1
|
Luo W, Wang J, Xu D, Bai H, Zhang Y, Zhang Y, Li X. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo. Int J Mol Med 2018; 41:2169-2176. [PMID: 29344646 DOI: 10.3892/ijmm.2018.3396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023] Open
Abstract
In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.
Collapse
Affiliation(s)
- Wei Luo
- Department of General Surgery, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junxia Wang
- Department of Neonatology, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dengfeng Xu
- Department of Ophthalmology, Chongqing General Hospital, Chongqing 400014, P.R. China
| | - Huili Bai
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yangli Zhang
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuhong Zhang
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaosong Li
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
2
|
Jurkowski TP, Ravichandran M, Stepper P. Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity. Clin Epigenetics 2015; 7:18. [PMID: 25741388 PMCID: PMC4347971 DOI: 10.1186/s13148-015-0044-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/12/2015] [Indexed: 01/14/2023] Open
Abstract
Epigenetics is currently one of the hottest topics in basic and biomedical research. However, to date, most of the studies have been descriptive in nature, designed to investigate static distribution of various epigenetic modifications in cells. Even though tremendous amount of information has been collected, we are still far from the complete understanding of epigenetic processes, their dynamics or even their direct effects on local chromatin and we still do not comprehend whether these epigenetic states are the cause or the consequence of the transcriptional profile of the cell. In this review, we try to define the concept of synthetic epigenetics and outline the available genome targeting technologies, which are used for locus-specific editing of epigenetic signals. We report early success stories and the lessons we have learned from them, and provide a guide for their application. Finally, we discuss existing limitations of the available technologies and indicate possible areas for further development.
Collapse
Affiliation(s)
- Tomasz P Jurkowski
- Laboratory of Molecular Epigenetics, Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Mirunalini Ravichandran
- Laboratory of Molecular Epigenetics, Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Peter Stepper
- Laboratory of Molecular Epigenetics, Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Falahi F, Sgro A, Blancafort P. Epigenome engineering in cancer: fairytale or a realistic path to the clinic? Front Oncol 2015; 5:22. [PMID: 25705610 PMCID: PMC4319383 DOI: 10.3389/fonc.2015.00022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/19/2015] [Indexed: 01/15/2023] Open
Abstract
Epigenetic modifications such as histone post-transcriptional modifications, DNA methylation, and non-protein-coding RNAs organize the DNA in the nucleus of eukaryotic cells and are critical for the spatio-temporal regulation of gene expression. These epigenetic modifications are reversible and precisely regulated by epigenetic enzymes. In addition to genetic mutations, epigenetic modifications are highly disrupted in cancer relative to normal tissues. Many epigenetic alterations (epi-mutations) are associated with aberrations in the expression and/or activity of epigenetic enzymes. Thus, epigenetic regulators have emerged as prime targets for cancer therapy. Currently, several inhibitors of epigenetic enzymes (epi-drugs) have been approved for use in the clinic to treat cancer patients with hematological malignancies. However, one potential disadvantage of epi-drugs is their lack of locus-selective specificity, which may result in the over-expression of undesirable parts of the genome. The emerging and rapidly growing field of epigenome engineering has opened new grounds for improving epigenetic therapy in view of reducing the genome-wide “off-target” effects of the treatment. In the current review, we will first describe the language of epigenetic modifications and their involvement in cancer. Next, we will overview the current strategies for engineering of artificial DNA-binding domains in order to manipulate and ultimately normalize the aberrant landscape of the cancer epigenome (epigenome engineering). Lastly, the potential clinical applications of these emerging genome-engineering approaches will be discussed.
