1
|
Wright MM, Rajewski BH, Gerrein TA, Xu Z, Smith LJ, Seth Horne W, Del Valle JR. Stabilization of a miniprotein fold by an unpuckered proline surrogate. Commun Chem 2025; 8:76. [PMID: 40075167 PMCID: PMC11904010 DOI: 10.1038/s42004-025-01474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The unique role of proline in modulating protein folding and recognition makes it an attractive target for substitution to generate new proteomimetics. The design, synthesis, and conformational analysis of non-canonical surrogates can also aid in parsing the role of prolyl stereoelectronic effects on structure. We recently described the synthesis and conformational analysis of dehydro-δ-azaproline (ΔaPro), a novel unsaturated analogue of proline featuring a planar dehydropyrazine ring. When incorporated into host sequences, this backbone N-aminated proline surrogate forms an acylhydrazone bond with an unusually high trans rotamer bias and low isomerization barrier. Here, we used CD, NMR spectroscopy, and MD simulations to evaluate the impact of ΔaPro substitution within the polyproline II (PPII) and loop regions of the avian pancreatic polypeptide (aPP). The ΔaPro residue strongly favors PPII conformation and stabilizes the aPP tertiary fold when incorporated at select positions within the miniprotein. A variant featuring three ΔaPro substitutions was found to significantly enhance the thermal stability of wild-type aPP despite compromising protein dimerization. Our results suggest that the stability of proline-rich folds relies more on backbone torsional preferences than ring puckering and informs strategies for the incorporation of ΔaPro into thermally stable and functional proteomimetics.
Collapse
Affiliation(s)
- Madison M Wright
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Benjamin H Rajewski
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Taylor A Gerrein
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Zhiyi Xu
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Lorna J Smith
- Department of Chemistry, University of Oxford, Oxford, UK
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Martinez JC, Castillo F, Ruiz-Sanz J, Murciano-Calles J, Camara-Artigas A, Luque I. Understanding binding affinity and specificity of modular protein domains: A focus in ligand design for the polyproline-binding families. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:161-188. [PMID: 35534107 DOI: 10.1016/bs.apcsb.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Within the modular protein domains there are five families that recognize proline-rich sequences: SH3, WW, EVH1, GYF and UEV domains. This chapter reviews the main strategies developed for the design of ligands for these families, including peptides, peptidomimetics and drugs. We also describe some studies aimed to understand the molecular reasons responsible for the intrinsic affinity and specificity of these domains.
Collapse
Affiliation(s)
- Jose C Martinez
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | - Francisco Castillo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Javier Ruiz-Sanz
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Javier Murciano-Calles
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ana Camara-Artigas
- Departamento de Química Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario ceiA3 y CIAMBITAL, Almeria, Spain
| | - Irene Luque
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
3
|
Baker EG, Bartlett GJ, Porter Goff KL, Woolfson DN. Miniprotein Design: Past, Present, and Prospects. Acc Chem Res 2017; 50:2085-2092. [PMID: 28832117 DOI: 10.1021/acs.accounts.7b00186] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The design and study of miniproteins, that is, polypeptide chains <40 amino acids in length that adopt defined and stable 3D structures, is resurgent. Miniproteins offer possibilities for reducing the complexity of larger proteins and so present new routes to studying sequence-to-structure and sequence-to-stability relationships in proteins generally. They also provide modules for protein design by pieces and, with this, prospects for building more-complex or even entirely new protein structures. In addition, miniproteins are useful scaffolds for templating functional domains, for example, those involved in protein-protein interactions, catalysis, and biomolecular binding, leading to potential applications in biotechnology and medicine. Here we select examples from almost four decades of miniprotein design, development, and dissection. Simply because of the word limit for this Account, we focus on miniproteins that are cooperatively folded monomers in solution and not stabilized by cross-linking or metal binding. In these cases, the optimization of noncovalent interactions is even more critical for the maintenance of the folded states than in larger proteins. Our chronology and catalogue highlights themes in miniproteins, which we explore further and begin to put on a firmer footing through an analysis of the miniprotein structures