1
|
Forget S, Juillé M, Duboué-Dijon E, Stirnemann G. Simulation-Guided Conformational Space Exploration to Assess Reactive Conformations of a Ribozyme. J Chem Theory Comput 2024; 20:6263-6277. [PMID: 38958594 DOI: 10.1021/acs.jctc.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Self-splicing ribozymes are small ribonucleic acid (RNA) enzymes that catalyze their own cleavage through a transphosphoesterification reaction. While this process is involved in some specific steps of viral RNA replication and splicing, it is also of importance in the context of the (putative) first autocatalytic RNA-based systems that could have preceded the emergence of modern life. The uncatalyzed phosphoester bond formation is thermodynamically very unfavorable, and many experimental studies have focused on understanding the molecular features of catalysis in these ribozymes. However, chemical reaction paths are short-lived and not easily characterized by experimental approaches, so molecular simulation approaches appear as an ideal tool to unveil the molecular details of the reaction. Here, we focus on the model hairpin ribozyme. We show that identifying a relevant initial conformation for reactivity studies, which is frequently overlooked in mixed quantum-classical studies that predominantly concentrate on the chemical reaction itself, can be highly challenging. These challenges stem from limitations in both available experimental structures (which are chemically altered to prevent self-cleavage) and the accuracy of force fields, together with the necessity for comprehensive sampling. We show that molecular dynamics simulations, combined with extensive conformational phase space exploration with Hamiltonian replica-exchange simulations, enable us to characterize the relevant conformational basins of the minimal hairpin ribozyme in the ligated state prior to self-cleavage. We find that what is usually considered a canonical reactive conformation with active site geometries and hydrogen-bond patterns that are optimal for the addition-elimination reaction with general acid/general base catalysis is metastable and only marginally populated. The thermodynamically stable conformation appears to be consistent with the expectations of a mechanism that does not require the direct participation of ribozyme residues in the reaction. While these observations may suffer from forcefield inaccuracies, all investigated forcefields lead to the same conclusions upon proper sampling, contrasting with previous investigations on shorter timescales suggesting that at least one reparametrization of the Amber99 forcefield allowed to stabilize aligned active site conformations. Our study demonstrates that identifying the most pertinent reactant state conformation holds equal importance alongside the accurate determination of the thermodynamics and kinetics of the chemical steps of the reaction.
Collapse
Affiliation(s)
- Sélène Forget
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Marie Juillé
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elise Duboué-Dijon
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
2
|
Fedeles BI, Li D, Singh V. Structural Insights Into Tautomeric Dynamics in Nucleic Acids and in Antiviral Nucleoside Analogs. Front Mol Biosci 2022; 8:823253. [PMID: 35145998 PMCID: PMC8822119 DOI: 10.3389/fmolb.2021.823253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
DNA (2'-deoxyribonucleic acid) and RNA (ribonucleic acid) play diverse functional roles in biology and disease. Despite being comprised primarily of only four cognate nucleobases, nucleic acids can adopt complex three-dimensional structures, and RNA in particular, can catalyze biochemical reactions to regulate a wide variety of biological processes. Such chemical versatility is due in part to the phenomenon of nucleobase tautomerism, whereby the bases can adopt multiple, yet distinct isomeric forms, known as tautomers. For nucleobases, tautomers refer to structural isomers that differ from one another by the position of protons. By altering the position of protons on nucleobases, many of which play critical roles for hydrogen bonding and base pairing interactions, tautomerism has profound effects on the biochemical processes involving nucleic acids. For example, the transient formation of minor tautomers during replication could generate spontaneous mutations. These mutations could arise from the stabilization of mismatches, in the active site of polymerases, in conformations involving minor tautomers that are indistinguishable from canonical base pairs. In this review, we discuss the evidence for tautomerism in DNA, and its consequences to the fidelity of DNA replication. Also reviewed are RNA systems, such as the riboswitches and self-cleaving ribozymes, in which tautomerism plays a functional role in ligand recognition and catalysis, respectively. We also discuss tautomeric nucleoside analogs that are efficacious as antiviral drug candidates such as molnupiravir for coronaviruses and KP1212 for HIV. The antiviral efficacy of these analogs is due, in part, to their ability to exist in multiple tautomeric forms and induce mutations in the replicating viral genomes. From a technical standpoint, minor tautomers of nucleobases are challenging to identify directly because they are rare and interconvert on a fast, millisecond to nanosecond, time scale. Nevertheless, many approaches including biochemical, structural, computational and spectroscopic methods have been developed to study tautomeric dynamics in RNA and DNA systems, and in antiviral nucleoside analogs. An overview of these methods and their applications is included here.
Collapse
Affiliation(s)
- Bogdan I. Fedeles
- Departments of Chemistry and Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Deyu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Vipender Singh
- Department of Biochemistry and Biophysics, Novartis Institute of Biomedical Research, Cambridge, MA, United States
| |
Collapse
|
3
|
Weinberg CE, Olzog VJ, Eckert I, Weinberg Z. Identification of over 200-fold more hairpin ribozymes than previously known in diverse circular RNAs. Nucleic Acids Res 2021; 49:6375-6388. [PMID: 34096583 PMCID: PMC8216279 DOI: 10.1093/nar/gkab454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Self-cleaving ribozymes are catalytic RNAs that cut themselves at a specific inter-nucleotide linkage. They serve as a model of RNA catalysis, and as an important tool in biotechnology. For most of the nine known structural classes of self-cleaving ribozymes, at least hundreds of examples are known, and some are present in multiple domains of life. By contrast, only four unique examples of the hairpin ribozyme class are known, despite its discovery in 1986. We bioinformatically predicted 941 unique hairpin ribozymes of a different permuted form from the four previously known hairpin ribozymes, and experimentally confirmed several diverse predictions. These results profoundly expand the number of natural hairpin ribozymes, enabling biochemical analysis based on natural sequences, and suggest that a distinct permuted form is more biologically relevant. Moreover, all novel hairpins were discovered in metatranscriptomes. They apparently reside in RNA molecules that vary both in size—from 381 to 5170 nucleotides—and in protein content. The RNA molecules likely replicate as circular single-stranded RNAs, and potentially provide a dramatic increase in diversity of such RNAs. Moreover, these organisms have eluded previous attempts to isolate RNA viruses from metatranscriptomes—suggesting a significant untapped universe of viruses or other organisms hidden within metatranscriptome sequences.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - V Janett Olzog
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Iris Eckert
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| |
Collapse
|
4
|
Dönmüş B, Ünal S, Kirmizitaş FC, Türkoğlu Laçin N. Virus-associated ribozymes and nano carriers against COVID-19. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:204-218. [PMID: 33645342 DOI: 10.1080/21691401.2021.1890103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoo tonic, highly pathogenic virus. The new type of coronavirus with contagious nature spread from Wuhan (China) to the whole world in a very short time and caused the new coronavirus disease (COVID-19). COVID-19 has turned into a global public health crisis due to spreading by close person-to-person contact with high transmission capacity. Thus, research about the treatment of the damages caused by the virus or prevention from infection increases everyday. Besides, there is still no approved and definitive, standardized treatment for COVID-19. However, this disaster experienced by human beings has made us realize the significance of having a system ready for use to prevent humanity from viral attacks without wasting time. As is known, nanocarriers can be targeted to the desired cells in vitro and in vivo. The nano-carrier system targeting a specific protein, containing the enzyme inhibiting the action of the virus can be developed. The system can be used by simple modifications when we encounter another virus epidemic in the future. In this review, we present a potential treatment method consisting of a nanoparticle-ribozyme conjugate, targeting ACE-2 receptors by reviewing the virus-associated ribozymes, their structures, types and working mechanisms.
