1
|
Sethi A, Agrawal N, Brezovsky J. Impact of water models on the structure and dynamics of enzyme tunnels. Comput Struct Biotechnol J 2024; 23:3946-3954. [PMID: 39582894 PMCID: PMC11584523 DOI: 10.1016/j.csbj.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Protein hydration plays a vital role in many biological functions, and molecular dynamics simulations are frequently used to study it. However, the accuracy of these simulations is often sensitive to the water model used, a phenomenon particularly evident in intrinsically disordered proteins. Here, we investigated the extent to which the choice of water model alters the behavior of complex networks of tunnels within proteins. Tunnels are essential because they allow the exchange of substrates and products between buried enzyme active sites and the bulk solvent, directly affecting enzyme efficiency and selectivity, making the study of tunnels crucial for a holistic understanding of enzyme function at the molecular level. By performing simulations of haloalkane dehalogenase LinB and its two variants with engineered tunnels using TIP3P and OPC models, we investigated their effects on the overall tunnel topology. We also analyzed the properties of the primary tunnels, including their conformation, bottleneck dimensions, sampling efficiency, and the duration of tunnel openings. Our data demonstrate that all three proteins exhibited similar conformational behavior in both models but differed in the geometrical characteristics of their auxiliary tunnels, consistent with experimental observations. Interestingly, the results indicate that the stability of the open tunnels might be sensitive to the water model used. Because TIP3P can provide comparable data on the overall tunnel network, it is a valid choice when computational resources are limited or compatibility issues impede the use of OPC. However, OPC seems preferable for calculations requiring an accurate description of transport kinetics.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61–614, Poland
| | - Nikhil Agrawal
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61–614, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, Warsaw 02–109, Poland
| |
Collapse
|
2
|
Huan X, Zhuo N, Lee HY, Ren EC. Allopurinol non-covalently facilitates binding of unconventional peptides to HLA-B*58:01. Sci Rep 2023; 13:9373. [PMID: 37296297 PMCID: PMC10256732 DOI: 10.1038/s41598-023-36293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Allopurinol, widely used in gout treatment, is the most common cause of severe cutaneous adverse drug reactions. The risk of developing such life-threatening reactions is increased particularly for HLA-B*58:01 positive individuals. However the mechanism of action between allopurinol and HLA remains unknown. We demonstrate here that a Lamin A/C peptide KAGQVVTI which is unable to bind HLA-B*58:01 on its own, is enabled to form a stable peptide-HLA complex only in the presence of allopurinol. Crystal structure analysis reveal that allopurinol non-covalently facilitated KAGQVVTI to adopt an unusual binding conformation, whereby the C-terminal isoleucine does not engage as a PΩ that typically fit deeply in the binding F-pocket. A similar observation, though to a lesser degree was seen with oxypurinol. Presentation of unconventional peptides by HLA-B*58:01 aided by allopurinol contributes to our fundamental understanding of drug-HLA interactions. The binding of peptides from endogenously available proteins such as self-protein lamin A/C and viral protein EBNA3B suggest that aberrant loading of unconventional peptides in the presence of allopurinol or oxypurinol may be able to trigger anti-self reactions that can lead to Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS).
Collapse
Affiliation(s)
- Xuelu Huan
- Singapore Immunology Network (SigN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Nicole Zhuo
- Singapore Immunology Network (SigN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Haur Yueh Lee
- Allergy Center and Department of Dermatology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network (SigN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore.
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
3
|
de Oliveira GAP, Arruda HRS, de Andrade GC, Silva JL. Evolutionary Role of Water-Accessible Cavities in Src Homology 2 (SH2) Domains. J Phys Chem B 2022; 126:8689-8698. [PMID: 36281877 DOI: 10.1021/acs.jpcb.2c05409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein excited states are fundamental in the understanding of biological function, despite the fact they are hardly observed using traditional biophysical methodologies. Pressure perturbation coupled with nuclear magnetic resonance (NMR) spectroscopy is a powerful physicochemical tool to glance at these low-populated high-energy states on a residue-by-residue basis and underpin mechanistic insights into protein functionalities. Here we performed pressure titrations using NMR spectroscopy and relaxation dispersion experiments to identify the low-lying energetic states of the c-Abl SH2 domain. By showing that the SH2 excited state contains a hydrated hydrophobic cavity, fast-exchange motions, and highly conserved residues facing the water-accessible hole, we discuss the implications of water-protein interactions in SH2 modules achieving high-affinity binding and promiscuous phospho-Tyr peptide recognition.
Collapse
Affiliation(s)
- Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ21941-902, Brazil
| | - Hiam R S Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ21941-902, Brazil
| | - Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ21941-902, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ21941-902, Brazil
| |
Collapse
|
4
|
Leitgeb U, Furtmüller PG, Hofbauer S, Brito JA, Obinger C, Pfanzagl V. The staphylococcal inhibitory protein SPIN binds to human myeloperoxidase with picomolar affinity but only dampens halide oxidation. J Biol Chem 2022; 298:102514. [PMID: 36150500 DOI: 10.1016/j.jbc.2022.102514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022] Open
Abstract
The heme enzyme myeloperoxidase (MPO) is one of the key players in the neutrophil-mediated killing of invading pathogens as part of the innate immune system. MPO generates antimicrobial oxidants which indiscriminately and effectively kill phagocytosed pathogens. Staphylococcus aureus however is able to escape this fate, in part by secreting a small protein called SPIN (Staphylococcal Peroxidase Inhibitor), which specifically targets and inhibits MPO in a structurally complex manner. Here we present the first crystal structures of the complex of SPIN-aureus and a truncated version (SPIN-truncated) with mature dimeric leukocyte MPO. We unravel the contributions of the two domains to the kinetics and thermodynamics of SPIN-aureus binding to MPO by using a broad array of complementary biochemical and biophysical methods. The C-terminal "recognition" domain is shown to mediate specific binding to MPO, while interaction of the N-terminal "inhibitory" domain is guided mainly by hydrophobic effects and thus is less sequence-dependent. We found that inhibition of MPO is achieved by reducing substrate migration, but SPIN-aureus cannot completely block MPO activity. Its' effectiveness is inversely related to substrate size, with no discernible dependence on other factors. Thus, SPIN-aureus is an extremely high-affinity inhibitor and highly efficient for substrates larger than halogens. As aberrant MPO activity is implicated in a number of chronic inflammatory diseases, SPIN-aureus is the first promising protein inhibitor for specific inhibition of human MPO.