Collapse
Affiliation(s)
- Fahimeh Falahi
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, School of Anatomy, Physiology and Human Biology, The University of Western Australia , Perth, WA , Australia
| | - Agustin Sgro
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, School of Anatomy, Physiology and Human Biology, The University of Western Australia , Perth, WA , Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, School of Anatomy, Physiology and Human Biology, The University of Western Australia , Perth, WA , Australia
| |
Collapse
|
4
|
Chapdelaine P, Coulombe Z, Chikh A, Gérard C, Tremblay JP. A Potential New Therapeutic Approach for Friedreich Ataxia: Induction of Frataxin Expression With TALE Proteins. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e119. [PMID: 24002729 PMCID: PMC4028015 DOI: 10.1038/mtna.2013.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022]
Abstract
TALEs targeting a promoter sequence and fused with a transcription activation domain (TAD) may be used to specifically induce the expression of a gene as a potential treatment for haploinsufficiency. This potential therapeutic approach was applied to increase the expression of frataxin in fibroblasts of Friedreich ataxia (FRDA) patients. FRDA fibroblast cells were nucleofected with a pCR3.1 expression vector coding for TALEFrat#8 fused with VP64. A twofold increase of the frataxin mRNA (detected by quantitative reverse transcription-PCR (qRT-PCR)) associated with a similar increase of the mature form of the frataxin protein was observed. The frataxin mRNA and protein were also increased by this TALE in the fibroblasts of the YG8R mouse model. The addition of 5-aza-2′-deoxycytidine (5-Aza-dC) or of valproic acid (VPA) to the TALE treatment did not produce significant improvement. Other TADs (i.e., p65, TFAP2α, SRF, SP1, and MyoD) fused with the TALEFrat#8 gene did not produce a significant increase in the frataxin protein. Thus the TALEFrat#8-VP64 recombinant protein targeting the frataxin promoter could eventually be used to increase the frataxin expression and alleviate the FRDA symptoms.
Collapse
Affiliation(s)
- Pierre Chapdelaine
- 1] Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada [2] Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
5
|
Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GAP, Rots MG. Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 2013; 11:1029-39. [PMID: 23814024 DOI: 10.1158/1541-7786.mcr-12-0567] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED The human epidermal growth factor receptor-2 (HER2/neu/ERBB2) is overexpressed in several cancer types. Although therapies targeting the HER2/neu protein result in inhibition of cell proliferation, the anticancer effect might be further optimized by limiting HER2/neu expression at the DNA level. Towards this aim, epigenetic editing was performed to suppress HER2/neu expression by inducing epigenetic silencing marks on the HER2/neu promoter.HER2/neu expression and HER2/neu promoter epigenetic modification status were determined in a panel of ovarian and breast cancer cell lines. HER2/neu-overexpressing cancer cells were transduced to express a zinc finger protein (ZFP), targeting the HER2/neugene, fused to histone methyltransferases (G9a, SUV39-H1)/super KRAB domain (SKD). Epigenetic assessment of the HER2/neu promoter showed that HER2/neu-ZFP fused to G9a efficiently induced the intended silencing histone methylation mark (H3K9me2). Importantly, H3K9me2 induction was associated with a dramatic downregulation of HER2/neu expression in HER2/neu- overexpressing cells. Downregulation by SKD, traditionally considered transient in nature, was associated with removal of the histone acetylation mark (H3ac). The downregulation of HER2/neu by induced H3K9 methylation and/or reduced H3 acetylation was sufficient to effectively inhibit cellular metabolic activity and clonogenicity. Furthermore, genome-wide analysis indicated preferential binding of the ZFP to its target sequence. These results not only show that H3K9 methylation can be induced but also that this epigenetic mark was instructive in promoting downregulation of HER2/neu expression. IMPLICATIONS Epigenetic editing provides a novel (synergistic) approach to modulate expression of oncogenes.
Collapse
Affiliation(s)
- Fahimeh Falahi
- University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
6
|
Huisman C, Wisman GBA, Kazemier HG, van Vugt MATM, van der Zee AGJ, Schuuring E, Rots MG. Functional validation of putative tumor suppressor gene C13ORF18 in cervical cancer by Artificial Transcription Factors. Mol Oncol 2013; 7:669-79. [PMID: 23522960 DOI: 10.1016/j.molonc.2013.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/03/2013] [Accepted: 02/21/2013] [Indexed: 01/04/2023] Open
Abstract
C13ORF18 is frequently hypermethylated in cervical cancer but not in normal cervix and might serve as a biomarker for the early detection of cervical cancer in scrapings. As hypermethylation is often observed for silenced tumor suppressor genes (TSGs), hypermethylated biomarker genes might exhibit tumor suppressive activities upon re-expression. Epigenetic drugs are successfully exploited to reverse TSG silencing, but act genome-wide. Artificial Transcription Factors (ATFs) provide a gene-specific approach for re-expression of silenced genes. Here, we investigated the potential tumor suppressive role of C13ORF18 in cervical cancer by ATF-induced re-expression. Five zinc finger proteins were engineered to bind the C13ORF18 promoter and fused to a strong transcriptional activator. C13ORF18 expression could be induced in cervical cell lines: ranging from >40-fold in positive (C13ORF18-unmethylated) cells to >110-fold in negative (C13ORF18-methylated) cells. Re-activation of C13ORF18 resulted in significant cell growth inhibition and/or induction of apoptosis. Co-treatment of cell lines with ATFs and epigenetic drugs further enhanced the ATF-induced effects. Interestingly, re-activation of C13ORF18 led to partial demethylation of the C13ORF18 promoter and decreased repressive histone methylation. These data demonstrate the potency of ATFs to re-express and potentially demethylate hypermethylated silenced genes. Concluding, we show that C13ORF18 has a TSG function in cervical cancer and may serve as a therapeutic anti-cancer target. As the amount of epimutations in cancer exceeds the number of gene mutations, ATFs provide promising tools to validate hypermethylated marker genes as therapeutic targets.