Collapse
Affiliation(s)
- Beyza Dönmüş
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Sinan Ünal
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Fatma Ceren Kirmizitaş
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Nelisa Türkoğlu Laçin
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
Kumar N, Marx D. Deciphering the Self-Cleavage Reaction Mechanism of Hairpin Ribozyme. J Phys Chem B 2020; 124:4906-4918. [PMID: 32453954 DOI: 10.1021/acs.jpcb.0c03768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hairpin ribozyme catalyzes the reversible self-cleavage of phosphodiester bonds which plays prominent roles in key biological processes involving RNAs. Despite impressive advances on ribozymatic self-cleavage, critical aspects of its molecular reaction mechanism remain controversially debated. Here, we generate and analyze the multidimensional free energy landscape that underlies the reaction using extensive QM/MM metadynamics simulations to investigate in detail the full self-cleavage mechanism. This allows us to answer several pertinent yet controversial questions concerning activation of the 2'-OH group, the mechanistic role of water molecules present in the active site, and the full reaction pathway including the structures of transition states and intermediates. Importantly, we find that a sufficiently unrestricted reaction subspace must be mapped using accelerated sampling methods in order to compute the underlying free energy landscape. It is shown that lower-dimensional sampling where the bond formation and cleavage steps are coupled does not allow the system to sufficiently explore the landscape. On the basis of a three-dimensional free energy surface spanned by flexible generalized coordinates, we find that 2'-OH is indirectly activated by adjacent G8 nucleobase in conjunction with stabilizing H-bonding involving water. This allows the proton of the 2'-OH group to directly migrate toward the 5'-leaving group via a nonbridging oxygen of the phosphodiester link. At variance with similar enzymatic processes where water wires connected to protonable side chains of the protein matrix act as transient proton shuttles, no such de/reprotonation events of water molecules are found to be involved in this ribozymatic transesterification. Overall, our results support an acid-catalyzed reaction mechanism where A38 nucleobase directly acts as an acid whereas G8, in stark contrast, participates only indirectly via stabilizing the nascent nucleophile for subsequent attack. Moreover, we conclude that self-cleavage of hairpin ribozyme follows an AN + DN two-step associative pathway where the rate-determining step is the cleavage of the phosphodiester bond. These results provide a major advancement in our understanding of the unique catalytic mechanism of hairpin ribozyme which will fruitfully impact on the design of synthetic ribozymes.
Collapse
Affiliation(s)
- Narendra Kumar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
6
|
Kumar N, Marx D. Mechanistic role of nucleobases in self-cleavage catalysis of hairpin ribozyme at ambient versus high-pressure conditions. Phys Chem Chem Phys 2019; 20:20886-20898. [PMID: 30067263 DOI: 10.1039/c8cp03142h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribozymes catalyze the site-specific self-cleavage of intramolecular phosphodiester bonds. Initially thought to act as metalloenzymes, they are now known to be functional even in the absence of divalent metal ions and specific nucleobases directly participate in the self-cleavage reaction. Here, we use extensive replica exchange molecular dynamics simulations to probe the precise mechanistic role of nucleobases by simulating precatalytic reactant and active precursor states of a hairpin ribozyme along its reaction path at ambient as well as high-pressure conditions. The results provide novel key insights into the self-cleavage of ribozymes. We find that deprotonation of the hydroxyl group is crucial and might be the penultimate step to the self-cleavage. The G8 nucleobase is found to stabilize the activated precursor into inline arrangement for facile nucleophilic attack of the scissile phosphate only after deprotonation of the hydroxyl group. The protonated A38 nucleobase, in contrast, mainly acts a proton donor to the O5'-oxygen leaving group that eventually leads to the self-cleavage. Indeed, systematic high-pressure simulations of catalytically relevant states confirm these findings and, moreover, provide support to the role of ribozymes as piezophilic biocatalysts with regard to their relevance in early life under extreme conditions in the realm of RNA world hypothesis.
Collapse
Affiliation(s)
- Narendra Kumar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | |
Collapse
|
7
|
Seith DD, Bingaman JL, Veenis AJ, Button AC, Bevilacqua PC. Elucidation of Catalytic Strategies of Small Nucleolytic Ribozymes From Comparative Analysis of Active Sites. ACS Catal 2018; 8:314-327. [PMID: 32547833 PMCID: PMC7296830 DOI: 10.1021/acscatal.7b02976] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A number of small, self-cleaving ribozyme classes have been identified including the hammerhead, hairpin, hepatitis delta virus (HDV), Varkud satellite (VS), glmS, twister, hatchet, pistol, and twister sister ribozymes. Within the active sites of these ribozymes, myriad functional groups contribute to catalysis. There has been extensive structure-function analysis of individual ribozymes, but the extent to which catalytic devices are shared across different ribozyme classes is unclear. As such, emergent catalytic principles for ribozymes may await discovery. Identification of conserved catalytic devices can deepen our understanding of RNA catalysis specifically and of enzymic catalysis generally. To probe similarities and differences amongst ribozyme classes, active sites from more than 80 high-resolution crystal structures of self-cleaving ribozymes were compared computationally. We identify commonalities amongst ribozyme classes pertaining to four classic catalytic devices: deprotonation of the 2'OH nucleophile (γ), neutralization of the non-bridging oxygens of the scissile phosphate (β), neutralization of the O5' leaving group (δ), and in-line nucleophilic attack (α). In addition, we uncover conservation of two catalytic devices, each of which centers on the activation of the 2'OH nucleophile by a guanine: one to acidify the 2'OH by hydrogen bond donation to it (γ') and one to acidify the 2'OH by releasing it from non-productive interactions by competitive hydrogen bonding (γ''). Our findings reveal that the amidine functionalities of G, A, and C are especially important for these strategies, and help explain absence of U at ribozyme active sites. The identified γ' and γ'' catalytic strategies help unify the catalytic strategies shared amongst catalytic RNAs and may be important for large ribozymes, as well as protein enzymes that act on nucleic acids.
Collapse
Affiliation(s)
- Daniel D. Seith
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- These two authors contributed equally to this work
| | - Jamie L. Bingaman
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- These two authors contributed equally to this work
| | - Andrew J. Veenis
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Aileen C. Button
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry, The University of Vermont, Burlington, Vermont 05405
| | - Philip C. Bevilacqua
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
8
|
Liu Y, Wilson TJ, Lilley DM. The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Nat Chem Biol 2017; 13:508-513. [PMID: 28263963 PMCID: PMC5392355 DOI: 10.1038/nchembio.2333] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
Abstract
The TS ribozyme (originally called "twister sister") is a catalytic RNA. We present a crystal structure of the ribozyme in a pre-reactive conformation. Two co-axial helical stacks are organized by a three-way junction and two tertiary contacts. Five divalent metal ions are directly coordinated to RNA ligands, making important contributions to the RNA architecture. The scissile phosphate lies in a quasihelical loop region that is organized by a network of hydrogen bonding. A divalent metal ion is directly bound to the nucleobase 5' to the scissile phosphate, with an inner-sphere water molecule positioned to interact with the O2' nucleophile. The rate of ribozyme cleavage correlated in a log-linear manner with divalent metal ion pKa, consistent with proton transfer in the transition state, and we propose that the bound metal ion is a likely general base for the cleavage reaction. Our data indicate that the TS ribozyme functions predominantly as a metalloenzyme.
Collapse
Affiliation(s)
- Yijin Liu
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Timothy J. Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - David M.J. Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
9
|
Zhou C, Avins JL, Klauser PC, Brandsen BM, Lee Y, Silverman SK. DNA-Catalyzed Amide Hydrolysis. J Am Chem Soc 2016; 138:2106-9. [PMID: 26854515 DOI: 10.1021/jacs.5b12647] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joshua L Avins
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Paul C Klauser
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Benjamin M Brandsen
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yujeong Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Jimenez RM, Polanco JA, Lupták A. Chemistry and Biology of Self-Cleaving Ribozymes. Trends Biochem Sci 2015; 40:648-661. [PMID: 26481500 DOI: 10.1016/j.tibs.2015.09.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/26/2022]
Abstract
Self-cleaving ribozymes were discovered 30 years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure, with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be used as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered.
