1
|
Shaukat AN, Kaliatsi EG, Skeparnias I, Stathopoulos C. The Dynamic Network of RNP RNase P Subunits. Int J Mol Sci 2021; 22:ijms221910307. [PMID: 34638646 PMCID: PMC8509007 DOI: 10.3390/ijms221910307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Ribonuclease P (RNase P) is an important ribonucleoprotein (RNP), responsible for the maturation of the 5′ end of precursor tRNAs (pre-tRNAs). In all organisms, the cleavage activity of a single phosphodiester bond adjacent to the first nucleotide of the acceptor stem is indispensable for cell viability and lies within an essential catalytic RNA subunit. Although RNase P is a ribozyme, its kinetic efficiency in vivo, as well as its structural variability and complexity throughout evolution, requires the presence of one protein subunit in bacteria to several protein partners in archaea and eukaryotes. Moreover, the existence of protein-only RNase P (PRORP) enzymes in several organisms and organelles suggests a more complex evolutionary timeline than previously thought. Recent detailed structures of bacterial, archaeal, human and mitochondrial RNase P complexes suggest that, although apparently dissimilar enzymes, they all recognize pre-tRNAs through conserved interactions. Interestingly, individual protein subunits of the human nuclear and mitochondrial holoenzymes have additional functions and contribute to a dynamic network of elaborate interactions and cellular processes. Herein, we summarize the role of each RNase P subunit with a focus on the human nuclear RNP and its putative role in flawless gene expression in light of recent structural studies.
Collapse
|
2
|
|
3
|
Hitrik A, Abboud-Jarrous G, Orlovetskie N, Serruya R, Jarrous N. Targeted inhibition of WRN helicase by external guide sequence and RNase P RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:572-80. [PMID: 26808708 DOI: 10.1016/j.bbagrm.2016.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 01/04/2023]
Abstract
Human WRN, a RecQ helicase encoded by the Werner syndrome gene, is implicated in genome maintenance, including replication, recombination, excision repair and DNA damage response. These genetic processes and expression of WRN are concomitantly upregulated in many types of cancers. Therefore, targeted destruction of this helicase could be useful for elimination of cancer cells. Here, we provide a proof of concept for applying the external guide sequence (EGS) approach in directing an RNase P RNA to efficiently cleave the WRN mRNA in cultured human cell lines, thus abolishing translation and activity of this distinctive 3'-5' DNA helicase-nuclease. Remarkably, EGS-directed knockdown of WRN leads to severe inhibition of cell viability. Hence, further assessment of this targeting system could be beneficial for selective cancer therapies, particularly in the light of the recent improvements introduced into EGSs.
Collapse
Affiliation(s)
- Anna Hitrik
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ghada Abboud-Jarrous
- Institute for Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Natalie Orlovetskie
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Raphael Serruya
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Institute for Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
4
|
RNase P-Mediated Sequence-Specific Cleavage of RNA by Engineered External Guide Sequences. Biomolecules 2015; 5:3029-50. [PMID: 26569326 PMCID: PMC4693268 DOI: 10.3390/biom5043029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
The RNA cleavage activity of RNase P can be employed to decrease the levels of specific RNAs and to study their function or even to eradicate pathogens. Two different technologies have been developed to use RNase P as a tool for RNA knockdown. In one of these, an external guide sequence, which mimics a tRNA precursor, a well-known natural RNase P substrate, is used to target an RNA molecule for cleavage by endogenous RNase P. Alternatively, a guide sequence can be attached to M1 RNA, the (catalytic) RNase P RNA subunit of Escherichia coli. The guide sequence is specific for an RNA target, which is subsequently cleaved by the bacterial M1 RNA moiety. These approaches are applicable in both bacteria and eukaryotes. In this review, we will discuss the two technologies in which RNase P is used to reduce RNA expression levels.