Collapse
Affiliation(s)
- Urban Leitgeb
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Paul G Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Jose A Brito
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, 2780-157 Oeiras, Portugal
| | - Christian Obinger
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Vera Pfanzagl
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
5
|
Ruggiero FM, Springer S. Homotypic and heterotypic in cis associations of MHC class I molecules at the cell surface. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:85-99. [PMID: 35647522 PMCID: PMC9133507 DOI: 10.1016/j.crimmu.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties. Major histocompatibility complex class I molecules form homotypic and heterotypic associations at the cell surface. Associations show distinctive stoichiometry and biochemical properties. Associations might regulate immunological and non-immunological processes. Heterotypic association with cell surface receptors might regulate receptor's activity. Homotypic associations have been related to pathological outcomes.
Collapse
|
6
|
Bell DR, Domeniconi G, Yang CC, Zhou R, Zhang L, Cong G. Dynamics-Based Peptide-MHC Binding Optimization by a Convolutional Variational Autoencoder: A Use-Case Model for CASTELO. J Chem Theory Comput 2021; 17:7962-7971. [PMID: 34793168 DOI: 10.1021/acs.jctc.1c00870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unsolved challenge in the development of antigen-specific immunotherapies is determining the optimal antigens to target. Comprehension of antigen-major histocompatibility complex (MHC) binding is paramount toward achieving this goal. Here, we apply CASTELO, a combined machine learning-molecular dynamics (ML-MD) approach, to identify per-residue antigen binding contributions and then design novel antigens of increased MHC-II binding affinity for a type 1 diabetes-implicated system. We build upon a small-molecule lead optimization algorithm by training a convolutional variational autoencoder (CVAE) on MD trajectories of 48 different systems across four antigens and four HLA serotypes. We develop several new machine learning metrics including a structure-based anchor residue classification model as well as cluster comparison scores. ML-MD predictions agree well with experimental binding results and free energy perturbation-predicted binding affinities. Moreover, ML-MD metrics are independent of traditional MD stability metrics such as contact area and root-mean-square fluctuations (RMSF), which do not reflect binding affinity data. Our work supports the role of structure-based deep learning techniques in antigen-specific immunotherapy design.
Collapse
Affiliation(s)
- David R Bell
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Giacomo Domeniconi
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Chih-Chieh Yang
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Zhejiang University, 688 Yuhangtang Road, Hangzhou 310027, China
| | - Leili Zhang
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Guojing Cong
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States.,Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
7
|
Bell DR, Chen SH. Toward Guided Mutagenesis: Gaussian Process Regression Predicts MHC Class II Antigen Mutant Binding. J Chem Inf Model 2021; 61:4857-4867. [PMID: 34375111 DOI: 10.1021/acs.jcim.1c00458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antigen-specific immunotherapies (ASI) require successful loading and presentation of antigen peptides into the major histocompatibility complex (MHC) binding cleft. One route of ASI design is to mutate native antigens for either stronger or weaker binding interaction to MHC. Exploring all possible mutations is costly both experimentally and computationally. To reduce experimental and computational expense, here we investigate the minimal amount of prior data required to accurately predict the relative binding affinity of point mutations for peptide-MHC class II (pMHCII) binding. Using data from different residue subsets, we interpolate pMHCII mutant binding affinities by Gaussian process (GP) regression of residue volume and hydrophobicity. We apply GP regression to an experimental data set from the Immune Epitope Database, and theoretical data sets from NetMHCIIpan and Free Energy Perturbation calculations. We find that GP regression can predict binding affinities of nine neutral residues from a six-residue subset with an average R2 coefficient of determination value of 0.62 ± 0.04 (±95% CI), average error of 0.09 ± 0.01 kcal/mol (±95% CI), and with an receiver operating characteristic (ROC) AUC value of 0.92 for binary classification of enhanced or diminished binding affinity. Similarly, metrics increase to an R2 value of 0.69 ± 0.04, average error of 0.07 ± 0.01 kcal/mol, and an ROC AUC value of 0.94 for predicting seven neutral residues from an eight-residue subset. Our work finds that prediction is most accurate for neutral residues at anchor residue sites without register shift. This work holds relevance to predicting pMHCII binding and accelerating ASI design.
Collapse
Affiliation(s)
- David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
8
|
Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020; 157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Considering the multifaceted protective and homeostatic roles of the complement system, many consequences arise when drug carriers, and particulate pharmaceutical formulations clash with complement proteins, and trigger complement cascade. Complement activation may induce formulation destabilization, promote opsonization, and affect biological and therapeutic performance of pharmaceutical nano- and micro-particles. In some cases, complement activation is beneficial, where complement may play a role in prophylactic protection, whereas uncontrolled complement activation is deleterious, and contributes to disease progression. Accordingly, design initiatives with particulate medicines should consider complement activation properties of the end formulation within the context of administration route, dosing, systems biology, and therapeutic perspective. Here we examine current progress in mechanistic processes underlying complement activation by pre-clinical and clinical particles, identify opportunities and challenges ahead, and suggest future directions in nanomedicine-complement interface research.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy; CRIBI Biotechnology Center, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Denver, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| |
Collapse
|
9
|
Ortiz-Mahecha CA, Bohórquez HJ, Agudelo WA, Patarroyo MA, Patarroyo ME, Suárez CF. Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal. J Chem Inf Model 2019; 59:5148-5160. [DOI: 10.1021/acs.jcim.9b00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Hugo J. Bohórquez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá D.C., Colombia
| | - William A. Agudelo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
| | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carlos F. Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| |
Collapse
|
10
|
Serratos IN, Millán-Pacheco C, Garza-Ramos G, Pérez-Hernández G, Zubillaga RA. Exploring interfacial water trapping in protein-ligand complexes with multithermal titration calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:488-495. [PMID: 29307720 DOI: 10.1016/j.bbapap.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/02/2017] [Accepted: 01/03/2018] [Indexed: 11/18/2022]
Abstract
In this work, we examine the hypothesis about how trapped water molecules at the interface between triosephosphate isomerase (TIM) and either of two phosphorylated inhibitors, 2-phosphoglycolate (2PG) or phosphoglycolohydroxamate (PGH), can explain the anomalous highly negative binding heat capacities (ΔCp,b) of both complexes, TIM-2PG and TIM-PGH. We performed fluorimetric titrations of the enzyme with PGH inhibitor under osmotic stress conditions, using various concentrations of either osmolyte: sucrose, ethylene glycol or glycine betaine. We also analyze the binding processes under various stressor concentrations using a novel calorimetric methodology that allows ΔCp,b determinations in single experiments: Multithermal Titration Calorimetry. The binding constant of the TIM-PGH complex decreased gradually with the concentration of all osmolytes, but at diverse extents depending on the osmolyte nature. According to the osmotic stress theory, this decrease indicates that the number of water molecules associated with the enzyme increases with inhibitor binding, i.e. some solvent molecules became trapped. Additionally, the binding heat capacities became less negative at higher osmolyte concentrations, their final values depending on the osmolyte. These effects were also observed in the TIM-2PG complex using sucrose as stressor. Our results strongly suggest that some water molecules became immobilized when the TIM-inhibitor complexes were formed. A computational analysis of the hydration state of the binding site of TIM in both its free state and its complexed form with 2PG or PGH, based on molecular dynamics (MD) simulations in explicit solvent, showed that the binding site effectively immobilized additional water molecules after binding these inhibitors.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, C.P. 09340, Mexico.