Collapse
Affiliation(s)
- Randi M Jimenez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Julio A Polanco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Mlýnský V, Kührová P, Zgarbová M, Jurečka P, Walter NG, Otyepka M, Šponer J, Banáš P. Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with ε/ζ Force Field Reparametrizations. J Phys Chem B 2015; 119:4220-9. [DOI: 10.1021/jp512069n] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Vojtěch Mlýnský
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Nils G. Walter
- Department
of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC
− Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| |
Collapse
|
12
|
Abstract
Heterocyclic nucleic acid bases and their analogs can adopt multiple tautomeric forms due to the presence of multiple solvent-exchangeable protons. In DNA, spontaneous formation of minor tautomers has been speculated to contribute to mutagenic mispairings during DNA replication, whereas in RNA, minor tautomeric forms have been proposed to enhance the structural and functional diversity of RNA enzymes and aptamers. This review summarizes the role of tautomerism in RNA biochemistry, specifically focusing on the role of tautomerism in catalysis of small self-cleaving ribozymes and recognition of ligand analogs by riboswitches. Considering that the presence of multiple tautomers of nucleic acid bases is a rare occurrence, and that tautomers typically interconvert on a fast time scale, methods for studying rapid tautomerism in the context of nucleic acids under biologically relevant aqueous conditions are also discussed.
Collapse
Affiliation(s)
- Vipender Singh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Heldenbrand H, Janowski PA, Giambaşu G, Giese TJ, Wedekind JE, York DM. Evidence for the role of active site residues in the hairpin ribozyme from molecular simulations along the reaction path. J Am Chem Soc 2014; 136:7789-92. [PMID: 24842535 PMCID: PMC4132952 DOI: 10.1021/ja500180q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The hairpin ribozyme accelerates
a phosphoryl transfer reaction
without catalytic participation of divalent metal ions. Residues A38
and G8 have been implicated as playing roles in general acid and base
catalysis, respectively. Here we explore the structure and dynamics
of key active site residues using more than 1 μs of molecular
dynamics simulations of the hairpin ribozyme at different stages along
the catalytic pathway. Analysis of results indicates hydrogen bond
interactions between the nucleophile and proR nonbridging oxygen are
correlated with active inline attack conformations. Further, the simulation
results suggest a possible alternative role for G8 to promote inline
fitness and facilitate activation of the nucleophile by hydrogen bonding,
although this does not necessarily exclude an additional role as a
general base. Finally, we suggest that substitution of G8 with N7-
or N3-deazaguanosine which have elevated pKa values, both with and without thio modifications at the 5′
leaving group position, would provide valuable insight into the specific
role of G8 in catalysis.
Collapse
Affiliation(s)
- Hugh Heldenbrand
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
14
|
Mlýnský V, Banáš P, Šponer J, van der Kamp MW, Mulholland AJ, Otyepka M. Comparison of ab Initio, DFT, and Semiempirical QM/MM Approaches for Description of Catalytic Mechanism of Hairpin Ribozyme. J Chem Theory Comput 2014; 10:1608-22. [PMID: 26580373 DOI: 10.1021/ct401015e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have analyzed the capability of state-of-the-art multiscale computational approaches to provide atomic-resolution electronic structure insights into possible catalytic scenarios of the hairpin ribozyme by evaluating potential and free energy surfaces of the reactions by various hybrid QM/MM methods. The hairpin ribozyme is a unique catalytic RNA that achieves rate acceleration similar to other small self-cleaving ribozymes but without direct metal ion participation. Guanine 8 (G8) and adenine 38 (A38) have been identified as the catalytically essential nucleobases. However, their exact catalytic roles are still being investigated. In line with the available experimental data, we considered two reaction scenarios involving protonated A38H(+) as a general acid which is further assisted by either canonical G8 or deprotonated G8(-) forms. We used the spin-component scaled Møller-Plesset (SCS-MP2) method at the complete basis set limit as the reference method. The semiempirical AM1/d-PhoT and SCC-DFTBPR methods provided acceptable activation barriers with respect to the SCS-MP2 data but predicted significantly different reaction pathways. DFT functionals (BLYP and MPW1K) yielded the same reaction pathway as the SCS-MP2 method. The activation barriers were slightly underestimated by the GGA BLYP functional, although with accuracy comparable to the semiempirical methods. The SCS-MP2 method and hybrid MPW1K functional gave activation barriers that were closest to those derived from experimentally measured rate constants.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics , Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
15
|
Wilson TJ, Lilley DM. A Mechanistic Comparison of the Varkud Satellite and Hairpin Ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 120:93-121. [DOI: 10.1016/b978-0-12-381286-5.00003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Liberman JA, Guo M, Jenkins JL, Krucinska J, Chen Y, Carey PR, Wedekind JE. A transition-state interaction shifts nucleobase ionization toward neutrality to facilitate small ribozyme catalysis. J Am Chem Soc 2012; 134:16933-6. [PMID: 22989273 DOI: 10.1021/ja3070528] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pK(a) values for the Ade38 N1 imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pK(a) value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pK(a), we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pK(a) values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pK(a) > 0.8 log unit relative to the precatalytic state. The agreement of the microscopic and macroscopic pK(a) values and the accompanying structural analysis supports a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity.
Collapse
Affiliation(s)
- Joseph A Liberman
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kath-Schorr S, Wilson TJ, Li NS, Lu J, Piccirilli JA, Lilley DMJ. General acid-base catalysis mediated by nucleobases in the hairpin ribozyme. J Am Chem Soc 2012; 134:16717-24. [PMID: 22958171 DOI: 10.1021/ja3067429] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The catalytic mechanism by which the hairpin ribozyme accelerates cleavage or ligation of the phosphodiester backbone of RNA has been incompletely understood. There is experimental evidence for an important role for an adenine (A38) and a guanine (G8), and it has been proposed that these act in general acid-base catalysis. In this work we show that a large reduction in cleavage rate on substitution of A38 by purine (A38P) can be reversed by replacement of the 5'-oxygen atom at the scissile phosphate by sulfur (5'-PS), which is a much better leaving group. This is consistent with A38 acting as the general acid in the unmodified ribozyme. The rate of cleavage of the 5'-PS substrate by the A38P ribozyme increases with pH log-linearly, indicative of a requirement for a deprotonated base with a relatively high pK(a). On substitution of G8 by diaminopurine, the 5'-PS substrate cleavage rate at first increases with pH and then remains at a plateau, exhibiting an apparent pK(a) consistent with this nucleotide acting in general base catalysis. Alternative explanations for the pH dependence of hairpin ribozyme reactivity are discussed, from which we conclude that general acid-base catalysis by A38 and G8 is the simplest and most probable explanation consistent with all the experimental data.
