1
|
Petchiappan A, Majdalani N, Wall E, Gottesman S. RcsF-independent mechanisms of signaling within the Rcs phosphorelay. PLoS Genet 2024; 20:e1011408. [PMID: 39724052 PMCID: PMC11709261 DOI: 10.1371/journal.pgen.1011408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA. IgaA is essential; it negatively regulates the signaling by interacting with the phosphotransferase RcsD. We previously showed that RcsF-dependent signaling does not require the periplasmic domain of the histidine kinase RcsC and identified a dominant negative mutant of RcsD that can block signaling via increased interactions with IgaA. However, how the inducing signals are sensed and how signal is transduced to activate the transcription of the Rcs regulon remains unclear. In this study, we investigated how the Rcs cascade functions without its only known sensor, RcsF, and characterized the underlying mechanisms for three distinct RcsF-independent inducers. Previous reports showed that Rcs activity can be induced in the absence of RcsF by a loss of function mutation in the periplasmic oxidoreductase DsbA or by overexpression of the DnaK cochaperone DjlA. We identified an inner membrane protein, DrpB, as a multicopy RcsF-independent Rcs activator in E. coli. The loss of the periplasmic oxidoreductase DsbA and the overexpression of the DnaK cochaperone DjlA each trigger the Rcs cascade in the absence of RcsF by weakening IgaA-RcsD interactions in different ways. In contrast, the cell-division associated protein DrpB uniquely requires the RcsC periplasmic domain for activation; this domain is not needed for RcsF-dependent signaling. This suggests the possibility that the RcsC periplasmic domain acts as a sensor for some Rcs signals. Overall, the results add new understanding to how this complex phosphorelay can be activated by diverse mechanisms.
Collapse
Affiliation(s)
- Anushya Petchiappan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Watanabe N, Savchenko A. Molecular insights into the initiation step of the Rcs signaling pathway. Structure 2024; 32:1381-1393.e4. [PMID: 38964336 DOI: 10.1016/j.str.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.
Collapse
Affiliation(s)
- Nobuhiko Watanabe
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA.
| |
Collapse
|
3
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Guo XP, Yan HQ, Yang W, Yin Z, Vadyvaloo V, Zhou D, Sun YC. A frameshift in Yersinia pestis rcsD alters canonical Rcs signalling to preserve flea-mammal plague transmission cycles. eLife 2023; 12:e83946. [PMID: 37010269 PMCID: PMC10191623 DOI: 10.7554/elife.83946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/02/2023] [Indexed: 04/04/2023] Open
Abstract
Multiple genetic changes in the enteric pathogen Yersinia pseudotuberculosis have driven the emergence of Yesinia pestis, the arthropod-borne, etiological agent of plague. These include developing the capacity for biofilm-dependent blockage of the flea foregut to enable transmission by flea bite. Previously, we showed that pseudogenization of rcsA, encoding a component of the Rcs signalling pathway, is an important evolutionary step facilitating Y. pestis flea-borne transmission. Additionally, rcsD, another important gene in the Rcs system, harbours a frameshift mutation. Here, we demonstrated that this rcsD mutation resulted in production of a small protein composing the C-terminal RcsD histidine-phosphotransferase domain (designated RcsD-Hpt) and full-length RcsD. Genetic analysis revealed that the rcsD frameshift mutation followed the emergence of rcsA pseudogenization. It further altered the canonical Rcs phosphorylation signal cascade, fine-tuning biofilm production to be conducive with retention of the pgm locus in modern lineages of Y. pestis. Taken together, our findings suggest that a frameshift mutation in rcsD is an important evolutionary step that fine-tuned biofilm production to ensure perpetuation of flea-mammal plague transmission cycles.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- NHC key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai-Qin Yan
- Department of Basic Medical Sciences, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical CollegeBengbuChina
- Paul G. Allen School for Global Health, Washington State UniversityPullmanUnited States
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State UniversityPullmanUnited States
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yi-Cheng Sun
- NHC key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Li S, Xu X, Lv X, Liu Y, Li J, Du G, Liu L. Combinatorial Metabolic Engineering and Enzymatic Catalysis Enable Efficient Production of Colanic Acid. Microorganisms 2022; 10:877. [PMID: 35630322 PMCID: PMC9143390 DOI: 10.3390/microorganisms10050877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Colanic acid can promote the lifespan of humans by regulating mitochondrial homeostasis, and it has widespread applications in the field of health. However, colanic acid is produced at a low temperature (20 °C) with low titer. Using Escherichia coli K-12 MG1655, we constructed the SRP-4 strain with high colanic acid production at 30 °C by enhancing the precursor supply and relieving the regulation of transcription for colanic acid synthesis genes by the RCS system. After media optimization, the colanic acid titer increased by 579.9-fold and reached 12.2 g/L. Subsequently, we successfully purified the colanic acid hydrolase and reduced the molecular weight of colanic acid (106.854 kDa), thereby eliminating the inhibition of high-molecular-weight colanic acid on strain growth. Finally, after adding the colanic acid hydrolase (4000 U/L), the colanic acid with low molecular weight reached 24.99 g/L in 3-L bioreactor, the highest titer reported so far. This high-producing strain of colanic acid will promote the application of low-molecular-weight colanic acid in the field of health.