that have been deposited in the Protein Data Bank (PDB) thus far. Specifically, and compared with larger proteins, miniproteins generally have a lower proportion of residues in regular secondary structure elements (α helices, β strands, and polyproline-II helices) and, concomitantly, more residues in well-structured loops. This allows distortions of the backbone enabling mini-hydrophobic cores to be made. This also contrasts with larger proteins, which can achieve hydrophobic cores through tertiary contacts between distant regions of sequence. On average, miniproteins have a higher proportion of aromatic residues than larger proteins, and specifically electron-rich Trp and Tyr, which are often found in combination with Pro and Arg to render networks of CH-π or cation-π interactions. Miniproteins also have a higher proportion of the long-chain charged amino acids (Arg, Glu, and Lys), which presumably reflects salt-bridge formation and their greater surface area-to-volume ratio. Together, these amino-acid preferences appear to support greater densities of noncovalent interactions in miniproteins compared with larger proteins. We anticipate that with recent developments such as parametric protein design, it will become increasingly routine to use computation to generate and evaluate models for miniproteins in silico ahead of experimental studies. This could include accessing new structures comprising secondary structure elements linked in previously unseen configurations. The improved understanding of the noncovalent interactions that stabilize the folded states of such miniproteins that we are witnessing through both in-depth bioinformatics analyses and experimental testing will feed these computational protein designs. With this in mind, we can expect a new and exciting era for miniprotein design, study, and application.
Collapse
Affiliation(s)
- Emily G. Baker
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Gail J. Bartlett
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
- BrisSynBio
and the Bristol BioDesign Institute, University of Bristol, Life Sciences
Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| |
Collapse
|
4
|
Baker EG, Williams C, Hudson KL, Bartlett GJ, Heal JW, Porter Goff KL, Sessions RB, Crump MP, Woolfson DN. Engineering protein stability with atomic precision in a monomeric miniprotein. Nat Chem Biol 2017; 13:764-770. [PMID: 28530710 DOI: 10.1038/nchembio.2380] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 02/04/2023]
Abstract
Miniproteins simplify the protein-folding problem, allowing the dissection of forces that stabilize protein structures. Here we describe PPα-Tyr, a designed peptide comprising an α-helix buttressed by a polyproline II helix. PPα-Tyr is water soluble and monomeric, and it unfolds cooperatively with a midpoint unfolding temperature (TM) of 39 °C. NMR structures of PPα-Tyr reveal proline residues docked between tyrosine side chains, as designed. The stability of PPα is sensitive to modifications in the aromatic residues: replacing tyrosine with phenylalanine, i.e., changing three solvent-exposed hydroxyl groups to protons, reduces the TM to 20 °C. We attribute this result to the loss of CH-π interactions between the aromatic and proline rings, which we probe by substituting the aromatic residues with nonproteinogenic side chains. In analyses of natural protein structures, we find a preference for proline-tyrosine interactions over other proline-containing pairs, and observe abundant CH-π interactions in biologically important complexes between proline-rich ligands and SH3 and similar domains.
Collapse
Affiliation(s)
- Emily G Baker
- School of Chemistry, University of Bristol, Bristol, UK
| | - Christopher Williams
- School of Chemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK
| | | | | | - Jack W Heal
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Richard B Sessions
- BrisSynBio, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
A thermodynamic study of the third PDZ domain of MAGUK neuronal protein PSD-95 reveals a complex three-state folding behavior. Biophys Chem 2013; 185:1-7. [PMID: 24295614 DOI: 10.1016/j.bpc.2013.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
Abstract
The relevance of the C-terminal α helix of the PDZ3 domain of PSD95 in its unfolding process has been explored by achieving the thermodynamic characterization of a construct where the sequence of the nine residues corresponding to such motif has been deleted. Calorimetric traces at neutral pH require the application of a three-state model displaying three different equilibrium processes in which the intermediate state self-associates upon heating, being stable and populated in a wide temperature range. Temperature scans followed by circular dichroism, Fourier transform infrared spectroscopy and dynamic light scattering support the presence of such oligomeric-partially folded species. This study reveals that the deletion of the α3-helix sequence results in a more complex description of the domain unfolding.