Collapse
Affiliation(s)
- Stephanie Kath-Schorr
- Cancer Research UK, Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
18
|
Wilcox JL, Ahluwalia AK, Bevilacqua PC. Charged nucleobases and their potential for RNA catalysis. Acc Chem Res 2011; 44:1270-9. [PMID: 21732619 DOI: 10.1021/ar2000452] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catalysis in living cells is carried out by both proteins and RNA. Protein enzymes have been known for over 200 years, but RNA enzymes, or "ribozymes", were discovered only 30 years ago. Developing insight into RNA enzyme mechanisms is invaluable for better understanding both extant biological catalysis as well as the primitive catalysis envisioned in an early RNA-catalyzed life. Natural ribozymes include large RNAs such as the group I and II introns; small RNAs such as the hepatitis delta virus and the hairpin, hammerhead, VS, and glmS ribozymes; and the RNA portion of the ribosome and spliceosome. RNA enzymes use many of the same catalytic strategies as protein enzymes, but do so with much simpler side chains. Among these strategies are metal ion, general acid-base, and electrostatic catalysis. In this Account, we examine evidence for participation of charged nucleobases in RNA catalysis. Our overall approach is to integrate direct measurements on catalytic RNAs with thermodynamic studies on oligonucleotide model systems. The charged amino acids make critical contributions to the mechanisms of nearly all protein enzymes. Ionized nucleobases should be critical for RNA catalysis as well. Indeed, charged nucleobases have been implicated in RNA catalysis as general acid-bases and oxyanion holes. We provide an overview of ribozyme studies involving nucleobase catalysis and the complications involved in developing these mechanisms. We also consider driving forces for perturbation of the pK(a) values of the bases. Mechanisms for pK(a) values shifting toward neutrality involve electrostatic stabilization and the addition of hydrogen bonding. Both mechanisms couple protonation with RNA folding, which we treat with a thermodynamic formalism and conceptual models. Furthermore, ribozyme reaction mechanisms can be multichannel, which demonstrates the versatility of ribozymes but makes analysis of experimental data challenging. We examine advances in measuring and analyzing perturbed pK(a) values in RNA. Raman crystallography and fluorescence spectroscopy have been especially important for pK(a) measurement. These methods reveal pK(a) values for the nucleobases A or C equal to or greater than neutrality, conferring potential histidine- and lysine/arginine-like behavior on them. Structural support for ionization of the nucleobases also exists: an analysis of RNA structures in the databases conducted herein suggests that charging of the bases is neither especially uncommon nor difficult to achieve under cellular conditions. Our major conclusions are that cationic and anionic charge states of the nucleobases occur in RNA enzymes and that these states make important catalytic contributions to ribozyme activity. We conclude by considering outstanding questions and possible experimental and theoretical approaches for further advances.
Collapse
Affiliation(s)
- Jennifer L. Wilcox
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amarpreet K. Ahluwalia
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Mlýnský V, Banáš P, Walter NG, Šponer J, Otyepka M. QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms. J Phys Chem B 2011; 115:13911-24. [PMID: 22014231 PMCID: PMC3223549 DOI: 10.1021/jp206963g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The hairpin ribozyme is a prominent member of small ribozymes since it does not require metal ions to achieve catalysis. Guanine 8 (G8) and adenine 38 (A38) have been identified as key participants in self-cleavage and -ligation. We have carried out hybrid quantum-mechanical/molecular mechanical (QM/MM) calculations to evaluate the energy along several putative reaction pathways. The error of our DFT description of the QM region was tested and shown to be ~1 kcal/mol. We find that self-cleavage of the hairpin ribozyme may follow several competing microscopic reaction mechanisms, all with calculated activation barriers in good agreement with those from experiment (20-21 kcal/mol). The initial nucleophilic attack of the A-1(2'-OH) group on the scissile phosphate is predicted to be rate-limiting in all these mechanisms. An unprotonated G8(-) (together with A38H(+)) yields a feasible activation barrier (20.4 kcal/mol). Proton transfer to a nonbridging phosphate oxygen also leads to feasible reaction pathways. Finally, our calculations consider thio-substitutions of one or both nonbridging oxygens of the scissile phosphate and predict that they have only a negligible effect on the reaction barrier, as observed experimentally.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Brno
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
20
|
Abstract
The nucleolytic ribozymes use general acid-base catalysis to contribute significantly to their rate enhancement. The VS (Varkud satellite) ribozyme uses a guanine and an adenine nucleobase as general base and acid respectively in the cleavage reaction. The hairpin ribozyme is probably closely similar, while the remaining nucleolytic ribozymes provide some interesting contrasts.
Collapse
|
21
|
Cottrell JW, Scott LG, Fedor MJ. The pH dependence of hairpin ribozyme catalysis reflects ionization of an active site adenine. J Biol Chem 2011; 286:17658-64. [PMID: 21454684 DOI: 10.1074/jbc.m111.234906] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding how self-cleaving ribozymes mediate catalysis is crucial in light of compelling evidence that human and bacterial gene expression can be regulated through RNA self-cleavage. The hairpin ribozyme catalyzes reversible phosphodiester bond cleavage through a mechanism that does not require divalent metal cations. Previous structural and biochemical evidence implicated the amidine group of an active site adenosine, A38, in a pH-dependent step in catalysis. We developed a way to determine microscopic pK(a) values in active ribozymes based on the pH-dependent fluorescence of 8-azaadenosine (8azaA). We compared the microscopic pK(a) for ionization of 8azaA at position 38 with the apparent pK(a) for the self-cleavage reaction in a fully functional hairpin ribozyme with a unique 8azaA at position 38. Microscopic and apparent pK(a) values were virtually the same, evidence that A38 protonation accounts for the decrease in catalytic activity with decreasing pH. These results implicate the neutral unprotonated form of A38 in a transition state that involves formation of the 5'-oxygen-phosphorus bond.
Collapse
Affiliation(s)
- Joseph W Cottrell
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
22
|
Yaren O, Mosimann M, Leumann CJ. Ein paralleles Testverfahren zur Entdeckung neuer DNA-Basenpaare. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Wilson TJ, Lilley DMJ. Do the hairpin and VS ribozymes share a common catalytic mechanism based on general acid-base catalysis? A critical assessment of available experimental data. RNA (NEW YORK, N.Y.) 2011; 17:213-21. [PMID: 21173201 PMCID: PMC3022271 DOI: 10.1261/rna.2473711] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The active centers of the hairpin and VS ribozymes are both generated by the interaction of two internal loops, and both ribozymes use guanine and adenine nucleobases to accelerate cleavage and ligation reactions. The centers are topologically equivalent and the relative positioning of key elements the same. There is good evidence that the cleavage reaction of the VS ribozyme is catalyzed by the guanine (G638) acting as general base and the adenine (A756) as general acid. We now critically evaluate the experimental mechanistic evidence for the hairpin ribozyme. We conclude that all the available data are fully consistent with a major contribution to catalysis by general acid-base catalysis involving the adenine (A38) and guanine (G8). It appears that the two ribozymes are mechanistically equivalent.
Collapse
Affiliation(s)
- Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD15EH, United Kingdom
| | | |
Collapse
|
24
|
Yaren O, Mosimann M, Leumann CJ. A parallel screen for the discovery of novel DNA base pairs. Angew Chem Int Ed Engl 2011; 50:1935-8. [PMID: 21328674 DOI: 10.1002/anie.201005300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/15/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Oezlem Yaren
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | |
Collapse
|
25
|
Thomas JM, Yoon JK, Perrin DM. Investigation of the catalytic mechanism of a synthetic DNAzyme with protein-like functionality: an RNaseA mimic? J Am Chem Soc 2010; 131:5648-58. [PMID: 20560639 DOI: 10.1021/ja900125n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protein enzyme ribonuclease A (RNaseA) cleaves RNA with catalytic perfection, although with little sequence specificity, by a divalent metal ion (M(2+))-independent mechanism in which a pair of imidazoles provides general acid and base catalysis, while a cationic amine provides electrostatic stabilization of the transition state. Synthetic imitation of this remarkable organo-catalyst ("RNaseA mimicry") has been a longstanding goal in biomimetic chemistry. The 9(25)-11 DNAzyme contains synthetically modified nucleotides presenting both imidazole and cationic amine side chains, and catalyzes RNA cleavage with turnover in the absence of M(2+) similarly to RNaseA. Nevertheless, the catalytic roles, if any, of the "protein-like" functional groups have not been defined, and hence the question remains whether 9(25)-11 engages any of these functionalities to mimic aspects of the mechanism of RNaseA. To address this question, we report a mechanistic investigation of 9(25)-11 catalysis wherein we have employed a variety of experiments, such as DNAzyme functional group deletion, mechanism-based affinity labeling, and bridging and nonbridging phosphorothioate substitution of the scissile phosphate. Several striking parallels exist between the results presented here for 9(25)-11 and the results of analogous experiments applied previously to RNaseA. Specifically, our results implicate two particular imidazoles in general acid and base catalysis and suggest that a specific cationic amine stabilizes the transition state via diastereoselective interaction with the scissile phosphate. Overall, 9(25)-11 appears to meet the minimal criteria of an RNaseA mimic; this demonstrates how added synthetic functionality can expand the mechanistic repertoire available to a synthetic DNA-based catalyst.