| | - Cesar Millán-Pacheco
- Facultad de Farmacia. Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. C.P. 62209, Mexico.
| | - Georgina Garza-Ramos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México, C.P. 05348, Mexico.
| | - Rafael A Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, C.P. 09340, Mexico.
| |
Collapse
|
11
|
Nguyen TB, Jayaraman P, Bergseng E, Madhusudhan MS, Kim CY, Sollid LM. Unraveling the structural basis for the unusually rich association of human leukocyte antigen DQ2.5 with class-II-associated invariant chain peptides. J Biol Chem 2017; 292:9218-9228. [PMID: 28364043 DOI: 10.1074/jbc.m117.785139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/28/2017] [Indexed: 11/06/2022] Open
Abstract
Human leukocyte antigen (HLA)-DQ2.5 (DQA1*05/DQB1*02) is a class-II major histocompatibility complex protein associated with both type 1 diabetes and celiac disease. One unusual feature of DQ2.5 is its high class-II-associated invariant chain peptide (CLIP) content. Moreover, HLA-DQ2.5 preferentially binds the non-canonical CLIP2 over the canonical CLIP1. To better understand the structural basis of HLA-DQ2.5's unusual CLIP association characteristics, better insight into the HLA-DQ2.5·CLIP complex structures is required. To this end, we determined the X-ray crystal structure of the HLA-DQ2.5· CLIP1 and HLA-DQ2.5·CLIP2 complexes at 2.73 and 2.20 Å, respectively. We found that HLA-DQ2.5 has an unusually large P4 pocket and a positively charged peptide-binding groove that together promote preferential binding of CLIP2 over CLIP1. An α9-α22-α24-α31-β86-β90 hydrogen bond network located at the bottom of the peptide-binding groove, spanning from the P1 to P4 pockets, renders the residues in this region relatively immobile. This hydrogen bond network, along with a deletion mutation at α53, may lead to HLA-DM insensitivity in HLA-DQ2.5. A molecular dynamics simulation experiment reported here and recent biochemical studies by others support this hypothesis. The diminished HLA-DM sensitivity is the likely reason for the CLIP-rich phenotype of HLA-DQ2.5.
Collapse
Affiliation(s)
- Thanh-Binh Nguyen
- the Bioinformatics Institute, Singapore 138671, Singapore.,the Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Priya Jayaraman
- the Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Elin Bergseng
- the Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - M S Madhusudhan
- the Bioinformatics Institute, Singapore 138671, Singapore.,the Indian Institute of Science Education and Research, Pune 411008, India, and
| | - Chu-Young Kim
- From the Department of Chemistry and .,School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79968.,Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Ludvig M Sollid
- the Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| |
Collapse
|
12
|
Dash R, Das R, Junaid M, Akash MFC, Islam A, Hosen SZ. In silico-based vaccine design against Ebola virus glycoprotein. Adv Appl Bioinform Chem 2017; 10:11-28. [PMID: 28356762 PMCID: PMC5367765 DOI: 10.2147/aabc.s115859] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ebola virus (EBOV) is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154-162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY) interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV.
Collapse
Affiliation(s)
- Raju Dash
- Molecular Modeling and Drug Design Laboratory (MMDDL), Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chittagong, Bangladesh
| | - Rasel Das
- Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia
| | - Md Junaid
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - Ashekul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Sm Zahid Hosen
- Molecular Modeling and Drug Design Laboratory (MMDDL), Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chittagong, Bangladesh
| |
Collapse
|
13
|
González R, Suárez CF, Bohórquez HJ, Patarroyo MA, Patarroyo ME. Semi-empirical quantum evaluation of peptide – MHC class II binding. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE. Water Determines the Structure and Dynamics of Proteins. Chem Rev 2016; 116:7673-97. [PMID: 27186992 DOI: 10.1021/acs.chemrev.5b00664] [Citation(s) in RCA: 599] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist.
Collapse
Affiliation(s)
| | - Ali Hassanali
- International Center for Theoretical Physics, Condensed Matter and Statistical Physics 34151 Trieste, Italy
| | - Martina Havenith
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Richard Henchman
- Manchester Institute of Biotechnology The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Pohl
- Johannes Kepler University , Gruberstrasse, 40 4020 Linz, Austria
| | - Fabio Sterpone
- Institut de Biologie Physico-Chimique Laboratoire de Biochimie Théorique 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University , 751 24 Uppsala, Sweden
| | - Yao Xu
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Chakraborty D, Taly A, Sterpone F. Stay Wet, Stay Stable? How Internal Water Helps the Stability of Thermophilic Proteins. J Phys Chem B 2015; 119:12760-70. [PMID: 26335353 DOI: 10.1021/acs.jpcb.5b05791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a systematic computational investigation of the internal hydration of a set of homologous proteins of different stability content and molecular complexities. The goal of the study is to verify whether structural water can be part of the molecular mechanisms ensuring enhanced stability in thermophilic enzymes. Our free-energy calculations show that internal hydration in the thermophilic variants is generally more favorable, and that the cumulated effect of wetting multiple sites results in a meaningful contribution to stability. Moreover, thanks to a more effective capability to retain internal water, some thermophilic proteins benefit by a systematic gain from internal wetting up to their optimal working temperature. Our work supports the idea that internal wetting can be viewed as an alternative molecular variable to be tuned for increasing protein stability.
Collapse
Affiliation(s)
- Debashree Chakraborty
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
16
|
Kumar A, Sechi LA, Caboni P, Marrosu MG, Atzori L, Pieroni E. Dynamical insights into the differential characteristics of Mycobacterium avium subsp. paratuberculosis peptide binding to HLA-DRB1 proteins associated with multiple sclerosis. NEW J CHEM 2015. [DOI: 10.1039/c4nj01903b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Differential properties of MAP binding to HLA proteins in Sardinian MS patients.