Collapse
|
6
|
Secondary structure, a missing component of sequence-based minimotif definitions. PLoS One 2012; 7:e49957. [PMID: 23236358 PMCID: PMC3517595 DOI: 10.1371/journal.pone.0049957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022] Open
Abstract
Minimotifs are short contiguous segments of proteins that have a known biological function. The hundreds of thousands of minimotifs discovered thus far are an important part of the theoretical understanding of the specificity of protein-protein interactions, posttranslational modifications, and signal transduction that occur in cells. However, a longstanding problem is that the different abstractions of the sequence definitions do not accurately capture the specificity, despite decades of effort by many labs. We present evidence that structure is an essential component of minimotif specificity, yet is not used in minimotif definitions. Our analysis of several known minimotifs as case studies, analysis of occurrences of minimotifs in structured and disordered regions of proteins, and review of the literature support a new model for minimotif definitions that includes sequence, structure, and function.
Collapse
|
7
|
Tlatli R, Nozach H, Collet G, Beau F, Vera L, Stura E, Dive V, Cuniasse P. Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders. FEBS J 2012; 280:139-59. [PMID: 23121732 DOI: 10.1111/febs.12056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 12/23/2022]
Abstract
Artificial miniproteins that are able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif-grafting approach. The motif corresponded to the four N-terminal residues of TIMP-2, a broad-spectrum protein inhibitor of MMPs. Scaffolds that are able to reproduce the functional topology of this motif were obtained by exhaustive screening of the Protein Data Bank (PDB) using STAMPS software (search for three-dimensional atom motifs in protein structures). Ten artificial protein binders were produced. The designed proteins bind catalytic sites of MMPs with affinities ranging from 450 nm to 450 μm prior to optimization. The crystal structure of one artificial binder in complex with the catalytic domain of MMP-12 showed that the inter-molecular interactions established by the functional motif in the artificial binder corresponded to those found in the MMP-14-TIMP-2 complex, albeit with some differences in geometry. Molecular dynamics simulations of the ten binders in complex with MMP-14 suggested that these scaffolds may allow partial reproduction of native inter-molecular interactions, but differences in geometry and stability may contribute to the lower affinity of the artificial protein binders compared to the natural protein binder. Nevertheless, these results show that the in silico design method used provides sets of protein binders that target a specific binding site with a good rate of success. This approach may constitute the first step of an efficient hybrid computational/experimental approach to protein binder design.
Collapse
Affiliation(s)
- Rym Tlatli
- Service d'Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay (IBITEC-S), Commissariat à l'Energie Atomique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. FEBS Lett 2012; 586:2619-30. [DOI: 10.1016/j.febslet.2012.04.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 01/16/2023]
|
9
|
Balakrishnan S, Scheuermann MJ, Zondlo NJ. Arginine mimetics using α-guanidino acids: introduction of functional groups and stereochemistry adjacent to recognition guanidiniums in peptides. Chembiochem 2012; 13:259-70. [PMID: 22213184 PMCID: PMC3712784 DOI: 10.1002/cbic.201100638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 01/19/2023]
Abstract
Arginine residues are broadly employed for specific biomolecular recognition, including in protein-protein, protein-DNA, and protein-RNA interactions. Arginine recognition commonly exploits the potential for bidentate electrostatic and hydrogen-bonding interactions. However, in arginine residues, the guanidinium functional group is located at the terminus of a flexible hydrocarbon side chain, which lacks the functionality to contribute to specific arginine-mediated recognition and may entropically disfavor binding. In order to enhance the potential for specificity and affinity in arginine-mediated molecular recognition, we have developed an approach to the synthesis of peptides that incorporates an α-guanidino acid as a novel arginine mimetic. α-Guanidino acids, derived from α-amino acids, with guanidinylation of the amino group, were incorporated stereospecifically into peptides on solid phase via coupling of an Fmoc amino acid to diaminopropionic acid (Dap), Fmoc deprotection, guanidinylation of the amine on solid phase, and deprotection, generating a peptide containing an α-functionalized arginine mimetic. This approach was examined by incorporating arginine mimetics into ligands for the Src, Grb, and Crk SH3 domains at the site of the key recognition arginine. Protein binding was examined for peptides containing guanidino acids derived from Gly, L-Val, L-Phe, L-Trp, D-Val, D-Phe, and D-Trp. We demonstrate that paralogue specificity and target site affinity may be modulated with the use of α-guanidino acid-derived arginine mimetics, generating peptides that exhibit enhanced Src specificity by selection against Grb and peptides that reverse the specificity of the native peptide ligand, with enhancements in Src target specificity of up to 15-fold (1.6 kcal mol(-1)).