Collapse
Affiliation(s)
- Jason M Thomas
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | |
Collapse
|
26
|
Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme. Proc Natl Acad Sci U S A 2010; 107:11751-6. [PMID: 20547881 DOI: 10.1073/pnas.1004255107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK(a) = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5' oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2'-O nucleophile by G638 and protonation of the 5'-O leaving group by A756.
Collapse
|
27
|
Suydam IT, Levandoski SD, Strobel SA. Catalytic importance of a protonated adenosine in the hairpin ribozyme active site. Biochemistry 2010; 49:3723-32. [PMID: 20373826 DOI: 10.1021/bi100234v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hairpin ribozyme accelerates the rate of phosphodiester transfer reactions by at least 5 orders of magnitude. To achieve this rate enhancement, the active site forms via a substrate helix docking event that constrains the scissile phosphate linkage and positions G8 and A38 for catalysis, both of which have been implicated as sites of proton transfer in general acid-base catalysis. To investigate the functional groups required for hairpin activity, we previously reported a series of nucleotide analogue interference mapping experiments [Ryder, S. P., et al. (2001) RNA 7, 1454-1463]. The critical functional groups implicated in those studies were largely consistent with subsequent X-ray crystal structures, but the lack of A38 interference with 8-azaadenosine (n(8)A), a pK(a) perturbed nucleotide analogue, argued against functional base ionization at this site. This is inconsistent with a transition state crystal structure and other biochemical studies. To address this discrepancy, we investigated the hairpin ribozyme with an expanded set of pK(a) perturbed adenosine analogues containing fluorine. A38 was the only site that showed persistent and strong interference with low pK(a) analogues across a variety of construct/substrate pairs. This interference pattern suggests that A38 base ionization is required for catalytic activity. The lack of n(8)A interference at A38, in spite of its reduced pK(a), likely results from n(8)A stabilization of the docked state, which requires an unusual syn glycosidic base conformation at A38 for active site assembly. The fluorinated adenosine analogues are better suited to identify sites of functional ionization in systems where structural rearrangements are closely coupled to catalytic steps. All pK(a) reduced analogues, including those of the previous study, produce selective interference at A38 when substrates are stably bound and docked, consistent with the importance of base ionization at this site.
Collapse
Affiliation(s)
- Ian T Suydam
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
28
|
Mlýnský V, Banáš P, Hollas D, Réblová K, Walter NG, Šponer J, Otyepka M. Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal structures of hairpin ribozyme. J Phys Chem B 2010; 114:6642-52. [PMID: 20420375 PMCID: PMC2872159 DOI: 10.1021/jp1001258] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hairpin ribozyme is a prominent member of the group of small catalytic RNAs (RNA enzymes or ribozymes) because it does not require metal ions to achieve catalysis. Biochemical and structural data have implicated guanine 8 (G8) and adenine 38 (A38) as catalytic participants in cleavage and ligation catalyzed by the hairpin ribozyme, yet their exact role in catalysis remains disputed. To gain insight into dynamics in the active site of a minimal self-cleaving hairpin ribozyme, we have performed extensive classical, explicit-solvent molecular dynamics (MD) simulations on time scales of 50-150 ns. Starting from the available X-ray crystal structures, we investigated the structural impact of the protonation states of G8 and A38, and the inactivating A-1(2'-methoxy) substitution employed in crystallography. Our simulations reveal that a canonical G8 agrees well with the crystal structures while a deprotonated G8 profoundly distorts the active site. Thus MD simulations do not support a straightforward participation of the deprotonated G8 in catalysis. By comparison, the G8 enol tautomer is structurally well tolerated, causing only local rearrangements in the active site. Furthermore, a protonated A38H(+) is more consistent with the crystallography data than a canonical A38. The simulations thus support the notion that A38H(+) is the dominant form in the crystals, grown at pH 6. In most simulations, the canonical A38 departs from the scissile phosphate and substantially perturbs the structures of the active site and S-turn. Yet, we occasionally also observe formation of a stable A-1(2'-OH)...A38(N1) hydrogen bond, which documents the ability of the ribozyme to form this hydrogen bond, consistent with a potential role of A38 as general base catalyst. The presence of this hydrogen bond is, however, incompatible with the expected in-line attack angle necessary for self-cleavage, requiring a rapid transition of the deprotonated 2'-oxyanion to a position more favorable for in-line attack after proton transfer from A-1(2'-OH) to A38(N1). The simulations revealed a potential force field artifact, occasional but irreversible formation of "ladder-like", underwound A-RNA structure in one of the external helices. Although it does not affect the catalytic center of the hairpin ribozyme, further studies are under way to better assess possible influence of such force field behavior on long RNA simulations.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Daniel Hollas
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Jiří Šponer
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
29
|
Guo M, Spitale RC, Volpini R, Krucinska J, Cristalli G, Carey PR, Wedekind JE. Direct Raman measurement of an elevated base pKa in the active site of a small ribozyme in a precatalytic conformation. J Am Chem Soc 2010; 131:12908-9. [PMID: 19702306 DOI: 10.1021/ja9060883] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic RNA molecules can achieve rate acceleration by shifting base pK(a) values toward neutrality. Prior evidence has suggested that base A38 of the hairpin ribozyme plays an important role in phosphoryl transfer, possibly functioning as a general acid, or by orienting a specific water molecule for proton transfer. To address the role of A38, we used Raman spectroscopy to measure directly the pK(a) of the N1-imino moiety in the context of hairpin ribozyme crystals representative of a "precatalytic" conformation. The results revealed that the pK(a) of A38 is shifted to 5.46 +/- 0.05 relative to 3.68 +/- 0.06 derived from a reference solution of the nucleotide AMP. The elevated pK(a) correlates well with the first titration point of the macroscopic pH-rate profile of the hairpin ribozyme in solution and strongly supports A38 as a general acid catalyst in bond scission. The results confirm that A38 is protonated before the transition state, which would promote phosphorane development. Overall, the results establish a cogent structure-function paradigm that expands our understanding of how RNA structure can enhance nucleobase reactivity to catalyze biological reactions.
Collapse
Affiliation(s)
- Man Guo
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Banáš P, Jurečka P, Walter NG, Šponer J, Otyepka M. Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Methods 2009; 49:202-16. [PMID: 19398008 PMCID: PMC2753711 DOI: 10.1016/j.ymeth.2009.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/28/2022] Open
Abstract
Hybrid QM/MM methods combine the rigor of quantum mechanical (QM) calculations with the low computational cost of empirical molecular mechanical (MM) treatment allowing to capture dynamic properties to probe critical atomistic details of enzyme reactions. Catalysis by RNA enzymes (ribozymes) has only recently begun to be addressed with QM/MM approaches and is thus still a field under development. This review surveys methodology as well as recent advances in QM/MM applications to RNA mechanisms, including those of the HDV, hairpin, and hammerhead ribozymes, as well as the ribosome. We compare and correlate QM/MM results with those from QM and/or molecular dynamics (MD) simulations, and discuss scope and limitations with a critical eye on current shortcomings in available methodologies and computer resources. We thus hope to foster mutual appreciation and facilitate collaboration between experimentalists and theorists to jointly advance our understanding of RNA catalysis at an atomistic level.
