurans is among the very few bacterial species extremely resistant to ionizing radiation, UV light, oxidizing agents, and cycles of prolonged desiccation. The proteome of D. radiodurans reflects the evolutionary pressure exerted by chronic exposure to (nonradioactive) forms of DNA and protein damage. A clear example of this adaptation is the overrepresentation of protein families involved in the removal of non-canonical nucleoside triphosphates (NTPs) whose incorporation into nascent DNA would promote mutagenesis and DNA damage. The three-dimensional structure of the DR2231 protein has been solved at 1.80 Å resolution. This protein had been classified as an all-α-helical MazG-like protein. The present study confirms that it holds the basic structural module characteristic of the MazG superfamily; two helices form a rigid domain, and two helices form a mobile domain and connecting loops. Contrary to what is known of MazG proteins, DR2231 protein shows a functional affinity with dUTPases. Enzymatic and isothermal calorimetry assays have demonstrated high specificity toward dUTP but an inability to hydrolyze dTTP, a typical feature of dUTPases. Co-crystallization with the product of hydrolysis, dUMP, in the presence of magnesium or manganese cations, suggests similarities with the dUTP/dUDP hydrolysis mechanism reported for dimeric dUTPases. The genome of D. radiodurans encodes for all enzymes required for dTTP synthesis from dCMP, thus bypassing the need of a dUTPase. We postulate that DR2231 protein is not essential to D. radiodurans and rather performs "house-cleaning" functions within the framework of oxidative stress response. We further propose DR2231 protein as an evolutionary precursor of dimeric dUTPases.
Collapse
Affiliation(s)
- Ana Maria D Gonçalves
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France
| | - Daniele de Sanctis
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France.
| | - Sean M McSweeney
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France.
| |
Collapse
|
11
|
Buchko GW, Edwards TE, Abendroth J, Arakaki TL, Law L, Napuli AJ, Hewitt SN, Van Voorhis WC, Stewart LJ, Staker BL, Myler PJ. Structure of a Nudix hydrolase (MutT) in the Mg(2+)-bound state from Bartonella henselae, the bacterium responsible for cat scratch fever. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1078-83. [PMID: 21904053 PMCID: PMC3169405 DOI: 10.1107/s1744309111011559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/28/2011] [Indexed: 05/31/2023]
Abstract
Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg(2+)-bound state was determined at 2.1 Å resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the α-helix of the highly conserved `Nudix box' in Bh-MutT is one of two helices that sandwich a four-stranded mixed β-sheet with the central two β-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg(2+), is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T(m) of 333 K.
Collapse
Affiliation(s)
- Garry W. Buchko
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Emerald BioStructures, Bainbridge Island, Washington, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Emerald BioStructures, Bainbridge Island, Washington, USA
| | - Tracy L. Arakaki
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Emerald BioStructures, Bainbridge Island, Washington, USA
| | - Laura Law
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Emerald BioStructures, Bainbridge Island, Washington, USA
| | - Alberto J. Napuli
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen N. Hewitt
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lance J. Stewart
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Emerald BioStructures, Bainbridge Island, Washington, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Emerald BioStructures, Bainbridge Island, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, http://www.ssgcid.org, USA
- Seattle Biomedical Research Institute, Seattle, Washington, USA