Collapse
Affiliation(s)
- Amit Kumar
- CRS4 Science and Technology Park Polaris
- Biomedicine Dept
- Pula (CA)
- Italy
- Department of Biomedical Sciences
| | - Leonardo A. Sechi
- Department of Biomedical Sciences
- Microbiology and Virology Unit
- University of Sassari
- Sassari
- Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences
- University of Cagliari
- Cagliari
- Italy
| | - Maria Giovanna Marrosu
- Multiple Sclerosis Center
- Department of Public Health and Clinical and Molecular Medicine
- University of Cagliari
- Cagliari
- Italy
| | - Luigi Atzori
- Department of Biomedical Sciences
- Oncology and Molecular Pathology Unit
- University of Cagliari
- Cagliari
- Italy
| | - Enrico Pieroni
- CRS4 Science and Technology Park Polaris
- Biomedicine Dept
- Pula (CA)
- Italy
| |
Collapse
|
17
|
Dutta P, Botlani M, Varma S. Water Dynamics at Protein–Protein Interfaces: Molecular Dynamics Study of Virus–Host Receptor Complexes. J Phys Chem B 2014; 118:14795-807. [DOI: 10.1021/jp5089096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Moghimi SM. Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth. J Control Release 2014; 190:556-62. [PMID: 24746624 DOI: 10.1016/j.jconrel.2014.03.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/29/2014] [Indexed: 12/28/2022]
Abstract
A wide variety of nanocarriers and particularly cancer nanomedicines activate the complement system, which is the first line of the innate immune defence mechanism. Complement activation may induce inflammatory responses, but such responses arising from uncontrolled complement activation could be life threatening. Accordingly, the role of complement in initiation of adverse reactions to particulate and polymer therapeutics is receiving increasing attention. Furthermore, the involvement of complement-activation products in promoting tumour growth has also been indicated. This could be of serious concern for development of cancer nanomedicines and cancer nanotechnology initiatives. These concepts are reviewed with preliminary evidence that intra-tumoural accumulation of model long circulating nanoparticles could promote tumour growth.
Collapse
Affiliation(s)
- S M Moghimi
- Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
19
|
Capraro DT, Lammert H, Heidary DK, Roy M, Gross LA, Onuchic JN, Jennings PA. Altered backbone and side-chain interactions result in route heterogeneity during the folding of interleukin-1β (IL-1β). Biophys J 2014; 105:975-83. [PMID: 23972849 DOI: 10.1016/j.bpj.2013.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/23/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022] Open
Abstract
Deletion of the β-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1β into antagonist activity. Conversely, circular permutations of IL-1β conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1β would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated β-strand bridging interactions within the pseudosymmetric β-trefoil fold of IL-1β highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1β. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity.
Collapse
Affiliation(s)
- Dominique T Capraro
- Department of Chemistry and Biochemistry, University of California, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Insight of Endo-1,4-Xylanase II from Trichoderma reesei: Conserved Water-Mediated H-Bond and Ion Pairs Interactions. Protein J 2013; 32:649-56. [DOI: 10.1007/s10930-013-9528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Ivanov S, Dimitrov I, Doytchinova I. Quantitative prediction of peptide binding to HLA-DP1 protein. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:811-815. [PMID: 24091413 DOI: 10.1109/tcbb.2013.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The exogenous proteins are processed by the host antigen-processing cells. Peptidic fragments of them are presented on the cell surface bound to the major hystocompatibility complex (MHC) molecules class II and recognized by the CD4+ T lymphocytes. The MHC binding is considered as the crucial prerequisite for T-cell recognition. Only peptides able to form stable complexes with the MHC proteins are recognized by the T-cells. These peptides are known as T-cell epitopes. All T-cell epitopes are MHC binders, but not all MHC binders are T-cell epitopes. The T-cell epitope prediction is one of the main priorities of immunoinformatics. In the present study, three chemometric techniques are combined to derive a model for in silico prediction of peptide binding to the human MHC class II protein HLA-DP1. The structures of a set of known peptide binders are described by amino acid z-descriptors. Data are processed by an iterative self-consisted algorithm using the method of partial least squares, and a quantitative matrix (QM) for peptide binding prediction to HLA-DP1 is derived. The QM is validated by two sets of proteins and showed an average accuracy of 86 percent.
Collapse
|
22
|
Davies MN, Guan P, Blythe MJ, Salomon J, Toseland CP, Hattotuwagama C, Walshe V, Doytchinova IA, Flower DR. Using databases and data mining in vaccinology. Expert Opin Drug Discov 2013; 2:19-35. [PMID: 23496035 DOI: 10.1517/17460441.2.1.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Throughout time functional immunology has accumulated vast amounts of quantitative and qualitative data relevant to the design and discovery of vaccines. Such data includes, but is not limited to, components of the host and pathogen genome (including antigens and virulence factors), T- and B-cell epitopes and other components of the antigen presentation pathway and allergens. In this review the authors discuss a range of databases that archive such data. Built on such information, increasingly sophisticated data mining techniques have developed that create predictive models of utilitarian value. With special reference to epitope data, the authors discuss the strengths and weaknesses of the available techniques and how they can aid computer-aided vaccine design deliver added value for vaccinology.
Collapse
Affiliation(s)
- Matthew N Davies
- The Jenner Institute, University of Oxford, Compton, Berkshire, RG20 7NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Patronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol 2013; 3:120139. [PMID: 23303307 PMCID: PMC3603454 DOI: 10.1098/rsob.120139] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/11/2012] [Indexed: 01/08/2023] Open
Abstract
Vaccination is generally considered to be the most effective method of preventing infectious diseases. All vaccinations work by presenting a foreign antigen to the immune system in order to evoke an immune response. The active agent of a vaccine may be intact but inactivated ('attenuated') forms of the causative pathogens (bacteria or viruses), or purified components of the pathogen that have been found to be highly immunogenic. The increased understanding of antigen recognition at molecular level has resulted in the development of rationally designed peptide vaccines. The concept of peptide vaccines is based on identification and chemical synthesis of B-cell and T-cell epitopes which are immunodominant and can induce specific immune responses. The accelerating growth of bioinformatics techniques and applications along with the substantial amount of experimental data has given rise to a new field, called immunoinformatics. Immunoinformatics is a branch of bioinformatics dealing with in silico analysis and modelling of immunological data and problems. Different sequence- and structure-based immunoinformatics methods are reviewed in the paper.
Collapse
Affiliation(s)
| | - Irini Doytchinova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
24
|
Ren P, Chun J, Thomas DG, Schnieders MJ, Marucho M, Zhang J, Baker NA. Biomolecular electrostatics and solvation: a computational perspective. Q Rev Biophys 2012; 45:427-91. [PMID: 23217364 PMCID: PMC3533255 DOI: 10.1017/s003358351200011x] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.