Collapse
Affiliation(s)
- Pavel Banáš
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Jiří Šponer
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
31
|
Spitale RC, Wedekind JE. Exploring ribozyme conformational changes with X-ray crystallography. Methods 2009; 49:87-100. [PMID: 19559088 PMCID: PMC2782588 DOI: 10.1016/j.ymeth.2009.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/28/2009] [Accepted: 06/05/2009] [Indexed: 11/18/2022] Open
Abstract
Relating three-dimensional fold to function is a central challenge in RNA structural biology. Toward this goal, X-ray crystallography has long been considered the "gold standard" for structure determinations at atomic resolution, although NMR spectroscopy has become a powerhouse in this arena as well. In the area of dynamics, NMR remains the dominant technique to probe the magnitude and timescales of molecular motion. Although the latter area remains largely unassailable by conventional crystallographic methods, inroads have been made on proteins using Laue radiation on timescales of ms to ns. Proposed 'fourth generation' radiation sources, such as free-electron X-ray lasers, promise ps- to fs-timescale resolution, and credible evidence is emerging that supports the feasibility of single molecule imaging. At present however, the preponderance of RNA structural information has been derived from timescale and motion insensitive crystallographic techniques. Importantly, developments in computing, automation and high-flux synchrotron sources have propelled the rapidity of 'conventional' RNA crystal structure determinations to timeframes of hours once a suitable set of phases is obtained. With a sufficient number of crystal structures, it is possible to create a structural ensemble that can provide insight into global and local molecular motion characteristics that are relevant to biological function. Here we describe techniques to explore conformational changes in the hairpin ribozyme, a representative non-protein-coding RNA catalyst. The approaches discussed include: (i) construct choice and design using prior knowledge to improve X-ray diffraction; (ii) recognition of long-range conformational changes and (iii) use of single-base or single-atom changes to create ensembles. The methods are broadly applicable to other RNA systems.
Collapse
Affiliation(s)
- Robert C. Spitale
- Department of Chemistry, Biological Chemistry Cluster, RC Box 270216, Rochester, NY 14627-0216
| | - Joseph E. Wedekind
- Department of Biochemistry & Biophysics, 601 Elmwood Avenue Box 712, Rochester New York 14642
- Department of Chemistry, Biological Chemistry Cluster, RC Box 270216, Rochester, NY 14627-0216
| |
Collapse
|
32
|
Spitale RC, Volpini R, Mungillo MV, Krucinska J, Cristalli G, Wedekind JE. Single-atom imino substitutions at A9 and A10 reveal distinct effects on the fold and function of the hairpin ribozyme catalytic core. Biochemistry 2009; 48:7777-9. [PMID: 19634899 DOI: 10.1021/bi9011622] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hairpin ribozyme cleaves a phosphodiester bond within a cognate substrate. Structural and biochemical data indicate the conserved A9 and A10 bases reside close to the scissile bond but make distinct contributions to catalysis. To investigate these residues, we replaced the imino moiety of each base with N1-deazaadenosine. This single-atom change resulted in an 8-fold loss in k(obs) for A9 and displacement of the base from the active site; no effects were observed for A10. We propose that the imino moiety of A9 promotes a key water-mediated contact that favors transition-state formation, which suggests an enhanced chemical repertoire for RNA.
Collapse
Affiliation(s)
- Robert C Spitale
- Department of Biochemistry & Biophysics, 601 Elmwood Avenue, Box 712, Rochester New York 14642, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Self-cleaving hammerhead, hairpin, hepatitis delta virus, and glmS ribozymes comprise a family of small catalytic RNA motifs that catalyze the same reversible phosphodiester cleavage reaction, but each motif adopts a unique structure and displays a unique array of biochemical properties. Recent structural, biochemical, and biophysical studies of these self-cleaving RNAs have begun to reveal how active site nucleotides exploit general acid-base catalysis, electrostatic stabilization, substrate destabilization, and positioning and orientation to reduce the free energy barrier to catalysis. Insights into the variety of catalytic strategies available to these model RNA enzymes are likely to have important implications for understanding more complex RNA-catalyzed reactions fundamental to RNA processing and protein synthesis.
Collapse
Affiliation(s)
- Martha J Fedor
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Spitale RC, Volpini R, Heller MG, Krucinska J, Cristalli G, Wedekind JE. Identification of an imino group indispensable for cleavage by a small ribozyme. J Am Chem Soc 2009; 131:6093-5. [PMID: 19354216 DOI: 10.1021/ja900450h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hairpin ribozyme is a small, noncoding RNA (ncRNA) that catalyzes a site-specific phosphodiester bond cleavage reaction. Prior biochemical and structural analyses pinpointed the amidine moiety of base Ade38 as a key functional group in catalysis, but base changes designed to probe function resulted in localized misfolding of the active site. To define the requirements for chemical activity using a conservative modification, we synthesized and incorporated N1-deazaadenosine into the full-length ribozyme construct. This single-atom variant severely impairs activity, although the active-site fold remains intact in the accompanying crystal structures. The results demonstrate the essentiality of the imino moiety as well as the importance of its interaction with the substrate in the precatalytic and transition-state conformations. This work demonstrates the efficacy of single-atom approaches in the analysis of ncRNA structure-function relationships.
Collapse
Affiliation(s)
- Robert C Spitale
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, New York 14627-0216, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ditzler MA, Sponer J, Walter NG. Molecular dynamics suggest multifunctionality of an adenine imino group in acid-base catalysis of the hairpin ribozyme. RNA (NEW YORK, N.Y.) 2009; 15:560-75. [PMID: 19223444 PMCID: PMC2661834 DOI: 10.1261/rna.1416709] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite numerous structural and biochemical investigations, the catalytic mechanism of hairpin ribozyme self-cleavage remains elusive. To gain insight into the coupling of active site dynamics with activity of this small catalytic RNA, we analyzed a total of approximately 300 ns of molecular dynamics (MD) simulations. Our simulations predict improved global stability for an in vitro selected "gain of function" mutation, which is validated by native gel electrophoretic mobility shift assay. We observe that active site nucleobases and water molecules stabilize a geometry favorable to catalysis through a dynamic hydrogen bonding network. Simulations in which A38 is unprotonated show its N1 move into close proximity of the active site 2'-OH, indicating that A38 may act as a general base during cleavage, a role that has generally been discounted due to the longer distances observed in crystal structures involving inactivating substrate analogs. By contrast, simulations in which N1 of A38 is protonated place N1 in close proximity to the 5'-oxygen leaving group, which supports the proposal that A38 serves as a general acid. In analogy to protein enzymes, we discuss a plausible mechanism in which A38 acts bifunctionally and shuttles a proton directly from the 2'-OH to the 5'-oxygen. Furthermore, our simulations suggest an important role for protonation of N1 of A38 in promoting a favorable geometry similar to that observed in transition-state analog crystal structures, and support previously proposed roles of A38, G8, and long residency water molecules in transition-state stabilization.
Collapse
|
36
|
Direct measurement of the ionization state of an essential guanine in the hairpin ribozyme. Nat Chem Biol 2009; 5:351-7. [PMID: 19330013 PMCID: PMC2670934 DOI: 10.1038/nchembio.156] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/18/2009] [Indexed: 11/08/2022]
Abstract
Active site guanines are critical for self-cleavage reactions of several ribozymes, but their precise functions in catalysis are unclear. To learn whether protonated or deprotonated forms of guanine predominate in the active site, microscopic pKa values were determined for ionization of 8-azaguanosine substituted for G8 in the active site of a fully functional hairpin ribozyme in order to determine microscopic pKa values for 8-azaguanine deprotonation from the pH dependence of fluorescence. Microscopic pKa values above 9 for deprotonation of 8-azaguanine in the active site were about 3 units higher than apparent pKa values determined from the pH dependence of self-cleavage kinetics. Thus, the increase in activity with increasing pH does not correlate with deprotonation of G8, and most of G8 is protonated at neutral pH. These results do not exclude a role in proton transfer, but a simple interpretation is that G8 functions in the protonated form, perhaps by donating hydrogen bonds.
Collapse
|
37
|
Walter NG, Perumal S. The Small Ribozymes: Common and Diverse Features Observed through the FRET Lens. SPRINGER SERIES IN BIOPHYSICS 2009; 13:103-127. [PMID: 21796234 DOI: 10.1007/978-3-540-70840-7_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hammerhead, hairpin, HDV, VS and glmS ribozymes are the five known, naturally occurring catalytic RNAs classified as the "small ribozymes". They share common reaction chemistry in cleaving their own backbone by phosphodiester transfer, but are diverse in their secondary and tertiary structures, indicating that Nature has found at least five independent solutions to a common chemical task. Fluorescence resonance energy transfer (FRET) has been extensively used to detect conformational changes in these ribozymes and dissect their reaction pathways. Common and diverse features are beginning to emerge that, by extension, highlight general biophysical properties of non-protein coding RNAs.