Collapse
Affiliation(s)
- Shalini Balakrishnan
- Department of Chemistry and Biochemistry University of Delaware Newark, Delaware 19716 (USA)
| | - Michael J. Scheuermann
- Department of Chemistry and Biochemistry University of Delaware Newark, Delaware 19716 (USA)
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry University of Delaware Newark, Delaware 19716 (USA)
| |
Collapse
|
10
|
Azoitei ML, Ban YEA, Julien JP, Bryson S, Schroeter A, Kalyuzhniy O, Porter JR, Adachi Y, Baker D, Pai EF, Schief WR. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. J Mol Biol 2011; 415:175-92. [PMID: 22061265 PMCID: PMC7105911 DOI: 10.1016/j.jmb.2011.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 11/23/2022]
Abstract
Computational grafting of functional motifs onto scaffold proteins is a promising way to engineer novel proteins with pre-specified functionalities. Typically, protein grafting involves the transplantation of protein side chains from a functional motif onto structurally homologous regions of scaffold proteins. Using this approach, we previously transplanted the human immunodeficiency virus 2F5 and 4E10 epitopes onto heterologous proteins to design novel “epitope-scaffold” antigens. However, side-chain grafting is limited by the availability of scaffolds with compatible backbone for a given epitope structure and offers no route to modify backbone structure to improve mimicry or binding affinity. To address this, we report here a new and more aggressive computational method—backbone grafting of linear motifs—that transplants the backbone and side chains of linear functional motifs onto scaffold proteins. To test this method, we first used side-chain grafting to design new 2F5 epitope scaffolds with improved biophysical characteristics. We then independently transplanted the 2F5 epitope onto three of the same parent scaffolds using the newly developed backbone grafting procedure. Crystal structures of side-chain and backbone grafting designs showed close agreement with both the computational models and the desired epitope structure. In two cases, backbone grafting scaffolds bound antibody 2F5 with 30- and 9-fold higher affinity than corresponding side-chain grafting designs. These results demonstrate that flexible backbone methods for epitope grafting can significantly improve binding affinities over those achieved by fixed backbone methods alone. Backbone grafting of linear motifs is a general method to transplant functional motifs when backbone remodeling of the target scaffold is necessary.
Collapse
Affiliation(s)
- Mihai L Azoitei
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sawada T, Ishiguro K, Takahashi T, Mihara H. A novel β-loop scaffold of phage-displayed peptides for highly specific affinities. MOLECULAR BIOSYSTEMS 2011; 7:2558-62. [PMID: 21655618 DOI: 10.1039/c1mb05085k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loop peptides stabilized by two β-strands were used as a scaffold for a phage displayed peptide library. Affinity-based screening for insulin provided peptides, which showed affinity constants of 10(5) M(-1) order for insulin over 100 times greater than their affinity for the structurally similar insulin-like growth factor 1. The results suggested that the scaffold offers a powerful tool for generating and screening peptides as ligands for drugs and biologics.
