1
|
Akanmori NN, Junop MS, Gupta RS, Park J. Conformational flexibility of human ribokinase captured in seven crystal structures. Int J Biol Macromol 2025; 299:140109. [PMID: 39837438 DOI: 10.1016/j.ijbiomac.2025.140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
d-ribose is a critical sugar substrate involved in the biosynthesis of nucleotides, amino acids, and cofactors, with its phosphorylation to ribose-5-phosphate by ribokinase (RK) constituting the initial step in its metabolism. RK is conserved across all domains of life, and its activity is significantly enhanced by monovalent metal (M+) ions, particularly K+, although the precise mechanism of this activation remains unclear. In this study, we present several crystal structures of human RK in both unliganded and substrate-bound states, offering detailed insights into its substrate binding process, reaction mechanism, and conformational changes throughout the catalytic cycle. Notably, bound ATP exhibited significant conformational flexibility in its triphosphate moiety, a feature shared with other RK homologues, suggesting that achieving a catalytically productive triphosphate configuration plays a key role in regulating enzyme activity. We also identified a unique conformational change in the M+ ion binding loop of human RK, specifically the flipping of the Gly306-Thr307 peptide plane, likely influenced by the ionic radius of the bound ion. These findings provide new insights into the RK reaction mechanism and its activation by M+ ions, paving the way for future investigations into the allosteric regulation of human RK and related sugar kinase enzymes.
Collapse
Affiliation(s)
- Naomi N Akanmori
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada
| | - Murray S Junop
- Department of Biochemistry, Western University, 1151 Richmond Street, London, Ontario, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
2
|
Daley SR, Gallanosa PM, Sparling R. Kinetic characterization of annotated glycolytic enzymes present in cellulose-fermenting Clostridium thermocellum suggests different metabolic roles. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:112. [PMID: 37438781 DOI: 10.1186/s13068-023-02362-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The efficient production of sustainable biofuels is important for the reduction of greenhouse gas emissions. Clostridium thermocellum ATCC 27405 is a candidate for ethanol production from lignocellulosic biomass using consolidated bioprocessing. Fermentation of cellulosic biomass goes through an atypical glycolytic pathway in this thermophilic bacterium, with various glycolytic enzymes capable of utilizing different phosphate donors, including GTP and inorganic pyrophosphate (PPi), in addition to or in place of the usual ATP. C. thermocellum contains three annotated phosphofructokinases (PFK) genes, the expression of which have all been detected through proteomics and transcriptomics. Pfp (Cthe_0347) was previously characterized as pyrophosphate dependent with fructose-6-phosphate (F6P) as its substrate. RESULTS We now demonstrate that this enzyme can also phosphorylate sedoheptulose-7-phosphate (an intermediate in the pentose phosphate pathway), with the Vmax and Km of F6P being approximately 15 folds higher and 43 folds lower, respectively, in comparison to sedoheptulose-7-phosphate. Purified PfkA shows preference for GTP as the phosphate donor as opposed to ATP with a 12.5-fold difference in Km values while phosphorylating F6P. Allosteric regulation is a factor at play in PfkA activity, with F6P exhibiting positive cooperativity, and an apparent requirement for ammonium ions to attain maximal activity. Phosphoenolpyruvate and PPi were the only inhibitors for PfkA determined from the study, which corroborates what is known about enzymes from this subfamily. The activation or inhibition by these ligands lends support to the argument that glycolysis is regulated by metabolites such as PPi and NH4+ in the organism. PfkB, showed no activity with F6P, but had significant activity with fructose, while utilizing either ATP or GTP, making it a fructokinase. Rounding out the upper glycolysis pathway, the identity of the fructose-1,6-bisphosphate aldolase in the genome was verified and reported to have substantial activity with fructose-1,6-bisphosphate, in the presence of the divalent ion, Zn2+. CONCLUSION These findings along with previous proteomic data suggest that Pfp, plays a role in both glycolysis and the pentose phosphate pathway, while PfkA and PfkB may phosphorylate sugars in glycolysis but is responsible for sugar metabolism elsewhere under conditions outside of growth on sufficient cellobiose.
Collapse
Affiliation(s)
- Steve R Daley
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Patricia Mae Gallanosa
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
3
|
Lee GH, Kim JH, Ha HJ, Park HH. Structure of YdjH from Acinetobacter baumannii revealed an active site of YdjH family sugar kinase. Biochem Biophys Res Commun 2023; 664:27-34. [PMID: 37130458 DOI: 10.1016/j.bbrc.2023.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023]
Abstract
Bacterial sugar kinase is a central enzyme for proper sugar degradation in bacteria, essential for survival and growth. Therefore, this enzyme family is a primary target for antibacterial drug development, with YdjH most preferring to phosphorylate higher-order monosaccharides with a carboxylate terminus. Sugar kinases express diverse specificity and functions, making specificity determination of this family a prominent issue. This study examines the YdjH crystal structure from Acinetobacter baumannii (abYdjH), which has an exceptionally high antibiotic resistance and is considered a superbug. Our structural and biochemical study revealed that abYdjH has a widely open lid domain and is a solution dimer. In addition, the putative active site of abYdjH was determined based on structural analysis, sequence comparison, and in silico docking. Finally, we proposed the active site-forming residues that determine various sugar specificities from abYdjH. This study contributes towards a deeper understanding of the phosphorylation process and bacterial sugar metabolism of YdjH family to design the next-generation antibiotics for targeting A. baumannii.