Collapse
Affiliation(s)
- Christian Huisman
- Dept. of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Blancafort P, Jin J, Frye S. Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules. Mol Pharmacol 2013; 83:563-76. [PMID: 23150486 PMCID: PMC3920093 DOI: 10.1124/mol.112.080697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/13/2012] [Indexed: 01/04/2023] Open
Abstract
The epigenomic era has revealed a well-connected network of molecular processes that shape the chromatin landscape. These processes comprise abnormal methylomes, transcriptosomes, genome-wide histone post-transcriptional modifications patterns, histone variants, and noncoding RNAs. The mapping of these processes in large scale by chromatin immunoprecipitation sequencing and other methodologies in both cancer and normal cells reveals novel therapeutic opportunities for anticancer intervention. The goal of this minireview is to summarize pharmacological strategies to modify the epigenetic landscape of cancer cells. These approaches include the use of novel small molecule inhibitors of epigenetic processes specifically deregulated in cancer cells and the design of engineered proteins able to stably reprogram the epigenetic code in cancer cells in a way that is similar to normal cells.
Collapse
Affiliation(s)
- Pilar Blancafort
- School of Anatomy, Physiology, and Human Biology, M309, the University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia.
| | | | | |
Collapse
|
8
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
9
|
Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 2010; 5:791-810. [PMID: 20360772 DOI: 10.1038/nprot.2010.34] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Engineered zinc-finger transcription factors (ZF-TF) are powerful tools to modulate the expression of specific genes. Complex libraries of ZF-TF can be delivered into cells to scan the genome for genes responsible for a particular phenotype or to select the most effective ZF-TF to regulate an individual gene. In both cases, the construction of highly representative and unbiased libraries is critical. In this protocol, we describe a user-friendly ZF technology suitable for the creation of complex libraries and the construction of customized ZF-TFs. The new technology described here simplifies the building of ZF libraries, avoids PCR-introduced bias and ensures equal representation of every module. We also describe the construction of a customized ZF-TF that can be transferred to a number of expression vectors. This protocol can be completed in 9-11 d.
Collapse
|
10
|
Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production. Nat Struct Mol Biol 2009; 16:1195-9. [PMID: 19838191 PMCID: PMC2880176 DOI: 10.1038/nsmb.1677] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
Through the shuffling of predefined modular zinc finger (ZF) domains with predictable target site recognition in vitro, we have generated a large repertoire of artificial transcription factors (ATFs) with five ZF domains (TFZFs). Here we report an effective strategy for the selection of ATF libraries through the coupling of the expression of transcriptional activators of the promoter of interest to the enhanced production of retroviral vector particles transferring the gene encoding the TFZF. Using this strategy, we successfully selected specific TFZFs that upregulate the expression of the γ-globin promoter. Selected transcription factors induced the expression of γ-globin when coupled to an activation domain and reduced expression when linked to a repression domain. This novel retroviral approach might be used to select other TFZFs but also might be generalized for the selection of other protein and small molecule interactions.
Collapse
|
11
|
Zemach A, Paul LK, Stambolsky P, Efroni I, Rotter V, Grafi G. The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity. Exp Cell Res 2009; 315:3554-62. [PMID: 19647732 DOI: 10.1016/j.yexcr.2009.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/26/2009] [Accepted: 07/27/2009] [Indexed: 12/01/2022]
Abstract
The Arabidopsis MBD7 (AtMBD7) - a naturally occurring poly MBD protein - was previously found to be functional in binding methylated-CpG dinucleotides in vitro and localized to highly methylated chromocenters in vivo. Furthermore, AtMBD7 has significantly lower mobility within the nucleus conferred by cooperative activity of its three MBD motifs. Here we show that besides the MBD motifs, AtMBD7 possesses a strong chromatin binding domain located at its C-terminus designated sticky-C (StkC). Mutational analysis showed that a glutamic acid residue near the C-terminus is essential though not sufficient for the StkC function. Further analysis demonstrated that this motif can render nuclear proteins highly immobile both in plant and animal cells, without affecting their native subnuclear localization. Thus, the C-terminal, StkC motif plays an important role in fastening AtMBD7 to its chromosomal, CpG-methylated sites. It may be possible to utilize this motif for fastening nuclear proteins to their chromosomal sites both in plant and animal cells for research and gene therapy applications.