Collapse
Affiliation(s)
- Suwei Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Nguyen TT, Marzolf DR, Seffernick JT, Heinze S, Lindert S. Protein structure prediction using residue-resolved protection factors from hydrogen-deuterium exchange NMR. Structure 2021; 30:313-320.e3. [PMID: 34739840 DOI: 10.1016/j.str.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Hydrogen-deuterium exchange (HDX) measured by nuclear magnetic resonance (NMR) provides structural information for proteins relating to solvent accessibility and flexibility. While this structural information is beneficial, the data cannot be used exclusively to elucidate structures. However, the structural information provided by the HDX-NMR data can be supplemented by computational methods. In previous work, we developed an algorithm in Rosetta to predict structures using qualitative HDX-NMR data (categories of exchange rate). Here we expand on the effort, and utilize quantitative protection factors (PFs) from HDX-NMR for structure prediction. From observed correlations between PFs and solvent accessibility/flexibility measures, we present a scoring function to quantify the agreement with HDX data. Using a benchmark set of 10 proteins, an average improvement of 5.13 Å in root-mean-square deviation (RMSD) is observed for cases of inaccurate Rosetta predictions. Ultimately, seven out of 10 predictions are accurate without including HDX data, and nine out of 10 are accurate when using our PF-based HDX score.
Collapse
Affiliation(s)
- Tung T Nguyen
- Department of Chemistry and Biochemistry, Denison University, Granville, OH 43023, USA
| | - Daniel R Marzolf
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18(th) Avenue, Columbus, OH 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18(th) Avenue, Columbus, OH 43210, USA
| | - Sten Heinze
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18(th) Avenue, Columbus, OH 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Chen SK, Guan HH, Wu PH, Lin LT, Wu MC, Chang HY, Chen NC, Lin CC, Chuankhayan P, Huang YC, Lin PJ, Chen CJ. Structural insights into the histidine-containing phospho-transfer protein and receiver domain of sensor histidine kinase suggest a complex model in the two-component regulatory system in Pseudomonas aeruginosa. IUCRJ 2020; 7:934-948. [PMID: 32939285 PMCID: PMC7467158 DOI: 10.1107/s2052252520009665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In Pseudomonas aeruginosa, an important opportunistic pathogen that causes numerous acute and chronic infections, the hybrid two-component system (TCS) regulates the swarming ability and biofilm formation with a multistep phospho-relay, and consists of hybrid-sensor histidine kinase (HK), histidine-containing phospho-transfer protein (Hpt) and response regulator (RR). In this work, two crystal structures of HptB and the receiver domain of HK PA1611 (PA1611REC) of P. aeruginosa have been determined in order to elucidate their interactions for the transfer of the phospho-ryl group. The structure of HptB folds into an elongated four-helix bundle - helices α2, α3, α4 and α5, covered by the short N-terminal helix α1. The imidazole side chain of the conserved active-site histidine residue His57, located near the middle of helix α3, protrudes from the bundle and is exposed to solvent. The structure of PA1611REC possesses a conventional (β/α)5 topology with five-stranded parallel β-sheets folded in the central region, surrounded by five α-helices. The divalent Mg2+ ion is located in the negatively charged active-site cleft and interacts with Asp522, Asp565 and Arg567. The HptB-PA1611REC complex is further modeled to analyze the binding surface and interactions between the two proteins. The model shows a shape complementarity between the convex surface of PA1611REC and the kidney-shaped HptB with fewer residues and a different network involved in interactions compared with other TCS complexes, such as SLN1-R1/YPD1 from Saccharomyces cerevisiae and AHK5RD/AHP1 from Arabidopsis thaliana. These structural results provide a better understanding of the TCS in P. aeruginosa and could potentially lead to the discovery of a new treatment for infection.