Collapse
Affiliation(s)
- Gwan Hee Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ju Hyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Huddleston JP, Raushel FM. Functional Characterization of YdjH, a Sugar Kinase of Unknown Specificity in Escherichia coli K12. Biochemistry 2019; 58:3354-3364. [PMID: 31314509 DOI: 10.1021/acs.biochem.9b00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ydj gene cluster is annotated to catalyze the catabolism of an unknown carbohydrate. Previously, YdjI, a class II aldolase, was shown to catalyze the retro-aldol cleavage of l-glycero-l-galacto-octuluronate-1-phosphate into DHAP and l-arabinuronate. In this report, the functional characterization of YdjH is presented. YdjH catalyzes the phosphorylation of 2-keto-monosaccharides at the C1 hydroxyl group with a substrate profile significantly more stringent than that of YdjI. Similar to YdjI, YdjH shows a strong preference for higher-order monosaccharides (seven to nine carbons) with a carboxylate terminus. The best substrate was determined to be l-glycero-l-galacto-octuluronate, yielding l-glycero-l-galacto-octuluronate-1-phosphate with a kcat of 16 s-1 and a kcat/Km of 2.1 × 104 M-1 s-1. This is apparently the first reported example of kinase activity with eight-carbon monosaccharides. Two crystal structures of YdjH were previously determined to 2.15 and 1.8 Å resolution (Protein Data Bank entries 3H49 and 3IN1 ). We present an analysis of the active site layout and use computational docking to identify potential key residues in the binding of l-glycero-l-galacto-octuluronate.
Collapse
Affiliation(s)
- Jamison P Huddleston
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
5
|
Sánchez-Moreno I, Trachtmann N, Ilhan S, Hélaine V, Lemaire M, Guérard-Hélaine C, Sprenger GA. 2-Ketogluconate Kinase from Cupriavidus necator H16: Purification, Characterization, and Exploration of Its Substrate Specificity. Molecules 2019; 24:molecules24132393. [PMID: 31261738 PMCID: PMC6651773 DOI: 10.3390/molecules24132393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022] Open
Abstract
We have cloned, overexpressed, purified, and characterized a 2-ketogluconate kinase (2-dehydrogluconokinase, EC 2.7.1.13) from Cupriavidus necator (Ralstonia eutropha) H16. Exploration of its substrate specificity revealed that three ketoacids (2-keto-3-deoxy-d-gluconate, 2-keto-d-gulonate, and 2-keto-3-deoxy-d-gulonate) with structures close to the natural substrate (2-keto-d-gluconate) were successfully phosphorylated at an efficiency lower than or comparable to 2-ketogluconate, as depicted by the measured kinetic constant values. Eleven aldo and keto monosaccharides of different chain lengths and stereochemistries were also assayed but not found to be substrates. 2-ketogluconate-6-phosphate was synthesized at a preparative scale and was fully characterized for the first time.
Collapse
Affiliation(s)
- Israel Sánchez-Moreno
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Natalia Trachtmann
- University of Stuttgart, Institute of Microbiology, D-70569 Stuttgart, Germany
| | - Sibel Ilhan
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
- University of Stuttgart, Institute of Microbiology, D-70569 Stuttgart, Germany
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - Georg A Sprenger
- University of Stuttgart, Institute of Microbiology, D-70569 Stuttgart, Germany.
| |
Collapse
|
6
|
Watanabe S, Fukumori F, Watanabe Y. Substrate and metabolic promiscuities of d-altronate dehydratase family proteins involved in non-phosphorylative d-arabinose, sugar acid, l-galactose and l-fucose pathways from bacteria. Mol Microbiol 2019; 112:147-165. [PMID: 30985034 DOI: 10.1111/mmi.14259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2019] [Indexed: 11/29/2022]
Abstract
The gene context in microorganism genomes is of considerable help for identifying potential substrates. The C785_RS13685 gene in Herbaspirillum huttiense IAM 15032 is a member of the d-altronate dehydratase protein family, and which functions as a d-arabinonate dehydratase in vitro, is clustered with genes related to putative pentose metabolism. In the present study, further biochemical characterization and gene expression analyses revealed that l-xylonate is a physiological substrate that is ultimately converted to α-ketoglutarate via so-called Route II of a non-phosphorylative pathway. Several hexonates, including d-altronate, d-idonate and l-gluconate, which are also substrates of C785_RS13685, also significantly up-regulated the gene cluster containing C785_RS13685, suggesting a possibility that pyruvate and d- or l-glycerate were ultimately produced (novel Route III). On the contrary, ACAV_RS08155 of Acidovorax avenae ATCC 19860, a homologous gene to C785_RS13685, functioned as a d-altronate dehydratase in a novel l-galactose pathway, through which l-galactonate was epimerized at the C5 position by the sequential activity of two dehydrogenases, resulting in d-altronate. Furthermore, this pathway completely overlapped with Route III of the non-phosphorylative l-fucose pathway. The 'substrate promiscuity' of d-altronate dehydratase protein(s) is significantly expanded to 'metabolic promiscuity' in the d-arabinose, sugar acid, l-fucose and l-galactose pathways.