Collapse
|
5
|
Sala CD, Soler-Bistué A, Bonomo R, Zorreguieta A, Tolmasky ME. External guide sequence technology: a path to development of novel antimicrobial therapeutics. Ann N Y Acad Sci 2015; 1354:98-110. [PMID: 25866265 PMCID: PMC4600001 DOI: 10.1111/nyas.12755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/14/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
RNase P is a ribozyme originally identified for its role in maturation of tRNAs by cleavage of precursor tRNAs (pre-tRNAs) at the 5'-end termini. RNase P is a ribonucleoprotein consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. The site of cleavage of a pre-tRNA is identified by its tertiary structure; and any RNA molecule can be cleaved by RNase P as long as the RNA forms a duplex that resembles the regional structure in the pre-tRNA. When the antisense sequence that forms the duplex with the strand that is subsequently cleaved by RNase P is in a separate molecule, it is called an external guide sequence (EGS). These fundamental observations are the basis for EGS technology, which consists of inhibiting gene expression by utilizing an EGS that elicits RNase P-mediated cleavage of a target mRNA molecule. EGS technology has been used to inhibit expression of a wide variety of genes, and may help development of novel treatments of diseases, including multidrug-resistant bacterial and viral infections.
Collapse
Affiliation(s)
- Carol Davies Sala
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| | - Alfonso Soler-Bistué
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| | - Robert Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine,
Cleveland, Ohio
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| |
Collapse
|
6
|
Toumpeki C, Stamatopoulou V, Bikou M, Grafanaki K, Kallia-Raftopoulou S, Papaioannou D, Stathopoulos C, Drainas D. Targeting Ribonuclease P. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Cho IM, Kazakov SA, Gopalan V. Evidence for recycling of external guide sequences during cleavage of bipartite substrates in vitro by reconstituted archaeal RNase P. J Mol Biol 2011; 405:1121-7. [PMID: 21144851 PMCID: PMC3025773 DOI: 10.1016/j.jmb.2010.11.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022]
Abstract
RNA-mediated RNA cleavage events are being increasingly exploited to disrupt RNA function, an important objective in post-genomic biology. RNase P, a ribonucleoprotein enzyme that catalyzes the removal of 5'-leaders from precursor tRNAs, has previously been utilized for sequence-specific cleavage of cellular RNAs. In one of these strategies, borne out in bacterial and mammalian cell culture, an external guide sequence (EGS) RNA base-paired to a target RNA makes the latter a substrate for endogenous RNase P by rendering the bipartite target RNA-EGS complex a precursor tRNA structural mimic. In this study, we first obtained evidence that four different mesophilic and thermophilic archaeal RNase P holoenzymes, reconstituted in vitro using their respective constituent RNA and protein subunits, recognize and cleave such substrate-EGS complexes. We further demonstrate that these EGSs engage in multiple rounds of substrate recognition while assisting archaeal RNase P-mediated cleavage of a target RNA in vitro. Taken together, the EGS-based approach merits consideration as a gene knockdown tool in archaea.
Collapse
Affiliation(s)
- I-Ming Cho
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Venkat Gopalan
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Abstract
The ability to interfere with gene expression is of crucial importance to unravel the function of genes and is also a promising therapeutic strategy. Here we discuss methodologies for inhibition of target RNAs based on the cleavage activity of the essential enzyme, Ribonuclease P (RNase P). RNase P-mediated cleavage of target RNAs can be directed by external guide sequences (EGSs) or by the use of the catalytic M1 RNA from E. coli linked to a guide sequence (M1GSs). These are not only basic tools for functional genetic studies in prokaryotic and eukaryotic cells but also promising antibacterial, anticancer and antiviral agents.