Collapse
Affiliation(s)
- Assaf Zemach
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Blancafort P, Tschan MP, Bergquist S, Guthy D, Brachat A, Sheeter DA, Torbett BE, Erdmann D, Barbas CF. Modulation of drug resistance by artificial transcription factors. Mol Cancer Ther 2008; 7:688-97. [PMID: 18319335 DOI: 10.1158/1535-7163.mct-07-0381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficiency of chemotherapeutic treatments in cancer patients is often impaired by the acquisition of drug resistance. Cancer cells develop drug resistance through dysregulation of one or more genes or cellular pathways. To isolate efficient regulators of drug resistance in tumor cells, we have adopted a genome-wide scanning approach based on the screening of large libraries of artificial transcription factors (ATFs) made of three and six randomly assembled zinc finger domains. Zinc finger libraries were linked to a VP64 activation domain and delivered into a paclitaxel-sensitive tumor cell line. Following drug treatment, several ATFs were isolated that promoted drug resistance. One of these ATFs, 3ZF-1-VP, promoted paclitaxel resistance in cell lines having mutated or inactivated p53, such as MDA-MB-435 and Kaposi's sarcoma cell lines. 3ZF-1-VP also induced strong resistance to etoposide, vincristine, and cisplatinum. Linkage of a repression domain to the selected ATF resulted in enhanced sensitivity to multiple drugs, particularly vincristine, cisplatinum, and 5-fluorouracil. Small interfering RNA-mediated inhibition of p53 revealed that 3ZF-1-VP activated both p53-dependent and p53-independent mechanisms to promote survival, whereas other ATF required intact p53. Real-time expression analysis and DNA microarrays showed that several ATFs up-regulated targets of p53, such as the cyclin-dependent kinase inhibitor p21(WAF1/CIP1), and genes participating in the p14(ARF)-MDM2-p53 tumor suppressor pathway, such as hDMP1. Thus, ATF can be used to map genes and pathways involved in drug resistance phenotypes and have potential as novel therapeutic agents to inhibit drug resistance.
Collapse
Affiliation(s)
- Pilar Blancafort
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gommans WM, McLaughlin PMJ, Lindhout BI, Segal DJ, Wiegman DJ, Haisma HJ, van der Zaal BJ, Rots MG. Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment. Mol Carcinog 2007; 46:391-401. [PMID: 17186549 DOI: 10.1002/mc.20289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zinc finger protein transcription factors (ZFP-TFs) are emerging as powerful novel tools for the treatment of many different diseases. ZFPs are DNA-binding motifs and consist of modular zinc finger domains. Each domain can be engineered to recognize a specific DNA triplet, and stitching six domains together results in the recognition of a gene-specific sequence. Inhibition of gene expression can be achieved by fusing a repressor domain to these DNA-binding motifs. In this study, we engineered ZFP-TFs to downregulate the activity of the epithelial glycoprotein-2 (EGP-2) promoter. The protein EGP-2 is overexpressed in a wide variety of cancer types and EGP-2 downregulation has been shown to result in a decreased oncogenic potential of tumor cells. Therefore, downregulation of EGP-2 expression by ZFP-TFs provides a novel anti-cancer therapeutic. Using a straightforward strategy, we engineered a 3-ZFP that could bind a 9 bp sequence within the EGP-2 promoter. After the addition of a repressor domain, this 3-ZFP-TF could efficiently downregulate EGP-2 promoter activity by 60%. To demonstrate the flexibility of this technology, we coupled an activation domain to the engineered ZFP, resulting in a nearly 200% increase in EGP-2 promoter activity. To inhibit the endogenous EGP-2 promoter, we engineered 6-ZFP-TFs. Although none of the constructed ZFP-TFs could convincingly modulate the endogenous promoter, efficient and specific inhibition of the exogenous promoter was observed. Overall, ZFP-TFs are versatile bi-directional modulators of gene expression and downregulation of EGP-2 promoter activity using ZFP-TFs can ultimately result in a novel anti-cancer treatment.