Collapse
Affiliation(s)
- Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.,Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.,Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Fumiyasu Fukumori
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.,Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| |
Collapse
|
7
|
Large-scale conformational changes and redistribution of surface negative charge upon sugar binding dictate the fidelity of phosphorylation in Vibrio cholerae fructokinase. Sci Rep 2018; 8:16925. [PMID: 30446722 PMCID: PMC6240065 DOI: 10.1038/s41598-018-35236-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022] Open
Abstract
Fructokinase (FRK) catalyzes the first step of fructose metabolism i.e., D-fructose to D-fructose-6-phosphate (F6P), however, the mechanistic insights of this reaction are elusive yet. Here we demonstrate that the putative Vibrio cholerae fructokinase (VcFRK) exhibit strong fructose-6-kinase activity allosterically modulated by K+/Cs+. We have determined the crystal structures of apo-VcFRK and its complex with fructose, fructose-ADP-Ca2+, fructose-ADP-Ca2+-BeF3−. Collectively, we propose the catalytic mechanism and allosteric activation of VcFRK in atomistic details explaining why K+/Cs+ are better activator than Na+. Structural results suggest that apo VcFRK allows entry of fructose in the active site, sequester it through several conserved H-bonds and attains a closed form through large scale conformational changes. A double mutant (H108C/T261C-VcFRK), that arrests the closed form but unable to reopen for F6P release, is catalytically impotent highlighting the essentiality of this conformational change. Negative charge accumulation around ATP upon fructose binding, is presumed to redirect the γ-phosphate towards fructose for efficient phosphotransfer. Reduced phosphotransfer rate of the mutants E205Q and E110Q supports this view. Atomic resolution structure of VcFRK-fructose-ADP-Ca2+-BeF3−, reported first time for any sugar kinase, suggests that BeF3− moiety alongwith R176, Ca2+ and ‘anion hole’ limit the conformational space for γ-phosphate favoring in-line phospho-transfer.
Collapse
|
8
|
Nishiyama R, Inoue A, Ojima T. Identification of 2-keto-3-deoxy-d-Gluconate Kinase and 2-keto-3-deoxy-d-Phosphogluconate Aldolase in an Alginate-Assimilating Bacterium, Flavobacterium sp. Strain UMI-01. Mar Drugs 2017; 15:md15020037. [PMID: 28216576 PMCID: PMC5334617 DOI: 10.3390/md15020037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 01/21/2023] Open
Abstract
Recently, we identified an alginate-assimilating gene cluster in the genome of Flavobacterium sp. strain UMI-01, a member of Bacteroidetes. Alginate lyase genes and a 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH) reductase gene in the cluster have already been characterized; however, 2-keto-3-deoxy-d-gluconate (KDG) kinase and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase genes, i.e., flkin and flald, still remained uncharacterized. The amino acid sequences deduced from flkin and flald showed low identities with those of corresponding enzymes of Saccharophagus degradans 2-40T, a member of Proteobacteria (Kim et al., Process Biochem., 2016). This led us to consider that the DEH-assimilating enzymes of Bacteroidetes species are somewhat deviated from those of Proteobacteria species. Thus, in the present study, we first assessed the characteristics in the primary structures of KDG kinase and KDG aldolase of the strain UMI-01, and then investigated the enzymatic properties of recombinant enzymes, recFlKin and recFlAld, expressed by an Escherichia coli expression system. Multiple-sequence alignment among KDG kinases and KDG aldolases from several Proteobacteria and Bacteroidetes species indicated that the strain UMI-01 enzymes showed considerably low sequence identities (15%-25%) with the Proteobacteria enzymes, while they showed relatively high identities (47%-68%) with the Bacteroidetes enzymes. Phylogenetic analyses for these enzymes indicated the distant relationship between the Proteobacteria enzymes and the Bacteroidetes enzymes, i.e., they formed distinct clusters in the phylogenetic tree. recFlKin and recFlAld produced with the genes flkin and flald, respectively, were confirmed to show KDG kinase and KDPG aldolase activities. Namely, recFlKin produced 1.7 mM KDPG in a reaction mixture containing 2.5 mM KDG and 2.5 mM ATP in a 90-min reaction, while recFlAld produced 1.2 mM pyruvate in the reaction mixture containing 5 mM KDPG at the equilibrium state. An in vitro alginate-metabolizing system constructed from recFlKin, recFlAld, and previously reported alginate lyases and DEH reductase of the strain UMI-01 could convert alginate to pyruvate and glyceraldehyde-3-phosphate with an efficiency of 38%.