Collapse
Affiliation(s)
- Eirik Wasmuth Lundblad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | |
Collapse
|
9
|
Shen N, Ko JH, Xiao G, Wesolowski D, Shan G, Geller B, Izadjoo M, Altman S. Inactivation of expression of several genes in a variety of bacterial species by EGS technology. Proc Natl Acad Sci U S A 2009; 106:8163-8. [PMID: 19416872 PMCID: PMC2688897 DOI: 10.1073/pnas.0903491106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Indexed: 11/18/2022] Open
Abstract
The expression of gene products in bacteria can be inhibited by the use of RNA external guide sequences (EGSs) that hybridize to a target mRNA. Endogenous RNase P cleaves the mRNA in the complex, making it inactive. EGSs participate in this biochemical reaction as the data presented here show. They promote mRNA cleavage at the expected site and sometimes at other secondary sites. Higher-order structure must affect these reactions if the cleavage does not occur at the defined site, which has been determined by techniques based on their ability to find sites that are accessible to the EGS oligonucleotides. Sites defined by a random EGS technique occur as expected. Oligonucleotides made up primarily of defined or random nucleotides are extremely useful in inhibiting expression of the gyrA and rnpA genes from several different bacteria or the cat gene that determines resistance to chloramphenicol in Escherichia coli. An EGS made up of a peptide-phosphorodiamidate morpholino oligonucleotide (PPMO) does not cleave at the same site as an unmodified RNA EGS for reasons that are only partly understood. However, PPMO-EGSs are useful in inhibiting the expression of targeted genes from Gram-negative and Gram-positive organisms during ordinary growth in broth and may provide a basis for broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Ning Shen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Jae-hyeong Ko
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Gaoping Xiao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Donna Wesolowski
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Ge Shan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Bruce Geller
- AVI BioPharma, Inc., Corvallis, OR 97333
- Department of Microbiology, Oregon State University, Corvallis, OR 97331; and
| | - Mina Izadjoo
- Armed Forces Institute of Pathology, Washington, DC 20306-6000
| | - Sidney Altman
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
10
|
Reiner R, Krasnov-Yoeli N, Dehtiar Y, Jarrous N. Function and assembly of a chromatin-associated RNase P that is required for efficient transcription by RNA polymerase I. PLoS One 2008; 3:e4072. [PMID: 19115013 PMCID: PMC2605565 DOI: 10.1371/journal.pone.0004072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/01/2008] [Indexed: 11/19/2022] Open
Abstract
Background Human RNase P has been initially described as a tRNA processing enzyme, consisting of H1 RNA and at least ten distinct protein subunits. Recent findings, however, indicate that this catalytic ribonucleoprotein is also required for transcription of small noncoding RNA genes by RNA polymerase III (Pol III). Notably, subunits of human RNase P are localized in the nucleolus, thus raising the possibility that this ribonucleoprotein complex is implicated in transcription of rRNA genes by Pol I. Methodology/Principal Findings By using biochemical and reverse genetic means we show here that human RNase P is required for efficient transcription of rDNA by Pol I. Thus, inactivation of RNase P by targeting its protein subunits for destruction by RNA interference or its H1 RNA moiety for specific cleavage causes marked reduction in transcription of rDNA by Pol I. However, RNase P restores Pol I transcription in a defined reconstitution system. Nuclear run on assays reveal that inactivation of RNase P reduces the level of nascent transcription by Pol I, and more considerably that of Pol III. Moreover, RNase P copurifies and associates with components of Pol I and its transcription factors and binds to chromatin of the promoter and coding region of rDNA. Strikingly, RNase P detaches from transcriptionally inactive rDNA in mitosis and reassociates with it at G1 phase through a dynamic and stepwise assembly process that is correlated with renewal of transcription. Conclusions/Significance Our findings reveal that RNase P activates transcription of rDNA by Pol I through a novel assembly process and that this catalytic ribonucleoprotein determines the transcription output of Pol I and Pol III, two functionally coordinated transcription machineries.