Collapse
Affiliation(s)
- Toshiki Sawada
- Department of Bioengineering, Tokyo Institute of Technology, 4259-B40 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
12
|
Murciano-Calles J, Cobos ES, Mateo PL, Camara-Artigas A, Martinez JC. A comparative analysis of the folding and misfolding pathways of the third PDZ domain of PSD95 investigated under different pH conditions. Biophys Chem 2011; 158:104-10. [PMID: 21665351 DOI: 10.1016/j.bpc.2011.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 11/16/2022]
Abstract
Equilibrium unfolding at neutral pH of the third PDZ domain of PSD95 is well described by the presence of a partly unfolded intermediate that presents association phenomena. After some days' incubation annular and fibrillar structures form from the oligomers. At pH values below 3, however, differential scanning calorimetry shows that PDZ3 seems to unfold under a two-state scheme. Kinetic measurements followed by dynamic light scattering, ThT and ANS fluorescence reveal that the misfolding pathway still exists despite the absence of any populated intermediates and shows an irreversible assembling of the supramacromolecular structures as well as an appreciable lag-phase, contrary to what is found in similar experiments at neutral pH. Moreover, as shown by transmission-electron-microscopy images, the annular structures seen at neutral pH completely disappear from incubated solutions. According to the structural information, this titration behavior appears to be the consequence of a conformational equilibrium that depends on the protonation of some Glu residues located at the C-terminal α3 helix and at the hairpin formed by strands β2 and β3. Our calculations suggest that the enthalpic contribution of these interactions may well be as much as 40kJ·mol(-1). The possible regulatory role of this equilibrium upon PDZ3 functionality and amyloid formation is briefly discussed.
Collapse
Affiliation(s)
- Javier Murciano-Calles
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Spain
| | | | | | | | | |
Collapse
|
13
|
Cobos ES, Iglesias-Bexiga M, Ruiz-Sanz J, Mateo PL, Luque I, Martinez JC. Thermodynamic Characterization of the Folding Equilibrium of the Human Nedd4-WW4 Domain: At the Frontiers of Cooperative Folding. Biochemistry 2009; 48:8712-20. [DOI: 10.1021/bi9007758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eva S. Cobos
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Manuel Iglesias-Bexiga
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Pedro L. Mateo
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jose C. Martinez
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
14
|
Peptides as protein binding site mimetics. Curr Opin Chem Biol 2008; 12:707-13. [DOI: 10.1016/j.cbpa.2008.09.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/08/2008] [Accepted: 09/19/2008] [Indexed: 12/13/2022]
|
15
|
Baldauf C, Pisabarro MT. Stable Hairpins with β-Peptides: Route to Tackle Protein−Protein Interactions. J Phys Chem B 2008; 112:7581-91. [DOI: 10.1021/jp076838r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carsten Baldauf
- Structural Bioinformatics, Biotechnologiezentrum der TU Dresden, Tatzberg 47-51, D-01307 Dresden, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, Biotechnologiezentrum der TU Dresden, Tatzberg 47-51, D-01307 Dresden, Germany
| |
Collapse
|
16
|
Holtzman JH, Woronowicz K, Golemi-Kotra D, Schepartz A. Miniature protein ligands for EVH1 domains: interplay between affinity, specificity, and cell motility. Biochemistry 2007; 46:13541-53. [PMID: 17973491 PMCID: PMC2659575 DOI: 10.1021/bi700975f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynamic rearrangements of the actin cytoskeleton power cell motility in contexts ranging from intracellular microbial pathogenesis to axon guidance. The Ena/VASP family proteins-Mena, VASP, and Evl-are believed to control cell motility by serving as a direct link between signaling events and the actin cytoskeleton. It has previously been reported that a novel miniature protein, pGolemi, binds with high affinity to the EVH1 domain of Mena (Mena1-112) but not to those of VASP (VASP1-115) or Evl (Evl1-115) and also causes an unusual defect in actin-driven Listeria monocytogenes motility. Here, scanning mutagenesis was used to examine the effects of single amino acid changes within pGolemi on EVH1 domain affinity and specificity, miniature protein secondary structure, and L. monocytogenes motility. The data suggest that pGolemi contains the expected aPP-like fold and binds Mena1-112 in a manner highly analogous to the proline-rich repeat region of L. monocytogenes ActA protein. Residues throughout pGolemi contribute to both EVH1 domain affinity and paralog specificity. Moreover, the affinities of pGolemi variants for Mena1-112 correlate with selectivity against the EVH1 domains of VASP and Evl. In L. monocytogenes motility assays, speed and speed variability correlate strongly with EVH1 paralog specificity, suggesting that the Ena/VASP paralogs do not play equivalent roles in the process of L. monocytogenes actin tail maturation.