Collapse
Affiliation(s)
- Ryuji Nishiyama
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Akira Inoue
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Takao Ojima
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
9
|
Kameya M, Sakaguchi-Mikami A, Ferri S, Tsugawa W, Sode K. Advancing the development of glycated protein biosensing technology: next-generation sensing molecules. J Diabetes Sci Technol 2015; 9:183-91. [PMID: 25627465 PMCID: PMC4604589 DOI: 10.1177/1932296814565784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research advances in biochemical molecules have led to the development of convenient and reproducible biosensing molecules for glycated proteins, such as those based on the enzymes fructosyl amino acid oxidase (FAOX) or fructosyl peptide oxidase (FPOX). Recently, more attractive biosensing molecules with potential applications in next-generation biosensing of glycated proteins have been aggressively reported. We review 2 such molecules, fructosamine 6-kinase (FN6K) and fructosyl amino acid-binding protein, as well as their recent applications in the development of glycated protein biosensing systems. Research on FN6K and fructosyl amino acid-binding protein has been opening up new possibilities for the development of highly sensitive and proteolytic-digestion-free biosensing systems for glycated proteins.
Collapse
Affiliation(s)
- Miho Kameya
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akane Sakaguchi-Mikami
- Department of Medical Technology, School of Health Sciences, Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Stefano Ferri
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wakako Tsugawa
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koji Sode
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan Ultizyme International Ltd, Tokyo, Japan
| |
Collapse
|
10
|
Pickl A, Johnsen U, Archer RM, Schönheit P. Identification and characterization of 2-keto-3-deoxygluconate kinase and 2-keto-3-deoxygalactonate kinase in the haloarchaeon Haloferax volcanii. FEMS Microbiol Lett 2015; 361:76-83. [PMID: 25287957 DOI: 10.1111/1574-6968.12617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 11/27/2022] Open
Abstract
The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semi-phosphorylative Entner-Doudoroff pathway, involving 2-keto-3-deoxygluconate kinase (KDGK) as key enzyme. So far, neither the enzyme has been characterized nor the encoding gene has been identified. In the genome of H. volcanii, two genes, HVO_0549 (kdgK1) and HVO_A0328 (kdgK2), are annotated encoding putative KDGK-1 and KDGK-2. To identify the physiological role of both kinases, transcriptional regulation analyses of both genes and growth experiments of the respective deletion mutants were performed on different sugars. Further, recombinant KDGK-1 and KDGK-2 were characterized. Together, the data indicate that KDGK-1 represents the functional constitutively expressed KDG kinase in glucose degradation, whereas KDGK-2 is an inducible 2-keto-3-deoxygalactonate kinase likely involved in d-galactose catabolism.
Collapse
Affiliation(s)
- Andreas Pickl
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | | | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
11
|
Pampa KJ, Lokanath NK, Kunishima N, Rai RV. The first crystal structure of NAD-dependent 3-dehydro-2-deoxy-D-gluconate dehydrogenase from Thermus thermophilus HB8. ACTA ACUST UNITED AC 2014; 70:994-1004. [PMID: 24699644 DOI: 10.1107/s1399004713034925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/30/2013] [Indexed: 11/10/2022]
Abstract
2-Keto-3-deoxygluconate (KDG) is one of the important intermediates in pectin metabolism. An enzyme involved in this pathway, 3-dehydro-3-deoxy-D-gluconate 5-dehydrogenase (DDGDH), has been identified which converts 2,5-diketo-3-deoxygluconate to KDG. The enzyme is a member of the short-chain dehydrogenase (SDR) family. To gain insight into the function of this enzyme at the molecular level, the first crystal structure of DDGDH from Thermus thermophilus HB8 has been determined in the apo form, as well as in complexes with the cofactor and with citrate, by X-ray diffraction methods. The crystal structures reveal a tight tetrameric oligomerization. The secondary-structural elements and catalytically important residues of the enzyme were highly conserved amongst the proteins of the NAD(P)-dependent SDR family. The DDGDH protomer contains a dinucleotide-binding fold which binds the coenzyme NAD(+) in an intersubunit cleft; hence, the observed oligomeric state might be important for the catalytic function. This enzyme prefers NAD(H) rather than NADP(H) as the physiological cofactor. A structural comparison of DDGDH with mouse lung carbonyl reductase suggests that a significant difference in the α-loop-α region of this enzyme is associated with the coenzyme specificity. The structural data allow a detailed understanding of the functional role of the conserved catalytic triad (Ser129-Tyr144-Lys148) in cofactor and substrate recognition, thus providing substantial insights into DDGDH catalysis. From analysis of the three-dimensional structure, intersubunit hydrophobic interactions were found to be important for enzyme oligomerization and thermostability.