- Department of Medical Education and Biomedical Informatics and Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Joye IJ, Beliën T, Delcour JA. The first characterised wheat (Triticum aestivum L.) member of the nudix hydrolase family shows specificity for NAD(P)(H) and FAD. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Nakamura T, Meshitsuka S, Kitagawa S, Abe N, Yamada J, Ishino T, Nakano H, Tsuzuki T, Doi T, Kobayashi Y, Fujii S, Sekiguchi M, Yamagata Y. Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base. J Biol Chem 2010; 285:444-52. [PMID: 19864691 PMCID: PMC2804192 DOI: 10.1074/jbc.m109.066373] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/14/2009] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli MutT hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, an event that can prevent the misincorporation of 8-oxoguanine opposite adenine in DNA. Of the several enzymes that recognize 8-oxoguanine, MutT exhibits high substrate specificity for 8-oxoguanine nucleotides; however, the structural basis for this specificity is unknown. The crystal structures of MutT in the apo and holo forms and in the binary and ternary forms complexed with the product 8-oxo-dGMP and 8-oxo-dGMP plus Mn(2+), respectively, were determined. MutT strictly recognizes the overall conformation of 8-oxo-dGMP through a number of hydrogen bonds. This recognition mode revealed that 8-oxoguanine nucleotides are discriminated from guanine nucleotides by not only the hydrogen bond between the N7-H and Odelta (N119) atoms but also by the syn glycosidic conformation that 8-oxoguanine nucleotides prefer. Nevertheless, these discrimination factors cannot by themselves explain the roughly 34,000-fold difference between the affinity of MutT for 8-oxo-dGMP and dGMP. When the binary complex of MutT with 8-oxo-dGMP is compared with the ligand-free form, ordering and considerable movement of the flexible loops surrounding 8-oxo-dGMP in the binary complex are observed. These results indicate that MutT specifically recognizes 8-oxoguanine nucleotides by the ligand-induced conformational change.
Collapse
Affiliation(s)
- Teruya Nakamura
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973
| | - Sachiko Meshitsuka
- the Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871
| | - Seiju Kitagawa
- the Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871
| | - Nanase Abe
- the Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871
| | - Junichi Yamada
- the Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871
| | - Tetsuya Ishino
- the Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871
| | - Hiroaki Nakano
- the Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871
| | - Teruhisa Tsuzuki
- the Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Takefumi Doi
- the Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871
| | - Yuji Kobayashi
- the Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871
| | - Satoshi Fujii
- the School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, and
| | | | - Yuriko Yamagata
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973
| |
Collapse
|
14
|
Gonçalves AMD, Fioravanti E, Stelter M, McSweeney S. Structure of an N-terminally truncated Nudix hydrolase DR2204 from Deinococcus radiodurans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1083-7. [PMID: 19923723 PMCID: PMC2777031 DOI: 10.1107/s1744309109037191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/14/2009] [Indexed: 01/02/2023]
Abstract
Nudix pyrophosphatases are a well represented protein family in the Deinococcus radiodurans genome. These hydrolases, which are known to be enzymatically active towards nucleoside diphosphate derivatives, play a role in cleansing the cell pool of potentially deleterious damage products. Here, the structure of DR2204, the only ADP-ribose pyrophosphatase in the D. radiodurans genome that is known to be active towards flavin adenosine dinucleotide (FAD), is presented at 2.0 angstrom resolution.