Collapse
Affiliation(s)
- Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
38
|
Thomas JM, Perrin DM. Probing General Base Catalysis in the Hammerhead Ribozyme. J Am Chem Soc 2008; 130:15467-75. [DOI: 10.1021/ja804496z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason M. Thomas
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - David M. Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|
39
|
MacElrevey C, Salter JD, Krucinska J, Wedekind JE. Structural effects of nucleobase variations at key active site residue Ade38 in the hairpin ribozyme. RNA (NEW YORK, N.Y.) 2008; 14:1600-16. [PMID: 18596253 PMCID: PMC2491461 DOI: 10.1261/rna.1055308] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The hairpin ribozyme requires functional groups from Ade38 to achieve efficient bond cleavage or ligation. To identify molecular features that contribute to catalysis, structures of position 38 base variants 2,6-diaminopurine (DAP), 2-aminopurine (AP), cytosine (Cyt), and guanine (Gua) were determined between 2.2 and 2.8 A resolution. For each variant, two substrate modifications were compared: (1) a 2'-O-methyl-substituent at Ade-1 was used in lieu of the nucleophile to mimic the precatalytic state, and (2) a 3'-deoxy-2',5'-phosphodiester linkage between Ade-1 and Gua+1 was used to mimic a reaction-intermediate conformation. While the global fold of each variant remained intact, the results revealed the importance of Ade38 N1 and N6 groups. Absence of N6 resulting from AP38 coincided with failure to localize the precatalytic scissile phosphate. Cyt38 severely impaired catalysis in a prior study, and its structures here indicated an anti base conformation that sequesters the imino moiety from the scissile bond. Gua38 was shown to be even more deleterious to activity. Although the precatalytic structure was nominally affected, the reaction-intermediate conformation indicated a severe electrostatic clash between the Gua38 keto oxygen and the pro-Rp oxygen of the scissile bond. Overall, position 38 modifications solved in the presence of 2'-OMe Ade-1 deviated from in-line geometry, whereas variants with a 2',5' linkage exhibited S-turn destabilization, as well as base conformational changes from syn to anti. These findings demonstrate the importance of the Ade38 Watson-Crick face in attaining a reaction-intermediate state and the sensitivity of the RNA fold to restructuring when electrostatic and shape features fail to complement.
Collapse
Affiliation(s)
- Celeste MacElrevey
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
40
|
Nam K, Gao J, York DM. Electrostatic interactions in the hairpin ribozyme account for the majority of the rate acceleration without chemical participation by nucleobases. RNA (NEW YORK, N.Y.) 2008; 14:1501-7. [PMID: 18566190 PMCID: PMC2491468 DOI: 10.1261/rna.863108] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecular dynamics simulations using a combined quantum mechanical/molecular mechanical potential are used to determine the two-dimensional free energy profiles for the mechanism of RNA transphosphorylation in solution and catalyzed by the hairpin ribozyme. A mechanism is explored whereby the reaction proceeds without explicit chemical participation by conserved nucleobases in the active site. The ribozyme lowers the overall free energy barrier by up to 16 kcal/mol, accounting for the majority of the observed rate enhancement. The barrier reduction in this mechanism is achieved mainly by the electrostatic environment provided by the ribozyme without recruitment of active site nucleobases as acid or base catalysts. The results establish a baseline mechanism that invokes only the solvation and specific hydrogen-bonding interactions present in the ribozyme active site and provide a departure point for the exploration of alternate mechanisms where nucleobases play an active chemical role.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | | | | |
Collapse
|
41
|
Abstract
[Structure: see text]. Five naturally occurring nucleolytic ribozymes have been identified: the hammerhead, hairpin, glmS, hepatitis delta virus (HDV), and Varkud satellite (VS) ribozymes. All of these RNA enzymes catalyze self-scission of the RNA backbone using a chemical mechanism equivalent to that of RNase A. RNase A uses four basic strategies to promote this reaction: geometric constraints, activation of the nucleophile, transition-state stabilization, and leaving group protonation. In this Account, we discuss the current thinking on how nucleolytic ribozymes harness RNase A's four sources of catalytic power. The geometry of the phosphodiester cleavage reaction constrains the nucleotides flanking the scissile phosphate so that they are unstacked from a canonical A-form helix and thus require alternative stabilization. Crystal structures and mutational analysis reveal that cross-strand base pairing, along with unconventional stacking and tertiary hydrogen-bonding interactions, work to stabilize the splayed conformation in nucleolytic ribozymes. Deprotonation of the 2'-OH nucleophile greatly increases its nucleophilicity in the strand scission reaction. Crystal structures of the hammerhead, hairpin, and glmS ribozymes reveal the N1 of a G residue within hydrogen-bonding distance of the 2'-OH. In each case, this residue has also been shown to be important for catalysis. In the HDV ribozyme, a hydrated magnesium has been implicated as the general base. Catalysis by the VS ribozyme requires both an A and a G, but the precise role of either has not been elucidated. Enzymes can lower the energy of a chemical reaction by binding more tightly to the transition state than to the ground states. Comparison of the hairpin ground- and transition-state mimic structures reveal greater hydrogen bonding to the transition-state mimic structure, suggesting transition-state stabilization as a possible catalytic strategy. However, the hydrogen-bonding pattern in the glmS ribozyme transition-state mimic structure and the ground-state structures are equivalent. Protonation of the 5'-O leaving group by a variety of functional groups can promote the cleavage reaction. In the HDV ribozyme, the general acid is a conserved C residue. In the hairpin ribozyme, a G residue has been implicated in protonation of the leaving group. An A in the hammerhead ribozyme probably plays a similar role. In the glmS ribozyme, an exogenous cofactor may provide the general acid. This diversity is in contrast to the relatively small number of functional groups that serve as a general base, where at least three of the nucleolytic ribozymes may use the N1 of a G.
Collapse
Affiliation(s)
- Jesse C. Cochrane
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
| | - Scott A. Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
- Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
| |
Collapse
|
42
|
Jaikaran D, Smith MD, Mehdizadeh R, Olive J, Collins RA. An important role of G638 in the cis-cleavage reaction of the Neurospora VS ribozyme revealed by a novel nucleotide analog incorporation method. RNA (NEW YORK, N.Y.) 2008; 14:938-49. [PMID: 18356538 PMCID: PMC2327350 DOI: 10.1261/rna.936508] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We describe a chemical coupling procedure that allows joining of two RNAs, one of which contains a site-specific base analog substitution, in the absence of divalent ions. This method allows incorporation of nucleotide analogs at specific positions even into large, cis-cleaving ribozymes. Using this method we have studied the effects of substitution of G638 in the cleavage site loop of the VS ribozyme with a variety of purine analogs having different functional groups and pK(a) values. Cleavage rate versus pH profiles combined with kinetic solvent isotope experiments indicate an important role for G638 in proton transfer during the rate-limiting step of the cis-cleavage reaction.
Collapse
Affiliation(s)
- Dominic Jaikaran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
43
|
Nam K, Gao J, York DM. Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis. J Am Chem Soc 2008; 130:4680-91. [PMID: 18345664 DOI: 10.1021/ja0759141] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular mechanism of hairpin ribozyme catalysis is studied with molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential with a recently developed semiempirical AM1/d-PhoT model for phosphoryl transfer reactions. Simulations are used to derive one- and two-dimensional potentials of mean force to examine specific reaction paths and assess the feasibility of proposed general acid and base mechanisms. Density-functional calculations of truncated active site models provide complementary insight to the simulation results. Key factors utilized by the hairpin ribozyme to enhance the rate of transphosphorylation are presented, and the roles of A38 and G8 as general acid and base catalysts are discussed. The computational results are consistent with available experimental data, provide support for a general acid/base mechanism played by functional groups on the nucleobases, and offer important insight into the ability of RNA to act as a catalyst without explicit participation by divalent metal ions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | | | | |
Collapse
|
44
|
Abstract
Enzymatic catalysis by RNA was discovered 25 years ago, yet mechanistic insights are emerging only slowly. Thought to be metalloenzymes at first, some ribozymes proved more versatile than anticipated when shown to utilize their own functional groups for catalysis. Recent evidence suggests that some may also judiciously place structural water molecules to shuttle protons in acid-base catalyzed reactions.