Collapse
Affiliation(s)
- Willemijn M Gommans
- Department of Therapeutic Gene Modulation, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Xiao X, Yu P, Lim HS, Sikder D, Kodadek T. Design and synthesis of a cell-permeable synthetic transcription factor mimic. ACTA ACUST UNITED AC 2007; 9:592-600. [PMID: 17530904 PMCID: PMC2518654 DOI: 10.1021/cc070023a] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic molecules capable of activating the expression of specific genes are of great interest as tools for biological research and, potentially, as a novel class of pharmaceutical agents. It has been demonstrated previously that such synthetic transcription factor mimics (STFMs) can be constructed by connecting a sequence-specific DNA-binding module to a molecule capable of binding to the transcriptional machinery via a suitable linker. These chimeras mimic the two basic properties of native transcription factors, which are able to recognize a promoter sequence specifically and to recruit the transcriptional machinery to that promoter. However, none of the compounds of this type reported to date have been shown to function in living cells. We report here the first example of a cell-permeable STFM that activates the transcription of a reporter gene in mammalian cells. The compound is composed of a cell-permeable coactivator-binding peptoid fused to a DNA-binding hairpin polyamide. The peptoid was identified by screening a combinatorial library of approximately 50,000 compounds for binding to the KIX domain of the CREB-binding protein (CBP), a mammalian transcription coactivator. When incubated with cultured HeLa cells carrying a luciferase reporter plasmid bearing several hairpin polyamide-binding sites, a 5-fold increase in luciferase expression was observed. These experiments set the stage for the identification of hairpin polyamide-peptoid conjugates that are targeted to native genes.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Kodadek
- To whom correspondence should be addressed. Phone: 214-648-1239. FAX: 214-648-4156. E-mail:
| |
Collapse
|
15
|
Beltran A, Liu Y, Parikh S, Temple B, Blancafort P. Interrogating genomes with combinatorial artificial transcription factor libraries: asking zinc finger questions. Assay Drug Dev Technol 2006; 4:317-31. [PMID: 16834537 DOI: 10.1089/adt.2006.4.317] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Artificial transcription factors (ATFs) are proteins designed to specifically bind and regulate genes. Because of their DNA-binding selectivity and modular organization, arrays of zinc finger (ZF) domains have traditionally been used to build the ATF's DNA-binding domains. ATFs have been designed and constructed to regulate a variety of therapeutic targets. Recently, novel combinatorial technologies have been developed to induce expression of any gene of interest or to modify cellular phenotypes. Large repertoires of ATFs have been generated by recombination of all available sequence-specific ZF lexicons. These libraries comprise millions of ATFs with unique DNA-binding specificities. The ATFs are produced by combinatorial assembly of three- and six-ZF building blocks and are linked to activator or repressor domains. Upon delivery into a cell population, any gene in the human genome can potentially be regulated. ATF library members generate genome-wide, experimental perturbations of gene expression, resulting in a phenotypically diverse population, or cellular library. A variety of phenotypic screenings can be applied to select for cells exhibiting a phenotype of interest. The ATFs are then used as genetic probes to identify the targeted genes responsible for the phenotypic switch. In this review we will summarize several applications of ATF library screenings in gene discovery, biotechnology, and disease therapeutics.
Collapse
Affiliation(s)
- Adriana Beltran
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
16
|
Mandell JG, Barbas CF. Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 2006; 34:W516-23. [PMID: 16845061 PMCID: PMC1538883 DOI: 10.1093/nar/gkl209] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Individual zinc finger (ZF) domains that recognize DNA triplets with high specificity and affinity can be used to create designer transcription factors and nucleases that are specific for nearly any site in the genome. These domains can be treated as modular units and assembled to create a polydactyl protein that recognizes extended DNA sequences. Deter-mination of valid target sites and the subsequent design of ZF proteins (ZFPs) is error-prone and not trivial, however. As a result, the use of ZFPs have been restricted primarily to those labs with the appropriate expertise. To address these limitations, we have created a user-friendly utility called Zinc Finger Tools (ZF Tools) that can be accessed at the URL . User-supplied DNA sequences can be searched for target sites appropriate for either gene regulation or nuclease targeting. Using a database of experimentally characterized zinc finger domains, the amino acid sequence for a ZFP expected to bind to any chosen target site can be generated. A reverse engineering utility is provided to predict the binding site for a ZFP of known sequence.