Collapse
Affiliation(s)
- A. M. D. Gonçalves
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| | - E. Fioravanti
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| | - M. Stelter
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| | - S. McSweeney
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| |
Collapse
|
15
|
Buchko GW, Litvinova O, Robinson H, Yakunin AF, Kennedy MA. Functional and structural characterization of DR_0079 from Deinococcus radiodurans, a novel Nudix hydrolase with a preference for cytosine (deoxy)ribonucleoside 5'-Di- and triphosphates. Biochemistry 2008; 47:6571-82. [PMID: 18512963 PMCID: PMC2867059 DOI: 10.1021/bi800099d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genome of the extremely radiation resistant bacterium Deinococcus radiodurans encodes 21 Nudix hydrolases, of which only two have been characterized in detail. Here we report the activity and crystal structure for DR_0079, the first Nudix hydrolase observed to have a marked preference for cytosine ribonucleoside 5'-diphosphate (CDP) and cytosine ribonucleoside 5'-triphosphate (CTP). After CDP and CTP, the next most preferred substrates for DR_0079, with a relative activity of <50%, were the corresponding deoxyribose nucleotides, dCDP and dCTP. Hydrolase activity at the site of the phosphodiester bond was corroborated using (31)P NMR spectroscopy to follow the phosphorus resonances for three substrates, CDP, IDP, and CTP, and their hydrolysis products, CMP + P(i), IMP + P(i), and CMP + PP(i), respectively. Nucleophilic substitution at the beta-phosphorus of CDP and CTP was established, using (31)P NMR spectroscopy, by the appearance of an upfield-shifted P(i) resonance and line-broadened PP(i) resonance, respectively, when the hydrolysis was performed in 40% H(2)(18)O-enriched water. The optimal activity for CDP was at pH 9.0-9.5 with the reaction requiring divalent metal cation (Mg(2+) > Mn(2+) > Co(2+)). The biochemical data are discussed with reference to the crystal structure for DR_0079 that was determined in the metal-free form at 1.9 A resolution. The protein contains nine beta-strands, three alpha-helices, and two 3(10)-helices organized into three subdomains: an N-terminal beta-sheet, a central Nudix core, and a C-terminal helix-turn-helix motif. As observed for all known structures of Nudix hydrolases, the alpha-helix of the "Nudix box" is one of two helices that sandwich a "four-strand" mixed beta-sheet. To identify residues potentially involved in metal and substrate binding, NMR chemical shift mapping experiments were performed on (15)N-labeled DR_0079 with the paramagnetic divalent cation Co(2+) and the nonhydrolyzable substrate thymidine 5'-O-(alpha,beta-methylenediphosphate) and the results mapped onto the crystal structure.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
16
|
Coseno M, Martin G, Berger C, Gilmartin G, Keller W, Doublié S. Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res 2008; 36:3474-83. [PMID: 18445629 PMCID: PMC2425470 DOI: 10.1093/nar/gkn079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing.
Collapse
Affiliation(s)
- Molly Coseno
- Department of Microbiology and Department of Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
17
|
Anantharaman V, Aravind L. Analysis of DBC1 and its homologs suggests a potential mechanism for regulation of sirtuin domain deacetylases by NAD metabolites. Cell Cycle 2008; 7:1467-72. [PMID: 18418069 DOI: 10.4161/cc.7.10.5883] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Deleted in Breast Cancer-1 (DBC1) and its paralog CARP-1 are large multi-domain proteins, with a nuclear or perinuclear localization, and a role in promoting apoptosis upon processing by caspases. Recent studies on human DBC1 show that it is a specific inhibitor of the sirtuin-type deacetylase, Sirt1, which deacetylates histones and p53. Using sensitive sequence profile searches and HMM-HMM comparisons we show that the central conserved globular domain present in the DBC1 and it homologs from diverse eukaryotes is a catalytically inactive version of the Nudix hydrolase (MutT) domain. Given that Nudix domains are known to bind nucleoside diphosphate sugars and NAD, we predict that this domain in DBC1 and its homologs binds NAD metabolites such as ADP-ribose. Hence, we propose that DBC1 and its homologs are likely to regulate the activity of SIRT1 or related deacetylases by sensing the soluble products or substrates of the NAD-dependent deacetylation reaction. The complex domain architectures of the members of the DBC1 family, which include fusions to the RNA-binding S1-like domain, the DNA-binding SAP domain and EF-hand domains, suggest that they are likely to function as integrators of distinct regulatory signals including chromatin protein modification, soluble compounds in NAD metabolism, apoptotic stimuli and RNA recognition.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | |
Collapse
|
18
|
Fisher DI, Cartwright JL, McLennan AG. Characterization of the Mn2+-stimulated (di)adenosine polyphosphate hydrolase encoded by the Deinococcus radiodurans DR2356 nudix gene. Arch Microbiol 2006; 186:415-24. [PMID: 16900379 DOI: 10.1007/s00203-006-0155-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 06/26/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
The DR2356 nudix hydrolase gene from Deinococcus radiodurans has been cloned and the product expressed as an 18 kDa histidine-tagged protein. The enzyme hydrolysed adenosine and diadenosine polyphosphates, always generating ATP as one of the initial products. ATP and other (deoxy)nucleoside triphosphates were also substrates, yielding (d)NDP and Pi as products. The DR2356 protein was most active at pH 8.6-9.0 and showed a strong preference for Mn(2+) as activating cation. Mg(2+) ions at 15 mM supported only 5% of the activity achieved with 2 mM Mn(2+). K (m) and k (cat) values for diadenosine tetra-, penta- and hexaphosphates were 2.0, 2.4 and 1.1 microM and 11.4, 28.6 and 12.0 s(-1), respectively, while for GTP they were 20.3 microM and 1.8 s(-1), respectively. The K (m )for adenosine 5'-pentaphosphate was <1 microM. Expression analysis showed the DR2356 gene to be induced eight- to ninefold in stationary phase and in cells subjected to slow dehydration plus rehydration. Superoxide (but not peroxide) treatment and rapid dehydration caused a two-to threefold induction. The Mn-requirement and induction in stationary phase suggest that DR2356 may have a specific role in maintenance mode metabolism in stationary phase as Mn(2+) accumulates.
Collapse
Affiliation(s)
- David I Fisher
- School of Biological Sciences, Biosciences Building, University of Liverpool, P.O. Box 147, Liverpool, UK
| | | | | |
Collapse
|
19
|
Zha M, Zhong C, Peng Y, Hu H, Ding J. Crystal structures of human NUDT5 reveal insights into the structural basis of the substrate specificity. J Mol Biol 2006; 364:1021-33. [PMID: 17052728 DOI: 10.1016/j.jmb.2006.09.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/23/2022]
Abstract
Human NUDT5 (hNUDT5) is an ADP-ribose pyrophosphatase (ADPRase) belonging to the Nudix hydrolase superfamily. It presumably plays important roles in controlling the intracellular level of ADP-ribose (ADPR) to prevent non-enzymatic ADP-ribosylation by hydrolyzing ADPR to AMP and ribose 5'-phosphate. We report here the crystal structures of hNUDT5 in apo form, in complex with ADPR, and in complex with AMP with bound Mg2+. hNUDT5 forms a homodimer with substantial domain swapping and assumes a structure more similar to Escherichia coli ADPRase ORF209 than human ADPRase NUDT9. The adenine moiety of the substrates is specifically recognized by the enzyme via hydrogen-bonding interactions between N1 and N6 of the base and Glu47 of one subunit, and between N7 of the base and Arg51 of the other subunit, providing the molecular basis for the high selectivity of hNUDT5 for ADP-sugars over other sugar nucleotides. Structural comparisons with E. coli ADPRase ORF209 and ADPXase ORF186 indicate that the existence of an aromatic residue on loop L8 in ORF186 seems to be positively correlated with its enzymatic activity on APnA, whereas hNUDT5 and ORF209 contain no such residue and thus have low or no activities on APnA.
Collapse
Affiliation(s)
- Manwu Zha
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
20
|
Xu W, Dunn CA, O'handley SF, Smith DL, Bessman MJ. Three new Nudix hydrolases from Escherichia coli. J Biol Chem 2006; 281:22794-8. [PMID: 16766526 DOI: 10.1074/jbc.m603407200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three members of the Nudix (nucleoside diphosphate X) hydrolase superfamily have been cloned from Escherichia coli MG1655 and expressed. The proteins have been purified and identified as enzymes active on nucleoside diphosphate derivatives with the following specificities. Orf141 (yfaO) is a nucleoside triphosphatase preferring pyrimidine deoxynucleoside triphosphates. Orf153 (ymfB) is a nonspecific nucleoside tri- and diphosphatase and atypically releases inorganic orthophosphate from triphosphates instead of pyrophosphate. Orf191 (yffH) is a highly active GDP-mannose pyrophosphatase. All three enzymes require a divalent cation for activity and are optimally active at alkaline pH, characteristic of the Nudix hydrolase superfamily. The question of whether or not Orf1.9 (wcaH) is a bona fide member of the Nudix hydrolase superfamily is discussed.