Collapse
Affiliation(s)
- Kudigana J Pampa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Neratur K Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Naoki Kunishima
- Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ravishankar Vittal Rai
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570 006, India
| |
Collapse
|
12
|
Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol 2012; 14:2379-94. [DOI: 10.1111/j.1462-2920.2012.02751.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Gibbs AC, Abad MC, Zhang X, Tounge BA, Lewandowski FA, Struble GT, Sun W, Sui Z, Kuo LC. Electron density guided fragment-based lead discovery of ketohexokinase inhibitors. J Med Chem 2010; 53:7979-91. [PMID: 21033679 DOI: 10.1021/jm100677s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fragment-based drug design paradigm has been successfully applied in the discovery of lead series of ketohexokinase inhibitors. The paradigm consists of three iterations of design, synthesis, and X-ray crystallographic screening to progress low molecular weight fragments to leadlike compounds. Applying electron density of fragments within the protein binding site as defined by X-ray crystallography, one can generate target specific leads without the use of affinity data. Our approach contrasts with most fragment-based drug design methodology where solution activity is a main design guide. Herein we describe the discovery of submicromolar ketohexokinase inhibitors with promising druglike properties.
Collapse
Affiliation(s)
- Alan C Gibbs
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cabrera R, Babul J, Guixé V. Ribokinase family evolution and the role of conserved residues at the active site of the PfkB subfamily representative, Pfk-2 from Escherichia coli. Arch Biochem Biophys 2010; 502:23-30. [DOI: 10.1016/j.abb.2010.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/18/2010] [Accepted: 06/20/2010] [Indexed: 11/25/2022]
|
15
|
Chua TK, Seetharaman J, Kasprzak JM, Ng C, Patel BKC, Love C, Bujnicki JM, Sivaraman J. Crystal structure of a fructokinase homolog from Halothermothrix orenii. J Struct Biol 2010; 171:397-401. [PMID: 20493950 DOI: 10.1016/j.jsb.2010.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022]
Abstract
Fructokinase (FRK; EC 2.7.1.4) catalyzes the phosphorylation of d-fructose to d-fructose 6-phosphate (F6P). This irreversible and near rate-limiting step is a central and regulatory process in plants and bacteria, which channels fructose into a metabolically active state for glycolysis. Towards understanding the mechanism of FRK, here we report the crystal structure of a FRK homolog from a thermohalophilic bacterium Halothermothrixorenii (Hore_18220 in sequence databases). The structure of the Hore_18220 protein reveals a catalytic domain with a Rossmann-like fold and a beta-sheet "lid" for dimerization. Based on comparison of Hore_18220 to structures of related proteins, we propose its mechanism of action, in which the lid serves to regulate access to the substrate binding sites. Close relationship of Hore_18220 and plant FRK enzymes allows us to propose a model for the structure and function of FRKs.
Collapse
Affiliation(s)
- Teck Khiang Chua
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Guixé V, Merino F. The ADP-dependent sugar kinase family: kinetic and evolutionary aspects. IUBMB Life 2009; 61:753-61. [PMID: 19548321 DOI: 10.1002/iub.217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Some archaea of the Euryarchaeota present a unique version of the Embden-Meyerhof pathway where glucose and fructose-6-phosphate are phoshporylated using ADP instead of ATP as the phosphoryl donor. These are the only ADP-dependent kinases known to date. Although initially they were believed to represent a new protein family, they can be classified as members of the ribokinase superfamily, which also include several ATP-dependent kinases. As they were first identified in members of the thermococcales it was proposed that the presence of these ADP-dependent kinases is an adaptation to high temperatures. Later, homologs of these enzymes were identified in the genomes of mesophilic and thermophilic methanogenic archaea and even in the genomes of higher eukaryotes, suggesting that the presence of these proteins is not related to the hyperthermophilic life. The ADP-dependent kinases are very restrictive to their ligands being unable to use triphosphorylated nucleotides such as ATP. However, it has been shown that they can bind ATP by competition kinetic experiments. The hyperthermophilic methanogenic archaeon Methanocaldococcus jannaschii has a homolog of these genes, which can phosphorylate glucose and fructose-6-phosphate. For this reason, it was proposed as an ancestral form for the family. However, recent studies have shown that the ancestral activity in the group is glucokinase, and a combination of gene duplication and lateral gene transfer could have originated the two paralogs in this member of the Euryarchaeota. Interestingly, based on structural comparisons made within the superfamily it has been suggested that the ADP-dependent kinases are the newest in the group. In several members of the superfamily, the presence of divalent metal cations has been shown to be crucial for catalysis, so its role in the ADP-dependent family was investigated through molecular dynamics. The simulation shows that, in fact, the metal coordinates the catalytic ensemble and interacts with crucial residues for catalysis.