Collapse
Affiliation(s)
- Jeffrey G. Mandell
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CA 92037, USA
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CA 92037, USA
| | - Carlos F. Barbas
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CA 92037, USA
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CA 92037, USA
- To whom correspondence should be addressed. Tel: 858 784 9098; Fax: 858 784 2583;
| |
Collapse
|
17
|
Pattanaik S, Xie CH, Kong Q, Shen KA, Yuan L. Directed evolution of plant basic helix-loop-helix transcription factors for the improvement of transactivational properties. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1759:308-18. [PMID: 16837081 DOI: 10.1016/j.bbaexp.2006.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/09/2006] [Accepted: 04/21/2006] [Indexed: 11/18/2022]
Abstract
Myc-RP from Perilla frutescens and Delila from Antirrhinum majus, two plant basic helix-loop-helix transcription factors (bHLH TFs) involved in the flavonoid biosynthetic pathway, have been used for the improvement of transactivational properties by directed evolution. Through two rounds of DNA shuffling, Myc-RP variants with up to 70-fold increase in transcriptional activities have been identified using a yeast transactivation system. In a tobacco protoplast transient expression assay, one of the most improved variants, M2-1, also shows significant increase of transactivation. The majority of resulting mutations (approximately 53%) are localized in the acidic (activation) domains of the improved Myc-RP variants. In variant M2-1, three of the four mutations (L301P/N354D/S401F) are in the acidic domain. The fourth mutation (K157M) is localized to a helix within the N-terminal interaction domain. Combinatorial site-directed mutagenesis reveals that, while the acidic domain mutations contribute modestly to the increase in activity, the K157M substitution is responsible for 80% of the improvement observed in variant M2-1. The transactivation activity of the K157M/N354D double mutant is equal to that of M2-1. These results suggest that the interaction domain plays a critical role in transactivation of these bHLH TFs. Delila variants have also been screened for increased activities toward the Arabidopsis chalcone synthase (CHS) promoter, a pathway promoter that responds weakly to the bHLH TFs. Variants with increased activity on the CHS promoter, while maintaining wildtype-level activities on the naturally responsive dihydroflavonol reductase promoter, have been obtained. This study demonstrates that functional properties of TFs can be modified by directed evolution.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- Department of Plant and Soil Sciences, University of Kentucky, Cooper and University Drives, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
18
|
Chatterjee R, Yuan L. Directed evolution of metabolic pathways. Trends Biotechnol 2006; 24:28-38. [PMID: 16298446 DOI: 10.1016/j.tibtech.2005.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 09/08/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
The modification of cellular metabolism is of biotechnological and commercial significance because naturally occurring metabolic pathways are the source of diverse compounds used in fields ranging from medicine to bioremediation. Directed evolution is the experimental improvement of biocatalysts or cellular properties through iterative genetic diversification and selection procedures. The creation of novel metabolic functions without disrupting the balanced intracellular pool of metabolites is the primary challenge of pathway manipulation. The introduction of coordinated changes across multiple genetic elements, in conjunction with functional selection, presents an integrated approach for the modification of metabolism with benign physiological consequences. Directed evolution formats take advantage of the dynamic structures of genomes and genomic sub-structures and their ability to evolve in multiple directions in response to external stimuli. The elucidation, design and application of genome-restructuring mechanisms are key elements in the directed evolution of cellular metabolic pathways.
Collapse
|
19
|
Visser AE, Verschure PJ, Gommans WM, Haisma HJ, Rots MG. Step into the Groove: Engineered Transcription Factors as Modulators of Gene Expression. ADVANCES IN GENETICS 2006; 56:131-61. [PMID: 16735157 DOI: 10.1016/s0065-2660(06)56004-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing knowledge about the influence of dysregulated gene expression in causing numerous diseases opens up new possibilities for the development of innovative therapeutics. In this chapter, we first describe different mechanisms of misregulated gene expression resulting in various pathophysiological conditions. Then, an overview is given of different technologies developed to readjust expression levels of genes. One of the most promising upcoming approaches in this respect is the development of engineered zinc-finger transcription factors. Results obtained from modulating endogenous gene expression using such engineered transcription factors are reviewed in depth. Finally, we address possible pitfalls of using such transcriptional targeting approaches at the "chromatin level." We describe aspects of studies at this level that influence successful DNA binding of engineered transcription factors, thereby affecting gene activity. Engineered transcription factors have great promise as potent therapeutics. Moreover, this technology is expected to yield fundamental knowledge about the organization and function of the genome.