Collapse
Affiliation(s)
- Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48019-1055, USA.
| |
Collapse
|
45
|
Abstract
The ability of RNA to catalyze chemical reactions was first demonstrated 25 years ago with the discovery that group I introns and RNase P function as RNA enzymes (ribozymes). Several additional ribozymes were subsequently identified, most notably the ribosome, followed by intense mechanistic studies. More recently, the introduction of single molecule tools has dissected the kinetic steps of several ribozymes in unprecedented detail and has revealed surprising heterogeneity not evident from ensemble approaches. Still, many fundamental questions of how RNA enzymes work at the molecular level remain unanswered. This review surveys the current status of our understanding of RNA catalysis at the single molecule level and discusses the existing challenges and opportunities in developing suitable assays.
Collapse
Affiliation(s)
- Mark A Ditzler
- Biophysics Research Division, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
46
|
Gaur S, Heckman JE, Burke JM. Mutational inhibition of ligation in the hairpin ribozyme: substitutions of conserved nucleobases A9 and A10 destabilize tertiary structure and selectively promote cleavage. RNA (NEW YORK, N.Y.) 2008; 14:55-65. [PMID: 17998292 PMCID: PMC2151026 DOI: 10.1261/rna.716108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The hairpin ribozyme acts as a reversible, site-specific endoribonuclease that ligates much more rapidly than it cleaves cognate substrate. While the reaction pathway for ligation is the reversal of cleavage, little is known about the atomic and electrostatic details of the two processes. Here, we report the functional consequences of molecular substitutions of A9 and A10, two highly conserved nucleobases located adjacent to the hairpin ribozyme active site, using G, C, U, 2-aminopurine, 2,6-diaminopurine, purine, and inosine. Cleavage and ligation kinetics were analyzed, tertiary folding was monitored by hydroxyl radical footprinting, and interdomain docking was studied by native gel electrophoresis. We determined that nucleobase substitutions that exhibit significant levels of interference with tertiary folding and interdomain docking have relatively large inhibitory effects on ligation rates while showing little inhibition of cleavage. Indeed, one variant, A10G, showed a fivefold enhancement of cleavage rate and no detectable ligation, and we suggest that this property may be uniquely well suited to intracellular targeted RNA cleavage applications. Results support a model in which formation of a kinetically stable tertiary structure is essential for ligation of the hairpin ribozyme, but is not necessary for cleavage.
Collapse
Affiliation(s)
- Snigdha Gaur
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
47
|
Strobel SA, Cochrane JC. RNA catalysis: ribozymes, ribosomes, and riboswitches. Curr Opin Chem Biol 2007; 11:636-43. [PMID: 17981494 DOI: 10.1016/j.cbpa.2007.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
The catalytic mechanisms employed by RNA are chemically more diverse than initially suspected. Divalent metal ions, nucleobases, ribosyl hydroxyl groups, and even functional groups on metabolic cofactors all contribute to the various strategies employed by RNA enzymes. This catalytic breadth raises intriguing evolutionary questions about how RNA lost its biological role in some cases, but not in others, and what catalytic roles RNA might still be playing in biology.
Collapse
Affiliation(s)
- Scott A Strobel
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
48
|
Lilley DMJ. A chemo-genetic approach for the study of nucleobase participation in nucleolytic ribozymes. Biol Chem 2007; 388:699-704. [PMID: 17570822 DOI: 10.1515/bc.2007.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel chemo-genetic approach for the analysis of general acid-base catalysis by nucleobases in ribozymes is reviewed. This involves substitution of a C-nucleoside with imidazole in place of a natural nucleobase. The Varkud satellite ribozyme in which the nucleobase at the critical 756 position has been replaced by imidazole is active in both cleavage and ligation reactions. Similarly, a modified hairpin ribozyme with the nucleobase at position 8 substituted by imidazole is active in cleavage and ligation reactions. Although the rates are lower than those of the natural ribozymes, they are significantly greater than other variants at these positions. The dependence of the hairpin ribozyme reaction rates on pH has been studied. Both cleavage and ligation reactions display a bell-shaped pH dependence, consistent with general acid-base catalysis involving the nucleotide at position 8.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK.
| |
Collapse
|
49
|
Torelli AT, Krucinska J, Wedekind JE. A comparison of vanadate to a 2'-5' linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. RNA (NEW YORK, N.Y.) 2007; 13:1052-70. [PMID: 17488874 PMCID: PMC1894929 DOI: 10.1261/rna.510807] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The potential for water to participate in RNA catalyzed reactions has been the topic of several recent studies. Here, we report crystals of a minimal, hinged hairpin ribozyme in complex with the transition-state analog vanadate at 2.05 A resolution. Waters are present in the active site and are discussed in light of existing views of catalytic strategies employed by the hairpin ribozyme. A second structure harboring a 2',5'-phosphodiester linkage at the site of cleavage was also solved at 2.35 A resolution and corroborates the assignment of active site waters in the structure containing vanadate. A comparison of the two structures reveals that the 2',5' structure adopts a conformation that resembles the reaction intermediate in terms of (1) the positioning of its nonbridging oxygens and (2) the covalent attachment of the 2'-O nucleophile with the scissile G+1 phosphorus. The 2',5'-linked structure was then overlaid with scissile bonds of other small ribozymes including the glmS metabolite-sensing riboswitch and the hammerhead ribozyme, and suggests the potential of the 2',5' linkage to elicit a reaction-intermediate conformation without the need to form metalloenzyme complexes. The hairpin ribozyme structures presented here also suggest how water molecules bound at each of the nonbridging oxygens of G+1 may electrostatically stabilize the transition state in a manner that supplements nucleobase functional groups. Such coordination has not been reported for small ribozymes, but is consistent with the structures of protein enzymes. Overall, this work establishes significant parallels between the RNA and protein enzyme worlds.
Collapse
Affiliation(s)
- Andrew T Torelli
- Department of Biochemistry and Biophysics, Rochester, NY 14642, USA
| | | | | |
Collapse
|
50
|
Cottrell JW, Kuzmin YI, Fedor MJ. Functional Analysis of Hairpin Ribozyme Active Site Architecture. J Biol Chem 2007; 282:13498-507. [PMID: 17351263 DOI: 10.1074/jbc.m700451200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hairpin ribozyme is a small catalytic motif found in plant satellite RNAs where it catalyzes a reversible self-cleavage reaction during processing of replication intermediates. Crystallographic studies of hairpin ribozymes have provided high resolution views of the RNA functional groups that comprise the active site and stimulated biochemical studies that probed the contributions of nucleobase functional groups to catalytic chemistry. The dramatic loss of activity that results from perturbation of active site architecture points to the importance of positioning and orientation in catalytic rate acceleration. The current study focuses on the network of noncovalent interactions that align nucleophilic and leaving group oxygens in the orientation required for the S(N)2-type reaction mechanism and orient the active site nucleobases near the reactive phosphate to facilitate catalytic chemistry. Nucleotide modifications that alter or eliminate individual hydrogen bonding partners had different effects on the activation barrier to catalysis, the stability of ribozyme complexes in the ground state, and the internal equilibrium between cleavage and ligation of bound products. Furthermore, substitution of hydrogen bond donors and acceptors with seemingly equivalent pairs sometimes had very different functional consequences. These biochemical analyses augment high resolution structural information to provide insights into the functional significance of active site architecture.
Collapse
Affiliation(s)
- Joseph W Cottrell
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|