Collapse
Affiliation(s)
- Robert Reiner
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Natalie Krasnov-Yoeli
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yana Dehtiar
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nayef Jarrous
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
11
|
Pei DS, Sun YH, Long Y, Zhu ZY. Inhibition of no tail (ntl) gene expression in zebrafish by external guide sequence (EGS) technique. Mol Biol Rep 2008; 35:139-43. [PMID: 17294249 DOI: 10.1007/s11033-007-9063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
External guide sequence (EGS) technique, a branch of ribozyme strategy, can be enticed to cleave the target mRNA by forming a tRNA-like structure. In the present study, no tail gene (ntl), a key gene participating in the formation of normal tail, was used as a target for ribonuclease (RNase) P-mediated gene disruption in zebrafish in vivo. Transient expression of pH1-m3/4 ntl-EGS or pH1-3/4 ntl-EGS produced the full no tail phenotype at long-pec stage in proportion as 24 or 35%, respectively. As is expected that the full-length ntl mRNA of embryos at 50% epiboly stage decreased relative to control when injected the embryos with 3/4 EGS or m3/4 EGS RNA. Interestingly, ntl RNA transcripts, including the cleaved by EGS and the untouched, increased. Taken together, these results indicate that EGS strategy can work in zebrafish in vivo and becomes a potential tool for degradation of targeted mRNAs.
Collapse
Affiliation(s)
- De-Sheng Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | |
Collapse
|
12
|
Welting TJM, Peters FMA, Hensen SMM, van Doorn NL, Kikkert BJ, Raats JMH, van Venrooij WJ, Pruijn GJM. Heterodimerization regulates RNase MRP/RNase P association, localization, and expression of Rpp20 and Rpp25. RNA (NEW YORK, N.Y.) 2007; 13:65-75. [PMID: 17119099 PMCID: PMC1705748 DOI: 10.1261/rna.237807] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rpp20 and Rpp25 are subunits of the human RNase MRP and RNase P endoribonucleases belonging to the Alba superfamily of nucleic acid binding proteins. These proteins, which bind very strongly to each other, transiently associate with RNase MRP. Here, we show that the Rpp20-Rpp25 heterodimer is resistant to both high concentrations of salt and a nonionic detergent. The interaction of Rpp20 and Rpp25 with the P3 domain of the RNase MRP RNA appeared to be strongly enhanced by their heterodimerization. Coimmunoprecipitation experiments demonstrated that only a single copy of each of these proteins is associated with the RNase MRP and RNase P particles in HEp-2 cells. Both proteins accumulate in the nucleoli, which in case of Rpp20 is strongly dependent on its interaction with Rpp25. Finally, the results of overexpression and knock-down experiments indicate that their expression levels are codependent. Taken together, these data indicate that the Rpp20-Rpp25 heterodimerization regulates their RNA-binding activity, subcellular localization, and expression, which suggests that their interaction is also crucial for their role in RNase MRP/P function.
Collapse
Affiliation(s)
- Tim J M Welting
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Reiner R, Ben-Asouli Y, Krilovetzky I, Jarrous N. A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes Dev 2006; 20:1621-35. [PMID: 16778078 PMCID: PMC1482482 DOI: 10.1101/gad.386706] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The physical and functional links between transcription and processing machines of tRNA in the cell remain essentially unknown. We show here that whole HeLa extracts depleted of ribonuclease P (RNase P), a tRNA-processing ribonucleoprotein, exhibit a severe deficiency in RNA polymerase (Pol) III transcription of tRNA and other small, noncoding RNA genes. However, transcription can be restored by the addition of a purified holoenzyme. Targeted cleavage of the H1 RNA moiety of RNase P alters enzyme specificity and diminishes Pol III transcription. Moreover, inactivation of RNase P by targeting its protein subunits for destruction using small interfering RNAs inhibits Pol III function and Pol III-directed promoter activity in the cell. RNase P exerts its role in transcription through association with Pol III and chromatin of active tRNA and 5S rRNA genes. The results demonstrate a role for RNase P in Pol III transcription and suggest that transcription and early processing of tRNA may be coordinated.