Collapse
Affiliation(s)
- Astrid E Visser
- Department of Molecular Genetics, Leiden Institute of Chemistry, University of Leiden, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Gommans WM, Haisma HJ, Rots MG. Engineering Zinc Finger Protein Transcription Factors: The Therapeutic Relevance of Switching Endogenous Gene Expression On or Off at Command. J Mol Biol 2005; 354:507-19. [PMID: 16253273 DOI: 10.1016/j.jmb.2005.06.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 05/27/2005] [Accepted: 06/02/2005] [Indexed: 11/25/2022]
Abstract
Modulating gene expression directly at the DNA level represents a novel approach to control cellular processes. In this respect, zinc finger protein DNA-binding domains can be engineered to target virtually any gene. Coupling of a transcription activation or repression domain to these zinc fingers permits regulating gene expression at will, providing a platform of unlimited therapeutic applications. In this review, steps involved in the engineering of zinc finger protein transcription factors are described. In addition, an overview of endogenous genes successfully targeted for modulating expression by engineered zinc finger protein transcription factors is given. So far, research has mainly focused on targeting genes involved in cancer and angiogenesis, with encouraging evaluation in vivo and progression into a clinical trial. Altogether, engineered zinc finger proteins offer a new and exciting direction in the field of medical research with promising prospects.
Collapse
Affiliation(s)
- Willemijn M Gommans
- Department of Therapeutic Gene Modulation, University of Groningen, The Netherlands
| | | | | |
Collapse
|
21
|
Lund CV, Popkov M, Magnenat L, Barbas CF. Zinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology. Mol Cell Biol 2005; 25:9082-91. [PMID: 16199884 PMCID: PMC1265768 DOI: 10.1128/mcb.25.20.9082-9091.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Signaling through the ErbB family of tyrosine kinase receptors in normal and cancer-derived cell lines contributes to cell growth and differentiation. In this work, we altered the levels of ErbB2 and ErbB3 receptors, individually and in combination, by using 6-finger and 12-finger synthetic zinc finger protein artificial transcription factors (ATFs) in an epidermoid squamous cell carcinoma line, A431. We successfully designed 12-finger ATFs capable of coregulating ErbB3 and ICAM-1 or ErbB2 and ErbB3. With ATFs, the effects of changes in ErbB2 and ErbB3 receptor levels were evaluated by using cell proliferation, cell migration, and cell signaling assays. Cell proliferation was increased when ErbB2 and ErbB3 were both overexpressed. Cell migration on collagen was decreased when ErbB2 was down-regulated, yet migration on laminin was significantly increased with ErbB3 overexpression. ErbB2 and ErbB3 overexpression also stimulated the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Our ATF approach has elucidated differences in ErbB receptor-mediated proliferation, migration, and intracellular signaling that cannot be explained merely by the presence or absence of particular ErbB receptors and emphasizes the dynamic nature of the ErbB signaling system. The transcription factor approach developed here provides a gene-economical route to the regulation of multiple genes and may be important for complex gene therapies.
Collapse
Affiliation(s)
- Caren V Lund
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
22
|
Kolb AF, Coates CJ, Kaminski JM, Summers JB, Miller AD, Segal DJ. Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol 2005; 23:399-406. [PMID: 15982766 DOI: 10.1016/j.tibtech.2005.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 05/04/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
A variety of technological advances in recent years have made permanent genetic manipulation of an organism a technical possibility. As the details of natural biological processes for genome modification are elucidated, the enzymes catalyzing these events (transposases, recombinases, integrases and DNA repair enzymes) are being harnessed or modified for the purpose of intentional gene modification. Targeted integration and gene repair can be mediated by the DNA-targeting specificity inherent to a particular enzyme, or rely on user-designed specificities. Integration sites can be defined by using DNA base-pairing or protein-DNA interaction as a means of targeting. This review will describe recent progress in the development of 'user-targetable' systems, particularly highlighting the application of custom DNA-binding proteins or nucleic acid homology to confer specificity.