Collapse
Affiliation(s)
- Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | | |
Collapse
|
17
|
Baez M, Babul J. Reversible unfolding of dimeric phosphofructokinase-2 from Escherichia coli reveals a dominant role of inter-subunit contacts for stability. FEBS Lett 2009; 583:2054-60. [PMID: 19465020 DOI: 10.1016/j.febslet.2009.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/02/2009] [Accepted: 05/15/2009] [Indexed: 11/15/2022]
Abstract
Escherichia coli phosphofructokinase-2 (Pfk-2) is a homodimer whose subunits consist of a large domain and an additional beta-sheet that provides the interfacial contacts between the subunits, creating a beta-barrel flattened-like structure with the adjacent subunit's beta-sheet. To determine how the structural organization of Pfk-2 determines its stability, the reversible unfolding of the enzyme was characterized under equilibrium conditions by enzymatic activity, circular dichroism, fluorescence and hydrodynamic measurements. Pfk-2 undergoes a cooperative unfolding/dissociation process with the accumulation of an expanded and unstructured monomeric intermediate with a marginal stability and a large solvent accessibility with respect to the native dimer.
Collapse
Affiliation(s)
- Mauricio Baez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
18
|
Trinh CH, Asipu A, Bonthron DT, Phillips SEV. Structures of alternatively spliced isoforms of human ketohexokinase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:201-11. [PMID: 19237742 PMCID: PMC2651755 DOI: 10.1107/s0907444908041115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/05/2008] [Indexed: 11/10/2022]
Abstract
A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structures of the two alternatively spliced isoforms of human ketohexokinase, hepatic KHK-C and the peripheral isoform KHK-A, and of the ternary complex of KHK-A with the substrate fructose and AMP-PNP are reported. The structure of the KHK-A ternary complex revealed an active site with both the substrate fructose and the ATP analogue in positions ready for phosphorylation following a reaction mechanism similar to that of the pfkB family of carbohydrate kinases. Hepatic KHK deficiency causes the benign disorder essential fructosuria. The effects of the disease-causing mutations (Gly40Arg and Ala43Thr) have been modelled in the context of the KHK structure.
Collapse
Affiliation(s)
- Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, England
| | | | | | | |
Collapse
|
19
|
Cabrera R, Ambrosio ALB, Garratt RC, Guixé V, Babul J. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. J Mol Biol 2008; 383:588-602. [PMID: 18762190 DOI: 10.1016/j.jmb.2008.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 08/10/2008] [Accepted: 08/14/2008] [Indexed: 11/19/2022]
Abstract
Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli.
Collapse
Affiliation(s)
- Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | |
Collapse
|
20
|
Merino F, Guixé V. Specificity evolution of the ADP-dependent sugar kinase family -in silico studies of the glucokinase/phosphofructokinase bifunctional enzyme from Methanocaldococcus jannaschii. FEBS J 2008; 275:4033-44. [DOI: 10.1111/j.1742-4658.2008.06544.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Mathews II, McMullan D, Miller MD, Canaves JM, Elsliger MA, Floyd R, Grzechnik SK, Jaroszewski L, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, McPhillips TM, Morse AT, Quijano K, Rife CL, Schwarzenbacher R, Spraggon G, Stevens RC, van den Bedem H, Weekes D, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of 2-keto-3-deoxygluconate kinase (TM0067) from Thermotoga maritima at 2.05 A resolution. Proteins 2008; 70:603-8. [PMID: 18004772 DOI: 10.1002/prot.21842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Irimpan I Mathews
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reddy MCM, Palaninathan SK, Shetty ND, Owen JL, Watson MD, Sacchettini JC. High resolution crystal structures of Mycobacterium tuberculosis adenosine kinase: insights into the mechanism and specificity of this novel prokaryotic enzyme. J Biol Chem 2007; 282:27334-27342. [PMID: 17597075 DOI: 10.1074/jbc.m703290200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine kinase (ADK) catalyzes the phosphorylation of adenosine (Ado) to adenosine monophosphate (AMP). It is part of the purine salvage pathway that has been identified only in eukaryotes, with the single exception of Mycobacterium spp. Whereas it is not clear if Mycobacterium tuberculosis (Mtb) ADK is essential, it has been shown that the enzyme can selectively phosphorylate nucleoside analogs to produce products toxic to the cell. We have determined the crystal structure of Mtb ADK unliganded as well as ligand (Ado) bound at 1.5- and 1.9-A resolution, respectively. The structure of the binary complexes with the inhibitor 2-fluoroadenosine (F-Ado) bound and with the adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP) (non-hydrolyzable ATP analog) bound were also solved at 1.9-A resolution. These four structures indicate that Mtb ADK is a dimer formed by an extended beta sheet. The active site of the unliganded ADK is in an open conformation, and upon Ado binding a lid domain of the protein undergoes a large conformation change to close the active site. In the closed conformation, the lid forms direct interactions with the substrate and residues of the active site. Interestingly, AMP-PCP binding alone was not sufficient to produce the closed state of the enzyme. The binding mode of F-Ado was characterized to illustrate the role of additional non-bonding interactions in Mtb ADK compared with human ADK.