Collapse
Affiliation(s)
- Robert Reiner
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
14
|
Gao MY, Xu CR, Chen R, Liu SG, Feng JN. Chloromycetin resistance of clinically isolated E coli is conversed by using EGS technique to repress the chloromycetin acetyl transferase. World J Gastroenterol 2006; 11:7368-73. [PMID: 16437645 PMCID: PMC4725137 DOI: 10.3748/wjg.v11.i46.7368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the possibility of repression of chloromycetin (Cm) acyl transferase by using external guided sequence (EGS) in order to converse the clinical E coli isolates from Cm- resistant to Cm- sensitive. METHODS EGS directed against chloromycetin acetyl transferase gene (cat) was cloned to vector pEGFP-C1 which contains the kanamycin (Km) resistance gene. The recombinant plasmid pEGFP-C1+EGScat1+cat2 was constructed and the blank vector without EGS fragment was used as control plasmids. By using the CaCl(2) transformation method, the recombinant plasmids were introduced into the clinically isolated Cm resistant but Km sensitive E coli strains. Transformants were screened on LB agar plates containing Km. Extraction of plasmids and PCR were applied to identify the positive clones. The growth curve of EGS transformed bacteria cultured in broth with Cm resistance was determined by using spectrophotometer at A(600). Drug sensitivity was tested in solid culture containing Cm by using KB method. RESULTS Transformation studies were carried out on 16 clinically isolated Cm-resistant (250 microg/mL of Cm) E coli strains by using pEGFP-C1-EGScat1cat2 recombinant plasmid. Transformants were screened on LB-agar plates containing Km after the transformation using EGS. Of the 16 tested strains, 4 strains were transformed successfully. Transformants with EGS plasmid showed growth inhibition when grown in liquid broth culture containing 200 microg/mL of Cm. In drug sensitivity test, these strains were sensitive to Cm on LB-agar plates containing 200 microg/mL of Cm. Extraction of plasmids and PCR amplification showed the existence of EGS plasmids in these four transformed strains. These results indicated that the Cat of the four clinical isolates had been suppressed and the four strains were converted to Cm sensitive ones. CONCLUSION The EGS directed against Cat is able to inhibit the expression of Cat, and hence convert Cm-resistant bacteria to Cm-sensitive ones. Thus, the EGS has the capability of converting the phenotype of clinical drug-resistant isolates strains to drug-sensitive ones.
Collapse
Affiliation(s)
- Mei-Ying Gao
- Wuhan Bioproduct Institute of Ministry of Public Health, 9 Linjiang Dadao, Wuhan, 430030, Hubei Province, China
| | | | | | | | | |
Collapse
|
15
|
Abstract
Modern therapeutic methods for manipulation of gene expression in allergic diseases have been receiving increased attention in the emerging era of functional genomics. With the growing application of gene silencing technologies, pharmacological modulation of translation represents a great advance in molecular therapy for allergy. Several strategies for sequence-specific post-transcriptional inhibition of gene expression can be distinguished: antisense oligonucleotides (AS-ONs), ribozymes (RZs), DNA enzymes (DNAzymes), and RNA interference (RNAi) triggered by small interfering RNAs (siRNAs). Potential anti-mRNA drugs in asthma and other allergic disorders may be targeted to cell surface receptors (adenosine A1 receptor, high-affinity receptor Fc-epsilon RI-alpha, cytokine receptors), adhesion molecules and ligands (ICAM-1, VLA-4), ion channels (calcium-dependent chloride channel-1), cytokines and related factors (IL-4, IL-5, IL-13, SCF, TNF-alpha, TGF-beta1), intracellular signal transduction molecules, such as tyrosine-protein kinases (Syk, Lyn, Btk), serine/ threonine-protein kinases (p38 alpha MAPkinase, Raf-1), non-kinase signaling proteins (RasGRP4), and transcription factors involved in Th2 differentiation and allergic inflammation (STAT-6, GATA-3, NF-kappaB). The challenge to scientists is to determine which of the candidate targets warrants investment of time and resources. New-generation respirable AS-ONs, external guide sequence ribozymes, and RNA interference-based therapies have the potential to satisfy unmet needs in allergy treatment, acting at a more proximal level to a key etiopathogenetic molecular process, represented by abnormal expression of genes. Moreover, antisense and siRNA technologies imply a more rational design of new drugs for allergy.
Collapse
Affiliation(s)
- Florin-Dan Popescu
- Department of Allergology, University of Medicine and Pharmacy Carol Davila, Bucharest, Hospital Nicolae Malaxa, Romania.
| |
Collapse
|