Collapse
|
17
|
Affiliation(s)
- Abby M Hodges
- Department of Chemistry and Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
18
|
Chen S, Brier S, Smithgall TE, Engen JR. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding. Protein Sci 2007; 16:572-81. [PMID: 17327393 PMCID: PMC2203333 DOI: 10.1110/ps.062631007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.
Collapse
Affiliation(s)
- Shugui Chen
- Chemistry and Chemical Biology, The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
19
|
Kritzer JA, Zutshi R, Cheah M, Ran FA, Webman R, Wongjirad TM, Schepartz A. Miniature Protein Inhibitors of the p53-hDM2 Interaction. Chembiochem 2006; 7:29-31. [PMID: 16397877 DOI: 10.1002/cbic.200500324] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joshua A Kritzer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ruzza P, Siligardi G, Donella-Deana A, Calderan A, Hussain R, Rubini C, Cesaro L, Osler A, Guiotto A, Pinna LA, Borin G. 4-Fluoroproline derivative peptides: effect on PPII conformation and SH3 affinity. J Pept Sci 2006; 12:462-71. [PMID: 16506148 DOI: 10.1002/psc.750] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Eukaryotic signal transduction involves the assembly of transient protein-protein complexes mediated by modular interaction domains. Specific Pro-rich sequences with the consensus core motif PxxP adopt the PPII helix conformation upon binding to SH3 domains. For short Pro-rich peptides, little or no ordered secondary structure is usually observed before binding interactions. The association of a Pro-rich peptide with the SH3 domain involves unfavorable binding entropy due to the loss of rotational freedom on forming the PPII helix. With the aim of stabilizing the PPII helix conformation in the Pro-rich HPK1 decapeptide PPPLPPKPKF (P2), a series of P2 analogues was prepared, in which specific Pro positions were alternatively occupied by 4(S)- or 4(R)-4-fluoro-L-proline. The interactions of these peptides with the SH3 domain of the HPK1-binding partner HS1 were quantitatively analyzed by the NILIA-CD approach. A CD thermal analysis of the P2 analogues was performed to assess their propensity to adopt the PPII helix conformation. Contrary to our expectations, the K(d) values of the analogues were lower than that of the parent peptide P2. These results clearly show that the induction of a stable PPII helix conformation in short Pro-rich peptides is not sufficient to increase their affinity toward the SH3 domain and that the effect of 4-fluoroproline strongly depends on the position of this residue in the sequence and the chirality of the substituent in the pyrrolidine ring.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry, Padua Unit, CNR, Via Marzolo1, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hochrein JM, Lerner EC, Schiavone AP, Smithgall TE, Engen JR. An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry. Protein Sci 2005; 15:65-73. [PMID: 16322569 PMCID: PMC2242359 DOI: 10.1110/ps.051782206] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The ability of proteins to regulate their own enzymatic activity can be facilitated by changes in structure or protein dynamics in response to external regulators. Because many proteins contain SH2 and SH3 domains, transmission of information between the domains is a potential method of allosteric regulation. To determine if ligand binding to one modular domain may alter structural dynamics in an adjacent domain, allowing potential transmission of information through the protein, we used hydrogen exchange and mass spectrometry to measure changes in protein dynamics in the SH3 and SH2 domains of hematopoietic cell kinase (Hck). Ligand binding to either domain had little or no effect on hydrogen exchange in the adjacent domain, suggesting that changes in protein structure or dynamics are not a means of SH2/SH3 crosstalk. Furthermore, ligands of varying affinity covalently attached to SH3/SH2 altered dynamics only in the domain to which they bind. Such results demonstrate that ligand binding may not structurally alter adjacent SH3/SH2 domains and implies that other aspects of protein architecture contribute to the multiple levels of regulation in proteins containing SH3 and SH2 domains.