Collapse
Affiliation(s)
- Wenlian Xu
- Department of Biology and The McCollum Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
21
|
Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, Gabelli SB, Bianchet MA, Kang LW, Amzel LM. Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys 2005; 433:129-43. [PMID: 15581572 DOI: 10.1016/j.abb.2004.08.017] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/16/2004] [Indexed: 12/12/2022]
Abstract
Nudix hydrolases catalyze the hydrolysis of nucleoside diphosphates linked to other moieties, X, and contain the sequence motif or Nudix box, GX(5)EX(7)REUXEEXGU. The mechanisms of Nudix hydrolases are highly diverse in the position on the substrate at which nucleophilic substitution occurs, and in the number of required divalent cations. While most proceed by associative nucleophilic substitutions by water at specific internal phosphorus atoms of a diphosphate or polyphosphate chain, members of the GDP-mannose hydrolase sub-family catalyze dissociative nucleophilic substitutions, by water, at carbon. The site of substitution is likely determined by the positions of the general base and the entering water. The rate accelerations or catalytic powers of Nudix hydrolases range from 10(9)- to 10(12)-fold. The reactions are accelerated 10(3)-10(5)-fold by general base catalysis by a glutamate residue within, or beyond the Nudix box, or by a histidine beyond the Nudix box. Lewis acid catalysis, which contributes 10(3)-10(5)-fold to the rate acceleration, is provided by one, two, or three divalent cations. One divalent cation is coordinated by two or three conserved residues of the Nudix box, the initial glycine and one or two glutamate residues, together with a remote glutamate or glutamine ligand from beyond the Nudix box. Some Nudix enzymes require one (MutT) or two additional divalent cations (Ap(4)AP), to neutralize the charge of the polyphosphate chain, to help orient the attacking hydroxide or oxide nucleophile, and/or to facilitate the departure of the anionic leaving group. Additional catalysis (10-10(3)-fold) is provided by the cationic side chains of lysine and arginine residues and by H-bond donation by tyrosine residues, to orient the general base, or to promote the departure of the leaving group. The overall rate accelerations can be explained by both independent and cooperative effects of these catalytic components.
Collapse
Affiliation(s)
- A S Mildvan
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Swarbrick JD, Buyya S, Gunawardana D, Gayler KR, McLennan AG, Gooley PR. Structure and substrate-binding mechanism of human Ap4A hydrolase. J Biol Chem 2004; 280:8471-81. [PMID: 15596429 DOI: 10.1074/jbc.m412318200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asymmetric diadenosine 5',5'''-P(1),P(4)-tetraphosphate (Ap(4)A) hydrolases play a major role in maintaining homeostasis by cleaving the metabolite diadenosine tetraphosphate (Ap(4)A) back into ATP and AMP. The NMR solution structures of the 17-kDa human asymmetric Ap(4)A hydrolase have been solved in both the presence and absence of the product ATP. The adenine moiety of the nucleotide predominantly binds in a ring stacking arrangement equivalent to that observed in the x-ray structure of the homologue from Caenorhabditis elegans. The binding site is, however, markedly divergent to that observed in the plant/pathogenic bacteria class of enzymes, opening avenues for the exploration of specific therapeutics. Binding of ATP induces substantial conformational and dynamic changes that were not observed in the C. elegans structure. In contrast to the C. elegans homologue, important side chains that play a major role in substrate binding do not have to reorient to accommodate the ligand. This may have important implications in the mechanism of substrate recognition in this class of enzymes.
Collapse
Affiliation(s)
- James D Swarbrick
- Department of Biochemistry and Molecular Biology, the University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|