Collapse
Affiliation(s)
- Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin
| | | | | | | | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio
| | - Jiajing Zhang
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Nathan A. Baker
- To whom correspondence should be addressed. Pacific Northwest National Laboratory, PO Box 999, MSID K7-29, Richland, WA 99352. Phone: +1-509-375-3997,
| |
Collapse
|
25
|
Kastritis PL, van Dijk ADJ, Bonvin AMJJ. Explicit treatment of water molecules in data-driven protein-protein docking: the solvated HADDOCKing approach. Methods Mol Biol 2012; 819:355-374. [PMID: 22183547 DOI: 10.1007/978-1-61779-465-0_22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Water molecules are active components in, literally, every biochemical event, forming hydrogen bonds, filling cavities, and mediating interactions with other (bio)molecules. Therefore, solvent drastically affects the kinetics and thermodynamics of numerous cellular events, including protein-protein interactions. While docking techniques are becoming successful in predicting the three-dimensional structure of protein-protein complexes, they are still limited in accounting explicitly for water in the binding process. HADDOCK is one of the few programs so far that can explicitly deal with water molecules during docking. Its solvated docking protocol starts from hydrated molecules, and a fraction of the interfacial water is subsequently removed from the docked models in a biased Monte Carlo procedure. The Monte Carlo-based removal is based on interfacial amino acid-water contact propensities derived from a dataset of high-resolution crystal structures of protein-protein complexes. In this chapter, this solvated docking protocol is described and associated methodological aspects are illustrated through an application example. It is shown that, although docking results do not always improve when the solvated docking protocol is applied, scoring is improved and the positions of buried water molecules in an interface are correctly predicted. Therefore, by identifying important water molecules, solvated docking can aid the development of novel inhibitors of protein-protein complexes that might be better accommodated at an interface.
Collapse
|
26
|
Dileep KV, Tintu I, Vinod NV, Saliha PP, Sadasivan C. Role of invariant water molecules in retaining the active site geometry of β-lactamase: a molecular dynamics simulation study. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.590984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
LIU MENGYUAN, XU WEIREN, WANG RUNLING, LIU XUYUAN, LIU PENG, TANG LIDA, CHENG XIANCHAO, ZHOU HUI, HU XIAO, LIU BING. MOLECULAR DYNAMICS SIMULATION OF POINT MUTATIONS OF ARG 221 IN THE ACTIVE SITE OF PROTEIN TYROSINE PHOSPHATASE 1B. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633609005350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is one of the important regulators of signal transduction pathways. The present study aims to investigate the effect of Arg 221 on the active site of PTP1B. Six mutants were carried out using Schrödinger Suite 2007 and molecular dynamics simulation was performed by using the Tinker package. Results show that point mutations at position 221 have great influence on shape of active site, backbone movement of active site, and interaction between substrate and PTP1B. R221H and R221K lead to increased total interaction energies. R221G, R221F and R221T cause increase in total interaction energies, but decrease in interaction energies between pTyr 4 and P loop (catalytic residues). R221E results in both decreased total interaction energies and interaction energies between pTyr 4 and P loop. This indicates that Arg 221 mutated to basic residues can lead to enhanced binding affinity between substrate and protein; when mutated to acidic residues it will decrease binding affinity and catalytic activity; other kinds of mutations result in increased binding affinity but decreased catalytic activity.
Collapse
Affiliation(s)
- MENGYUAN LIU
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - WEIREN XU
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - RUNLING WANG
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - XUYUAN LIU
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - PENG LIU
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - LIDA TANG
- Tianjin Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - XIANCHAO CHENG
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - HUI ZHOU
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - XIAO HU
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - BING LIU
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
28
|
Insaidoo FK, Borbulevych OY, Hossain M, Santhanagopolan SM, Baxter TK, Baker BM. Loss of T cell antigen recognition arising from changes in peptide and major histocompatibility complex protein flexibility: implications for vaccine design. J Biol Chem 2011; 286:40163-73. [PMID: 21937447 DOI: 10.1074/jbc.m111.283564] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1(27-35) tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1(27-35) antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide·MHC complex. These results help explain how the "anchor-fixing" strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.
Collapse
Affiliation(s)
- Francis K Insaidoo
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
29
|
Liu J, Chen KY, Ren EC. Structural insights into the binding of hepatitis B virus core peptide to HLA-A2 alleles: towards designing better vaccines. Eur J Immunol 2011; 41:2097-106. [PMID: 21538979 DOI: 10.1002/eji.201041370] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Binding of specific antigenic peptides with human leukocyte antigen (HLA) molecules is a prerequisite for the initiation of T-cell responses and structural information about the peptide-HLA complex is essential for the detailed understanding of such interactions. HLA-A2 is the most prevalent HLA allele globally but aside from A*02:01 there is a significant lack of crystal structures, particularly for alleles that occur in high frequencies among Asian populations. Here, we report three HLA-A2 structures with the immunodominant hepatitis B core antigen 18-27 (HBcAg18-27) epitope, namely A*02:03, A*02:06, and A*02:07 at resolutions of 2.16, 1.70, and 1.75 Å respectively. This comparative analysis reveals that minor polymorphic residue changes between different HLA alleles can induce significant alterations in the major histocompatibility complex-peptide interface, and introduce conformational changes in the p3-p8 peptide region. Circular dichroism analysis demonstrated the HLA-A2-peptide complexes to have a hierarchy of thermostability and binding affinity in the order of A*02:06>A*02:07>A*02:01>A*02:03. Our findings provide structural insights into the varied HLA-A2 allele binding of the hepatitis B core antigen 18-27 epitope and the data suggest that chemical modifications of the peptide side chains could be a promising strategy to modulate and improve HLA-A2-peptide binding affinity for vaccine design.
Collapse
Affiliation(s)
- Jingxian Liu
- Singapore Immunology Network, A*STAR, Immunos, Singapore
| | | | | |
Collapse
|
30
|
Gnanasekaran R, Agbo JK, Leitner DM. Communication maps computed for homodimeric hemoglobin: Computational study of water-mediated energy transport in proteins. J Chem Phys 2011; 135:065103. [DOI: 10.1063/1.3623423] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
31
|
Tian J, García AE. Simulations of the confinement of ubiquitin in self-assembled reverse micelles. J Chem Phys 2011; 134:225101. [PMID: 21682536 PMCID: PMC3133568 DOI: 10.1063/1.3592712] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/30/2011] [Indexed: 11/14/2022] Open
Abstract
We describe the effects of confinement on the structure, hydration, and the internal dynamics of ubiquitin encapsulated in reverse micelles (RM). We performed molecular dynamics simulations of the encapsulation of ubiquitin into self-assembled protein/surfactant reverse micelles to study the positioning and interactions of the protein with the RM and found that ubiquitin binds to the RM interface at low salt concentrations. The same hydrophobic patch that is recognized by ubiquitin binding domains in vivo is found to make direct contact with the surfactant head groups, hydrophobic tails, and the iso-octane solvent. The fast backbone N-H relaxation dynamics show that the fluctuations of the protein encapsulated in the RM are reduced when compared to the protein in bulk. This reduction in fluctuations can be explained by the direct interactions of ubiquitin with the surfactant and by the reduced hydration environment within the RM. At high concentrations of excess salt, the protein does not bind strongly to the RM interface and the fast backbone dynamics are similar to that of the protein in bulk. Our simulations demonstrate that the confinement of protein can result in altered protein dynamics due to the interactions between the protein and the surfactant.