Collapse
Affiliation(s)
- Manchi C M Reddy
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843
| | | | - Nishant D Shetty
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843
| | - Joshua L Owen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843
| | - Misty D Watson
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843
| | - James C Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
23
|
Miallau L, Hunter WN, McSweeney SM, Leonard GA. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism. J Biol Chem 2007; 282:19948-57. [PMID: 17459874 DOI: 10.1074/jbc.m701480200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High resolution structures of Staphylococcus aureus d-tagatose-6-phosphate kinase (LacC) in two crystal forms are herein reported. The structures define LacC in apoform, in binary complexes with ADP or the co-factor analogue AMP-PNP, and in a ternary complex with AMP-PNP and D-tagatose-6-phosphate. The tertiary structure of the LacC monomer, which is closely related to other members of the pfkB subfamily of carbohydrate kinases, is composed of a large alpha/beta core domain and a smaller, largely beta "lid." Four extended polypeptide segments connect these two domains. Dimerization of LacC occurs via interactions between lid domains, which come together to form a beta-clasp structure. Residues from both subunits contribute to substrate binding. LacC adopts a closed structure required for phosphoryl transfer only when both substrate and co-factor are bound. A reaction mechanism similar to that used by other phosphoryl transferases is proposed, although unusually, when both substrate and co-factor are bound to the enzyme two Mg(2+) ions are observed in the active site. A new motif of amino acid sequence conservation common to the pfkB subfamily of carbohydrate kinases is identified.
Collapse
Affiliation(s)
- Linda Miallau
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, 38043 Grenoble, France
| | | | | | | |
Collapse
|
24
|
Ohshima T, Kawakami R, Kanai Y, Goda S, Sakuraba H. Gene expression and characterization of 2-keto-3-deoxygluconate kinase, a key enzyme in the modified Entner-Doudoroff pathway of the aerobic and acidophilic hyperthermophile Sulfolobus tokodaii. Protein Expr Purif 2007; 54:73-8. [PMID: 17407821 DOI: 10.1016/j.pep.2007.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/09/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
2-Keto-3-deoxygluconate kinase (KDGK) catalyzes the ATP-dependent phosphorylation of 2-keto-3-deoxygluconate, a key intermediate in the modified (semi-phosphorylative) Entner-Doudoroff (ED) glucose metabolic pathway. We identified the gene (ORF ID: ST2478) encoding KDGK in the hyperthermophilic archaeon Sulfolobus tokodaii based on the structure of a gene cluster in a genomic database and functionally expressed it in Escherichia coli. The expressed protein was purified from crude extract by heat treatment and two conventional column chromatography steps, and the partial amino acid sequence in the N-terminal region of the purified enzyme (MAKLIT) was identical to that obtained from the gene sequence. The purified enzyme was extremely thermostable and retained full activity after heating at 80 degrees C for 1 h. The enzyme utilized ATP or GTP, but not ADP or AMP, as a phosphoryl donor and 2-keto-3-deoxy-D-gluconate or 2-keto-D-gluconate as a phosphoryl acceptor. Divalent cations including Mg(2+), Co(2+), Ni(2+), Zn(2+) or Mn(2+) were required for activity, and the apparent Km values for KDG and ATP at 50 degrees C were 0.027 mM and 0.057 mM, respectively. The presence of KDGK means that the hyperthermophilic archaeon S. tokodaii metabolizes glucose via both modified (semi-phosphorylative) and non-phosphorylative ED pathways.
Collapse
Affiliation(s)
- Toshihisa Ohshima
- Microbial Genetics Division, Institute of Genetic Resources, Kyushu University, 6-10-1 Hakozaki Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
25
|
Hansen T, Arnfors L, Ladenstein R, Schönheit P. The phosphofructokinase-B (MJ0406) from Methanocaldococcus jannaschii represents a nucleoside kinase with a broad substrate specificity. Extremophiles 2006; 11:105-14. [PMID: 17021658 DOI: 10.1007/s00792-006-0018-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/04/2006] [Indexed: 12/01/2022]
Abstract
Recently, unusual non-regulated ATP-dependent 6-phosphofructokinases (PFK) that belong to the PFK-B family have been described for the hyperthermophilic archaea Desulfurococcus amylolyticus and Aeropyrum pernix. Putative homologues were found in genomes of several archaea including the hyperthermophilic archaeon Methanocaldococcus jannaschii. In this organism, open reading frame MJ0406 had been annotated as a PFK-B sugar kinase. The gene encoding MJ0406 was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 68 kDa composed of 34 kDa subunits. With a temperature optimum of 85 degrees C and a melting temperature of 90 degrees C, the M. jannaschii nucleotide kinase represents one of the most thermoactive and thermostable members of the PFK-B family described so far. The recombinant enzyme was characterized as a functional nucleoside kinase rather than a 6-PFK. Inosine, guanosine, and cytidine were the most effective phosphoryl acceptors. Besides, adenosine, thymidine, uridin and xanthosine were less efficient. Extremely low activity was found with fructose-6-phosphate. Further, the substrate specificity of closely related PFK-Bs from D. amylolyticus and A. pernix were reanalysed.