Collapse
Affiliation(s)
- James M Hochrein
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
22
|
Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005; 23:1257-68. [PMID: 16211069 DOI: 10.1038/nbt1127] [Citation(s) in RCA: 502] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Not all adaptive immune systems use the immunoglobulin fold as the basis for specific recognition molecules: sea lampreys, for example, have evolved an adaptive immune system that is based on leucine-rich repeat proteins. Additionally, many other proteins, not necessarily involved in adaptive immunity, mediate specific high-affinity interactions. Such alternatives to immunoglobulins represent attractive starting points for the design of novel binding molecules for research and clinical applications. Indeed, through progress and increased experience in library design and selection technologies, gained not least from working with synthetic antibody libraries, researchers have now exploited many of these novel scaffolds as tailor-made affinity reagents. Significant progress has been made not only in the basic science of generating specific binding molecules, but also in applications of the selected binders in laboratory procedures, proteomics, diagnostics and therapy. Challenges ahead include identifying applications where these novel proteins can not only be an alternative, but can enable approaches so far deemed technically impossible, and delineate those therapeutic applications commensurate with the molecular properties of the respective proteins.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
23
|
Volkman HM, Rutledge SE, Schepartz A. Binding mode and transcriptional activation potential of high affinity ligands for the CBP KIX domain. J Am Chem Soc 2005; 127:4649-58. [PMID: 15796530 DOI: 10.1021/ja042761y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently described a pair of ligands, PPKID4(P) (4(P)) and PPKID6(U) (6(U)), which present the alpha-helical functional epitope found on helix B of the CREB KID activation domain (KID(P)) on a pancreatic fold protein scaffold. 4(P) and 6(U) bind the natural target of KID(P), the KIX domain of the coactivator CBP, with equilibrium dissociation constants between 515 nM and 1.5 microM and compete effectively with KID(P) for binding to CBP KIX (KIX). Here we present a detailed investigation of the binding mode, orientation, and transcriptional activation potential of 4(P) and 6(U). Equilibrium binding experiments using a panel of well-characterized KIX variants support a model in which 4(P) binds KIX in a manner that closely resembles that of KID(P) but 6(U) binds an overlapping, yet distinct region of the protein. Equilibrium binding experiments using a judiciously chosen panel of 4(P) variants containing alanine or sarcosine substitutions along the putative alpha- or PPII helix of 4(P) support a model in which 4(P) folds into a pancreatic fold structure upon binding to KIX. Transcriptional activation assays performed in HEK293 cells using GAL4 DNA-binding domain fusion proteins indicate that 4(P) functions as a potent activator of p300/CBP-dependent transcription. Notably, 6(U) is a less potent transcriptional activator in this context than 4(P)despite the similarity of their affinities for CBP KIX. This final result suggests that thermodynamic affinity is an important, although not exclusive, criterion controlling the level of KIX-dependent transcriptional activation.
Collapse
Affiliation(s)
- Heather M Volkman
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
24
|
Yang L, Schepartz A. Relationship between Folding and Function in a Sequence-Specific Miniature DNA-Binding Protein†. Biochemistry 2005; 44:7469-78. [PMID: 15895990 DOI: 10.1021/bi050121h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, we have described a miniature protein-based approach to the design of molecules that bind DNA or protein surfaces with high affinity and specificity. In this approach, the small, well-folded protein avian pancreatic polypeptide acts as a scaffold to present and stabilize an alpha-helical or PPII-helical recognition epitope. The first miniature protein designed in this way, a molecule called p007, presents the alpha-helical recognition epitope found on the bZIP protein GCN4 and binds DNA with nanomolar affinity and exceptional specificity. In this work we use alanine-scanning mutagenesis to explore the contributions of 29 p007 residues to DNA affinity, specificity, and secondary structure. Virtually every residue within the p007 alpha-helix, and most residues within the p007 PPII helix, contribute to both DNA affinity and specificity. These residues include those introduced to make specific and nonspecific DNA contacts, as well as those that complete the miniature protein core. Moreover, there exists a direct correlation between the affinity of a p007 variant for specific DNA and the ability of that variant to select for specific DNA over nonspecific DNA. Although we observe no correlation between alpha-helicity and affinity, we observe a limited correlation between alpha-helicity and sequence specificity that emphasizes the role of coupled binding/folding in the function of p007. Our results imply that formation of a highly evolved set of protein.DNA contacts in the context of a well-packed hydrophobic core, and not the extent of intrinsic alpha-helical structure, is the primary determinant of p007 function.