Collapse
Affiliation(s)
- Jianhui Tian
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
32
|
Expression and Purification of Isotopically Enriched MHC Binding Immunogenic Peptides for NMR Studies. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Insights into the structure of the LC13 TCR/HLA-B8-EBV peptide complex with molecular dynamics simulations. Cell Biochem Biophys 2011; 60:283-95. [DOI: 10.1007/s12013-011-9151-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Yin H, Feng G, Clore GM, Hummer G, Rasaiah JC. Water in the polar and nonpolar cavities of the protein interleukin-1β. J Phys Chem B 2010; 114:16290-7. [PMID: 21047091 PMCID: PMC3005849 DOI: 10.1021/jp108731r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water in the protein interior serves important structural and functional roles and is also increasingly recognized as a relevant factor in drug binding. The nonpolar cavity in the protein interleukin-1β has been reported to be filled by water on the basis of some experiments and simulations and to be empty on the basis of others. Here we study the thermodynamics of filling the central nonpolar cavity and the four polar cavities of interleukin-1β by molecular dynamics simulation. We use different water models (TIP3P and SPC/E) and protein force fields (amber94 and amber03) to calculate the semigrand partition functions term by term that quantify the hydration equilibria. We consistently find that water in the central nonpolar cavity is thermodynamically unstable, independent of force field and water model. The apparent reason is the relatively small size of the cavity, with a volume less than ∼80 Å(3). Our results are consistent with the most recent X-ray crystallographic and simulation studies but disagree with an earlier interpretation of nuclear magnetic resonance (NMR) experiments probing protein-water interactions. We show that, at least semiquantitatively, the measured nuclear Overhauser effects indicating the proximity of water to the methyl groups lining the nonpolar cavity can, in all likelihood, be attributed to interactions with buried and surface water molecules near the cavity. The same methods applied to determine the occupancy of the polar cavities show that they are filled by the same number of water molecules observed in crystallography, thereby validating the theoretical and simulation methods used to study the water occupancy in the nonpolar protein cavity.
Collapse
Affiliation(s)
- Hao Yin
- Department of Chemistry, University of Maine, Orono, ME 0446
| | - Guogang Feng
- Department of Chemistry, University of Maine, Orono, ME 0446
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Gerhard Hummer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | | |
Collapse
|
35
|
Knapp B, Lederer N, Omasits U, Schreiner W. vmdICE: a plug-in for rapid evaluation of molecular dynamics simulations using VMD. J Comput Chem 2010; 31:2868-73. [PMID: 20928849 DOI: 10.1002/jcc.21581] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular dynamics (MD) is a powerful in silico method to investigate the interactions between biomolecules. It solves Newton's equations of motion for atoms over a specified period of time and yields a trajectory file, containing the different spatial arrangements of atoms during the simulation. The movements and energies of each single atom are recorded. For evaluating of these simulation trajectories with regard to biomedical implications, several methods are available. Three well-known ones are the root mean square deviation (RMSD), the root mean square fluctuation (RMSF) and solvent accessible surface area (SASA). Herein, we present a novel plug-in for the software "visual molecular dynamics" (VMD) that allows an interactive 3D representation of RMSD, RMSF, and SASA, directly on the molecule. On the one hand, our plug-in is easy to handle for inexperienced users, and on the other hand, it provides a fast and flexible graphical impression of the spatial dynamics of a system for experts in the field.
Collapse
Affiliation(s)
- Bernhard Knapp
- Department for Biomedical Computer Simulation and Bioinformatics, Medical University of Vienna, Austria.
| | | | | | | |
Collapse
|
36
|
Homology modeling and molecular dynamics simulations of MUC1-9/H-2Kb complex suggest novel binding interactions. J Mol Model 2010; 17:1817-29. [DOI: 10.1007/s00894-010-0884-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
|
37
|
Lignell M, Becker HC. Recognition and binding of a helix-loop-helix peptide to carbonic anhydrase occurs via partly folded intermediate structures. Biophys J 2010; 98:425-33. [PMID: 20141756 PMCID: PMC2814212 DOI: 10.1016/j.bpj.2009.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 10/19/2022] Open
Abstract
We have studied the association of a helix-loop-helix peptide scaffold carrying a benzenesulfonamide ligand to carbonic anhydrase using steady-state and time-resolved fluorescence spectroscopy. The helix-loop-helix peptide, developed for biosensing applications, is labeled with the fluorescent probe dansyl, which serves as a polarity-sensitive reporter of the binding event. Using maximum entropy analysis of the fluorescence lifetime of dansyl at 1:1 stoichiometry reveals three characteristic fluorescence lifetime groups, interpreted as differently interacting peptide/protein structures. We characterize these peptide/protein complexes as mostly bound but unfolded, bound and partly folded, and strongly bound and folded. Furthermore, analysis of the fluorescence anisotropy decay resulted in three different dansyl rotational correlation times, namely 0.18, 1.2, and 23 ns. Using the amplitudes of these times, we can correlate the lifetime groups with the corresponding fluorescence anisotropy component. The 23-ns rotational correlation time, which appears with the same amplitude as a 17-ns fluorescence lifetime, shows that the dansyl fluorophore follows the rotational diffusion of carbonic anhydrase when it is a part of the folded peptide/protein complex. A partly folded and partly hydrated interfacial structure is manifested in an 8-ns dansyl fluorescence lifetime and a 1.2-ns rotational correlation time. This structure, we believe, is similar to a molten-globule-like interfacial structure, which allows segmental movement and has a higher degree of solvent exposure of dansyl. Indirect excitation of dansyl on the helix-loop-helix peptide through Förster energy transfer from one or several tryptophans in the carbonic anhydrase shows that the helix-loop-helix scaffold binds to a tryptophan-rich domain of the carbonic anhydrase. We conclude that binding of the peptide to carbonic anhydrase involves a transition from a disordered to an ordered structure of the helix-loop-helix scaffold.