Collapse
Affiliation(s)
- Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | | | | | | |
Collapse
|
26
|
Newman JA, Das SK, Sedelnikova SE, Rice DW. The crystal structure of an ADP complex of Bacillus subtilis pyridoxal kinase provides evidence for the parallel emergence of enzyme activity during evolution. J Mol Biol 2006; 363:520-30. [PMID: 16978644 DOI: 10.1016/j.jmb.2006.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/04/2006] [Accepted: 08/07/2006] [Indexed: 11/28/2022]
Abstract
Pyridoxal kinase catalyses the phosphorylation of pyridoxal, pyridoxine and pyridoxamine to their 5' phosphates and plays an important role in the pyridoxal 5' phosphate salvage pathway. The crystal structure of a dimeric pyridoxal kinase from Bacillus subtilis has been solved in complex with ADP to 2.8 A resolution. Analysis of the structure suggests that binding of the nucleotide induces the ordering of two loops, which operate independently to close a flap on the active site. Comparisons with other ribokinase superfamily members reveal that B. subtilis pyridoxal kinase is more closely related in both sequence and structure to the family of HMPP kinases than to other pyridoxal kinases, suggesting that this structure represents the first for a novel family of "HMPP kinase-like" pyridoxal kinases. Moreover this further suggests that this enzyme activity has evolved independently on multiple occasions from within the ribokinase superfamily.
Collapse
Affiliation(s)
- Joseph A Newman
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
27
|
Identification and characterization ofThermoplasma acidophilum 2-keto-3-deoxy-D-gluconate kinase: A new class of sugar kinases. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02932290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW, Danson MJ. Promiscuity in the part-phosphorylative Entner-Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 2005; 579:6865-9. [PMID: 16330030 DOI: 10.1016/j.febslet.2005.11.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/03/2005] [Accepted: 11/03/2005] [Indexed: 11/25/2022]
Abstract
The hyperthermophilic archaeon Sulfolobus solfataricus metabolises glucose and galactose by a 'promiscuous' non-phosphorylative variant of the Entner-Doudoroff pathway, in which a series of enzymes have sufficient substrate promiscuity to permit the metabolism of both sugars. Recently, it has been proposed that the part-phosphorylative Entner-Doudoroff pathway occurs in parallel in S. solfataricus as an alternative route for glucose metabolism. In this report we demonstrate, by in vitro kinetic studies of D-2-keto-3-deoxygluconate (KDG) kinase and KDG aldolase, that the part-phosphorylative pathway in S. solfataricus is also promiscuous for the metabolism of both glucose and galactose.
Collapse
Affiliation(s)
- Henry J Lamble
- Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Long MC, Ranganathan S, Escuyer V, Parker WB, Li R. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:553-7. [PMID: 16511094 PMCID: PMC1952321 DOI: 10.1107/s1744309105013473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/27/2005] [Indexed: 11/10/2022]
Abstract
Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 A using synchrotron radiation. The crystal belonged to space group P3(1)21, with unit-cell parameters a = 70.2, c = 111.6 A, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme.
Collapse
Affiliation(s)
- Yimin Wang
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, USA
| | - Mary C. Long
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, USA
| | - Senthil Ranganathan
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, USA
| | - Vincent Escuyer
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, USA
| | - William B. Parker
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, USA
| | - Rongbao Li
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, USA
| |
Collapse
|
30
|
Arnfors L, Hansen T, Meining W, Schönheit P, Ladenstein R. Expression, purification, crystallization and preliminary X-ray analysis of a nucleoside kinase from the hyperthermophile Methanocaldococcus jannaschii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:591-4. [PMID: 16511104 PMCID: PMC1952333 DOI: 10.1107/s1744309105015642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 05/17/2005] [Indexed: 11/10/2022]
Abstract
Methanocaldococcus jannaschii nucleoside kinase (MjNK) is an ATP-dependent non-allosteric phosphotransferase that shows high catalytic activity for guanosine, inosine and cytidine. MjNK is a member of the phosphofructokinase B family, but participates in the biosynthesis of nucleoside monophosphates rather than in glycolysis. MjNK was crystallized as the apoenzyme as well as in complex with an ATP analogue and Mg2+. The latter crystal form was also soaked with fructose-6-phosphate. Synchrotron-radiation data were collected to 1.70 A for the apoenzyme crystals and 1.93 A for the complex crystals. All crystals exhibit orthorhombic symmetry; however, the apoenzyme crystals contain one monomer per asymmetric unit whereas the complex crystals contain a dimer.
Collapse
Affiliation(s)
- Linda Arnfors
- Center for Structural Biochemistry, Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| | - Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrecht-Universität Kiel, 24118 Kiel, Germany
| | - Winfried Meining
- Center for Structural Biochemistry, Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrecht-Universität Kiel, 24118 Kiel, Germany
| | - Rudolf Ladenstein
- Center for Structural Biochemistry, Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| |
Collapse
|