Collapse
Affiliation(s)
- Andreas F Kolb
- Hannah Research Institute, Hannah Research Park, Ayr, UK, KA6 5HL
| | | | | | | | | | | |
Collapse
|
23
|
Blancafort P, Chen EI, Gonzalez B, Bergquist S, Zijlstra A, Guthy D, Brachat A, Brakenhoff RH, Quigley JP, Erdmann D, Barbas CF. Genetic reprogramming of tumor cells by zinc finger transcription factors. Proc Natl Acad Sci U S A 2005; 102:11716-21. [PMID: 16081541 PMCID: PMC1187960 DOI: 10.1073/pnas.0501162102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Indexed: 11/18/2022] Open
Abstract
Cancer arises by the accumulation of genetic alterations in DNA leading to aberrant gene transcription. Expression-profiling studies have correlated genomewide expression signatures with malignancy. However, functional analysis elucidating the contribution and synergy of genes in specific cancer cell phenotypes remains a formidable obstacle. Herein, we describe an alternative genetic approach for identification of genes involved in tumor progression by using a library of zinc finger artificial transcription factors (ATFs) and functional screening of tumor cells as a source of genetic plasticity and clonal selection. We isolated a six-zinc finger transcriptional activator (TF 20-VP, TF 20 containing the VP64 activator domain) that acts to reprogram a drug-sensitive, poorly invasive, and nonmetastatic cell line into a cell line with a drug-resistant, highly invasive, and metastatic phenotype. Differential expression profiles of cells expressing TF 20-VP followed by functional studies, both in vitro and in animal models, revealed that invasion and metastasis requires co-regulation of multiple target genes. Significantly, the E48 antigen, associated with poor metastasis-free survival in head and neck cancer, was identified as one specific target of TF 20-VP. We have shown phenotypic modulation of tumor cell behavior by E48 expression, including enhanced cell migration in vitro and tumor cell dissemination in vivo. This study demonstrates the use of ATFs to identify the group of genes that cooperate during tumor progression. By co-regulating multiple targets, ATFs can be used as master genetic switches to reprogram and modulate complex neoplastic phenotypes.
Collapse
Affiliation(s)
- Pilar Blancafort
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Imanishi M, Yan W, Morisaki T, Sugiura Y. An artificial six-zinc finger peptide with polyarginine linker: Selective binding to the discontinuous DNA sequences. Biochem Biophys Res Commun 2005; 333:167-73. [PMID: 15939400 DOI: 10.1016/j.bbrc.2005.05.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Artificial DNA binding peptides recognizing separated sequences would expand varieties of the target genes for desirable transcriptional control. Here we demonstrated that polyarginine linker between two 3-zinc finger domains gives DNA binding selectivity to the separated target sequences. We created a six-zinc finger peptide, Sp1ZF6(Arg)8, by connecting two DNA binding domains of transcription factor Sp1 with a bulky and cationic polyarginine linker. The DNA binding properties to continuous and discontinuous target sequences were examined and compared to those of Sp1ZF6(Gly)10 containing a flexible and neutral polyglycine linker. The dissociation constants indicate that Sp1ZF6(Arg)8 has an obvious DNA binding preference to discontinuous target sequences but not Sp1ZF6(Gly)10. Footprinting analyses also showed that Sp1ZF6(Arg)8 binds properly only to the discontinuous target sites, while Sp1ZF6(Gly)10 does not distinguish them. The results provide helpful information for linker design of future zinc finger peptides to various states of DNA as gene expression regulators.
Collapse
Affiliation(s)
- Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Japan.
| | | | | | | |
Collapse
|
25
|
Blancafort P, Segal DJ, Barbas CF. Designing transcription factor architectures for drug discovery. Mol Pharmacol 2004; 66:1361-71. [PMID: 15340042 DOI: 10.1124/mol.104.002758] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent advances in the design, selection, and engineering of DNA binding proteins have led to the emerging field of designer transcription factors (TFs). Modular DNA-binding protein domains can be assembled to recognize a given sequence of a DNA in a regulatory region of a targeted gene. TFs can be readily prepared by linking the DNA-binding protein to a variety of effector domains that mediate transcriptional activation or repression. Furthermore, the interaction between the TF and the genomic DNA can be regulated by several approaches, including chemical regulation by a variety of small molecules. Genome-wide single target specificity has been demonstrated using arrays of sequence-specific zinc finger (ZF) domains, polydactyl proteins. Any laboratory today can easily construct polydactyl ZF proteins by linkage of predefined ZF units that recognize specific triplets of DNA. The potential of this technology to alter the transcription of specific genes, to discover new genes, and to induce phenotypes in cells and organisms is now being applied in the areas of molecular therapeutics, pharmacology, biotechnology, and functional genomics.
Collapse
Affiliation(s)
- Pilar Blancafort
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|