Collapse
Affiliation(s)
| | - Hans-Christian Becker
- Department of Photochemistry and Molecular Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Li Y, Yang Y, He P, Yang Q. QM/MM Study of Epitope Peptides Binding to HLA-A*0201: The Roles of Anchor Residues and Water. Chem Biol Drug Des 2009; 74:611-8. [DOI: 10.1111/j.1747-0285.2009.00896.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Samsonov S, Teyra J, Pisabarro MT. A molecular dynamics approach to study the importance of solvent in protein interactions. Proteins 2009; 73:515-25. [PMID: 18452208 DOI: 10.1002/prot.22076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Water constitutes the cellular environment for biomolecules to interact. Solvent is important for protein folding and stability, and it is also known to actively participate in many catalytic processes in the cell. However, solvent is often ignored in molecular recognition and not taken into account in protein-protein interaction studies and rational design. Previously we developed SCOWLP, a database and its web application (http://www.scowlp.org), to perform studies on the contribution of solvent to protein interface definition in all protein complexes of the PDB. We introduced the concept of wet spots, interfacial residues interacting only through one water molecule, which were shown to considerably enrich protein interface descriptions. Analysis of interfacial solvent in a nonredundant dataset of protein complexes suggested the importance of including interfacial water molecules in protein interaction studies. In this work we use a molecular dynamics approach to gain deeper insights into solvent contribution to protein interfaces. We characterize the dynamic and energetic properties of water-mediated protein interactions by comparing different interfacial interaction types (direct, dual and wet spot) at residue and solvent level. For this purpose, we perform an analysis of 17 representative complexes from two protein families of different interface nature. Energetically wet spots are quantitatively comparable to other residues in interfaces, and their mobility is shown to be lower than protein surface residues. The residence time of water molecules in wet spots sites is higher than of those on the surface of the protein. In terms of free energy, though wet-spots-forming water molecules are very heterogeneous, their contribution to the free energy of complex formation is considerable. We find that water molecules can play an important role in interaction conservation in protein interfaces by allowing sequence variability in the corresponding binding partner, and we discuss the important implications of our observations related to the use of the correlated mutations concept in protein interactions studies. The results obtained in this work help to deepen our understanding of the physico-chemical nature underlying protein-protein interactions and strengthen the idea of using the wet spots concept to qualitatively improve the accuracy of folding, docking and rational design algorithms.
Collapse
Affiliation(s)
- Sergey Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | | | | |
Collapse
|
40
|
Yaneva R, Springer S, Zacharias M. Flexibility of the MHC class II peptide binding cleft in the bound, partially filled, and empty states: A molecular dynamics simulation study. Biopolymers 2009; 91:14-27. [DOI: 10.1002/bip.21078] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Lazoura E, Lodding J, Farrugia W, Day S, Ramsland PA, Apostolopoulos V. Non-canonical anchor motif peptides bound to MHC class I induce cellular responses. Mol Immunol 2008; 46:1171-8. [PMID: 19118903 DOI: 10.1016/j.molimm.2008.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/05/2008] [Accepted: 11/11/2008] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) on the surface of antigen presenting cells functions to display peptides to the T cell receptor (TCR). Recognition of peptide-MHC by T cells initiates a cascade of signals, which results in the initiation of a T cell dependent immune response. An understanding of how peptides bind to MHC molecules is important for determining the structural basis for T cell dependent immune responses and facilitates the structure-based design of peptides as candidate vaccines to elicit a specific immune response. To date, crystal structures, immunogenicity and in vivo biological relevance have mainly been characterized for high affinity peptide-MHC interactions. From the crystal structures of numerous peptide-MHC complexes it became apparent what canonical sequence features were required for high affinity binding, which led to the ability to predict in most instances peptides with high affinity for MHC. We previously identified the crystal structures of non-canonical peptides in complex with MHC class I (one bound with low affinity and the other with high affinity, but utilizing novel peptide anchors and MHC pockets). It is becoming increasingly evident that other non-canonical peptides can also bind, such as long-, short- and glyco-peptides. However, the in vivo role of non-canonical peptides is not clear and we present here the immunogenicity of two non-canonical peptides and their affinity when bound to MHC class I, H2K(b). Comparison of the three-dimensional structures in complex with MHC suggests major differences in hydrogen bonding patterns with H2K(b), despite sharing similar binding modes, which may account for the differences in affinity and immunogenicity. These studies provide further evidence for the diverse range of peptide ligands that can bind to MHC and be recognized by the TCR, which will facilitate approaches to peptide-based vaccine design.
Collapse
Affiliation(s)
- Eliada Lazoura
- Immunology and Vaccine Laboratory, Centre for Immunology, The Macfarlane Burnet Institute for Medical Research and Public Health, Austin Campus, VIC, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Protein-protein interaction investigated by steered molecular dynamics: the TCR-pMHC complex. Biophys J 2008; 95:3575-90. [PMID: 18621828 DOI: 10.1529/biophysj.108.131383] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a novel steered molecular dynamics scheme to induce the dissociation of large protein-protein complexes. We apply this scheme to study the interaction of a T cell receptor (TCR) with a major histocompatibility complex (MHC) presenting a peptide (p). Two TCR-pMHC complexes are considered, which only differ by the mutation of a single amino acid on the peptide; one is a strong agonist that produces T cell activation in vivo, while the other is an antagonist. We investigate the interaction mechanism from a large number of unbinding trajectories by analyzing van der Waals and electrostatic interactions and by computing energy changes in proteins and solvent. In addition, dissociation potentials of mean force are calculated with the Jarzynski identity, using an averaging method developed for our steering scheme. We analyze the convergence of the Jarzynski exponential average, which is hampered by the large amount of dissipative work involved and the complexity of the system. The resulting dissociation free energies largely underestimate experimental values, but the simulations are able to clearly differentiate between wild-type and mutated TCR-pMHC and give insights into the dissociation mechanism.
Collapse
|
43
|
Omasits U, Knapp B, Neumann M, Steinhauser O, Stockinger H, Kobler R, Schreiner W. Analysis of key parameters for molecular dynamics of pMHC molecules. MOLECULAR SIMULATION 2008. [DOI: 10.1080/08927020802256298] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Rasaiah JC, Garde S, Hummer G. Water in Nonpolar Confinement: From Nanotubes to Proteins and Beyond. Annu Rev Phys Chem 2008; 59:713-40. [DOI: 10.1146/annurev.physchem.59.032607.093815] [Citation(s) in RCA: 586] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shekhar Garde
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Gerhard Hummer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520;
| |
Collapse
|
45
|
Crystallographic study of hydration of an internal cavity in engineered proteins with buried polar or ionizable groups. Biophys J 2008; 94:3208-16. [PMID: 18178652 DOI: 10.1529/biophysj.107.122473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although internal water molecules are essential for the structure and function of many proteins, the structural and physical factors that govern internal hydration are poorly understood. We have examined the molecular determinants of internal hydration systematically, by solving the crystal structures of variants of staphylococcal nuclease with Gln-66, Asn-66, and Tyr-66 at cryo (100 K) and room (298 K) temperatures, and comparing them with existing cryo and room temperature structures of variants with Glu-66, Asp-66, Lys-66, Glu-92 or Lys-92 obtained under conditions of pH where the internal ionizable groups are in the neutral state. At cryogenic temperatures the polar moieties of all these internal side chains are hydrated except in the cases of Lys-66 and Lys-92. At room temperature the internal water molecules were observed only in variants with Glu-66 and Tyr-66; water molecules in the other variants are probably present but they are disordered and therefore undetectable crystallographically. Each internal water molecule establishes between 3 and 5 hydrogen bonds with the protein or with other internal water molecules. The strength of interactions between internal polar side chains and water molecules seems to decrease from carboxylic acids to amides to amines. Low temperature, low cavity volume, and the presence of oxygen atoms in the cavity increase the positional stability of internal water molecules. This set of structures and the physical insight they contribute into internal hydration will be useful for the development and benchmarking of computational methods for artificial hydration of pockets, cavities, and active sites in proteins.