Collapse
Affiliation(s)
- Loretta Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
25
|
Schneider TL, Mathew RS, Rice KP, Tamaki K, Wood JL, Schepartz A. Increasing the Kinase Specificity of K252a by Protein Surface Recognition. Org Lett 2005; 7:1695-8. [PMID: 15844883 DOI: 10.1021/ol050179o] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Here we describe a miniature protein (1) that presents the cAMP-dependent protein kinase (PKA) recognition epitope found within the heat-stable Protein Kinase Inhibitor protein (PKI) and a miniature protein conjugate (1-K252a) in which 1 is joined covalently to the high-affinity but nonselective kinase inhibitor K252a. Miniature protein 1 recognizes PKA with an affinity that rivals that of PKI and, in the context of 1-K252a, leads to a dramatic increase in kinase specificity.
Collapse
Affiliation(s)
- Tanya L Schneider
- Department of Chemistry and Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gemperli AC, Rutledge SE, Maranda A, Schepartz A. Paralog-selective ligands for bcl-2 proteins. J Am Chem Soc 2005; 127:1596-7. [PMID: 15700967 DOI: 10.1021/ja0441211] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is considerable current interest in molecules that bind intra- or extracellular protein surfaces and inhibit protein-protein interactions. Previously we have reported that miniature proteins based on pancreatic-fold polypeptides can recognize even shallow alpha-helix binding clefts with high affinity and selectivity against unrelated proteins. One such miniature protein, PPBH3-1, binds the anti-apoptotic protein paralogs Bcl-2 and Bcl-XL with nanomolar affinity and a DeltaDeltaG = 1.2 kcal.mol-1 preference for Bcl-XL. Here we describe the directed evolution of PPBH3-1 into two new miniature proteins, PPBH3-5 and PPBH3-6, whose paralog specificity is reversed relative to PPBH3-1. PPBH3-5 and PPBH3-6 bind Bcl-2 with nanomolar affinity and a DeltaDeltaG = 0.9-1.3 kcal.mol-1 preference for Bcl-2 over Bcl-XL. Experiments with Bcl-XL variants suggest that PPBH3-5 and PPBH3-6 achieve high paralog specificity by exploiting subtle structural or electrostatic differences in the Bcl-2 and Bcl-XL molecular landscapes. PPBH3-5 and PPBH3-6 may have unique applications as early examples of nonnatural ligands that interact selectively with Bcl-2 proteins.
Collapse
Affiliation(s)
- Anja C Gemperli
- Departments of Chemistry and Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
27
|
Ababou A, Ladbury JE. Survey of the year 2004: literature on applications of isothermal titration calorimetry. J Mol Recognit 2005; 19:79-89. [PMID: 16220545 DOI: 10.1002/jmr.750] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The market for commercially available isothermal titration calorimeters continues to grow as new applications and methodologies are developed. Concomitantly the number of users (and abusers) increases dramatically, resulting in a steady increase in the number of publications in which isothermal titration calorimetry (ITC) plays a role. In the present review, we will focus on areas where ITC is making a significant contribution and will highlight some interesting applications of the technique. This overview of papers published in 2004 also discusses current issues of interest in the development of ITC as a tool of choice in the determination of the thermodynamics of molecular recognition and interaction.
Collapse
Affiliation(s)
- Abdessamad Ababou
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|