Collapse
|
46
|
Chopra S, Dooling RM, Horner CG, Howell EE. A balancing act between net uptake of water during dihydrofolate binding and net release of water upon NADPH binding in R67 dihydrofolate reductase. J Biol Chem 2007; 283:4690-8. [PMID: 18086667 DOI: 10.1074/jbc.m709443200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
R67 dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. This enzyme is a homotetramer possessing 222 symmetry, and a single active site pore traverses the length of the protein. A promiscuous binding surface can accommodate either DHF or NADPH, thus two nonproductive complexes can form (2NADPH or 2DHF) as well as a productive complex (NADPH.DHF). The role of water in binding was monitored using a number of different osmolytes. From isothermal titration calorimetry (ITC) studies, binding of NADPH is accompanied by the net release of 38 water molecules. In contrast, from both steady state kinetics and ITC studies, binding of DHF is accompanied by the net uptake of water. Although different osmolytes have similar effects on NADPH binding, variable results are observed when DHF binding is probed. Sensitivity to water activity can also be probed by an in vivo selection using the antibacterial drug, trimethoprim, where the water content of the media is decreased by increasing concentrations of sorbitol. The ability of wild type and mutant clones of R67 DHFR to allow host Escherichia coli to grow in the presence of trimethoprim plus added sorbitol parallels the catalytic efficiency of the DHFR clones, indicating water content strongly correlates with the in vivo function of R67 DHFR.
Collapse
Affiliation(s)
- Shaileja Chopra
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | | | |
Collapse
|
47
|
Shah JK, Asthagiri D, Pratt LR, Paulaitis ME. Balancing local order and long-ranged interactions in the molecular theory of liquid water. J Chem Phys 2007; 127:144508. [DOI: 10.1063/1.2766940] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Abstract
Theoretical studies on the solvation of methane molecules in water have shown that the effect of increased pressure is to stabilize solvent separated contacts relative to direct contacts. This suggests that high pressure stabilizes waters that have penetrated into a protein's core, indicating a mechanism for the high pressure denaturation of proteins. We test this theory on a folded protein by studying the penetration of water into the native state of ubiquitin at low and high pressures, using molecular dynamics. An ensemble of conformations sampled in the folded state of ubiquitin has been determined by NMR at two pressures below the protein's denaturation pressure, 30 atm and 3000 atm. We find that 1-5 more waters penetrate the high pressure conformations than the low pressure conformations. Low volume configurations of the system are favored at high pressures, but different components of the system may experience increases or decreases in their specific volumes. We find that penetrating waters have a higher volume per water than bulk waters, but that the volume per protein residue may be lowered by solvation. Furthermore, we find that penetration of the protein by water at high pressures is driven by the difference in the pressure dependence of the probability of cavity opening in the protein and pressure dependence of the probability of cavity opening in the bulk solvent. The volume changes associated with cavity opening and closing indicate that each penetrating water reduces the volume of the system by about 12 mL/mol. The experimental volume change going from the low pressure to the high pressure native state of ubiquitin is 24 mL/mol. Our results indicate that this volume change can be explained by penetration of the protein by two water molecules.
Collapse
Affiliation(s)
- Ryan Day
- Department of Physics, Applied Physics and Astronomy, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
49
|
Damjanović A, Schlessman JL, Fitch CA, García AE, García-Moreno E B. Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins. Biophys J 2007; 93:2791-804. [PMID: 17604315 PMCID: PMC1989710 DOI: 10.1529/biophysj.107.104182] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations of Staphylococcal nuclease and of 10 variants with internal polar or ionizable groups were performed to investigate systematically the molecular determinants of hydration of internal cavities and pockets in proteins. In contrast to apolar cavities in rigid carbon structures, such as nanotubes or buckeyballs, internal cavities in proteins that are large enough to house a few water molecules will most likely be dehydrated unless they contain a source of polarity. The water content in the protein interior can be modulated by the flexibility of protein elements that interact with water, which can impart positional disorder to water molecules, or bias the pattern of internal hydration that is stabilized. This might explain differences in the patterns of hydration observed in crystal structures obtained at cryogenic and room temperature conditions. The ability of molecular dynamics simulations to determine the most likely sites of water binding in internal pockets and cavities depends on its efficiency in sampling the hydration of internal sites and alternative protein and water conformations. This can be enhanced significantly by performing multiple molecular dynamics simulations as well as simulations started from different initial hydration states.
Collapse
Affiliation(s)
- Ana Damjanović
- Johns Hopkins University, Department of Biophysics, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
50
|
Sieker F, Springer S, Zacharias M. Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles. Protein Sci 2007; 16:299-308. [PMID: 17242432 PMCID: PMC2203297 DOI: 10.1110/ps.062568407] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MHC class I molecules load antigenic peptides in the endoplasmic reticulum and present them at the cell surface. Efficiency of peptide loading depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading, whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Comparative unrestrained molecular dynamics simulations on the alpha(1)/alpha(2) peptide binding domains performed in the presence of bound peptides resulted in structures in close agreement with experiments for both alleles. In the absence of peptides, allele-specific conformational changes occurred in the first segment of the alpha(2)-helix that flanks the peptide C-terminal binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a shift toward an altered F-pocket structure deviating significantly from the bound form was observed. Subsequent free energy simulations on induced F-pocket opening in B*4402 confirmed a conformation that deviated significantly from the bound structure. For B*4405, a free energy minimum close to the bound structure was found. The simulations suggest that B*4405 has a greater tendency to adopt a peptide receptive conformation in the absence of peptide, allowing tapasin-independent peptide loading. A possible role of tapasin could be the stabilization of a peptide-receptive class I conformation for HLA-B*4402 and other tapasin-dependent alleles.
Collapse
Affiliation(s)
- Florian Sieker
- School of Engineering and Science, International University Bremen, D-28759 Bremen, Germany
| | | | | |
Collapse
|