Collapse
Affiliation(s)
- Shao-Kang Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pei-Hsun Wu
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Li-Ting Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Meng-Chun Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pei-Ju Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Jung Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
9
|
Kennedy EN, Hebdon SD, Menon SK, Foster CA, Copeland DM, Xu Q, Janiak-Spens F, West AH. Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins. BMC BIOCHEMISTRY 2019; 20:1. [PMID: 30665347 PMCID: PMC6341664 DOI: 10.1186/s12858-019-0104-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/07/2019] [Indexed: 11/29/2022]
Abstract
Background Many bacteria and certain eukaryotes utilize multi-step His-to-Asp phosphorelays for adaptive responses to their extracellular environments. Histidine phosphotransfer (HPt) proteins function as key components of these pathways. HPt proteins are genetically diverse, but share a common tertiary fold with conserved residues near the active site. A surface-exposed glycine at the H + 4 position relative to the phosphorylatable histidine is found in a significant number of annotated HPt protein sequences. Previous reports demonstrated that substitutions at this position result in diminished phosphotransfer activity between HPt proteins and their cognate signaling partners. Results We report the analysis of partner binding interactions and phosphotransfer activity of the prototypical HPt protein Ypd1 from Saccharomyces cerevisiae using a set of H + 4 (G68) substituted proteins. Substitutions at this position with large, hydrophobic, or charged amino acids nearly abolished phospho-acceptance from the receiver domain of its upstream signaling partner, Sln1 (Sln1-R1). An in vitro binding assay indicated that G68 substitutions caused only modest decreases in affinity between Ypd1 and Sln1-R1, and these differences did not appear to be large enough to account for the observed decrease in phosphotransfer activity. The crystal structure of one of these H + 4 mutants, Ypd1-G68Q, which exhibited a diminished ability to participate in phosphotransfer, shows a similar overall structure to that of wild-type. Molecular modelling suggests that the highly conserved active site residues within the receiver domain of Sln1 must undergo rearrangement to accommodate larger H + 4 substitutions in Ypd1. Conclusions Phosphotransfer reactions require precise arrangement of active site elements to align the donor-acceptor atoms and stabilize the transition state during the reaction. Any changes likely result in an inability to form a viable transition state during phosphotransfer. Our data suggest that the high degree of evolutionary conservation of residues with small side chains at the H + 4 position in HPt proteins is required for optimal activity and that the presence of larger residues at the H + 4 position would cause alterations in the positioning of active site residues in the partner response regulator. Electronic supplementary material The online version of this article (10.1186/s12858-019-0104-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N Kennedy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Present Address: University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Skyler D Hebdon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Smita K Menon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Clay A Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Present Address: University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel M Copeland
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Present Address: Pacira Pharmaceuticals, San Diego, CA, 92121, USA
| | - Qingping Xu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Present Address: GMCA at Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Fabiola Janiak-Spens
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
10
|
Abstract
RcsB, a response regulator of the FixJ/NarL family, is at the center of a complex network of regulatory inputs and outputs. Cell surface stress is sensed by an outer membrane lipoprotein, RcsF, which regulates interactions of the inner membrane protein IgaA, lifting negative regulation of a phosphorelay. In vivo evidence supports a pathway in which histidine kinase RcsC transfers phosphate to phosphotransfer protein RcsD, resulting in phosphorylation of RcsB. RcsB acts either alone or in combination with RcsA to positively regulate capsule synthesis and synthesis of small RNA (sRNA) RprA as well as other genes, and to negatively regulate motility. RcsB in combination with other FixJ/NarL auxiliary proteins regulates yet other functions, independent of RcsB phosphorylation. Proper expression of Rcs and its targets is critical for success of Escherichia coli commensal strains, for proper development of biofilm, and for virulence in some pathogens. New understanding of how the Rcs phosphorelay works provides insight into the flexibility of the two-component system paradigm.
Collapse
Affiliation(s)
- Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| |
Collapse
|
11
|
Guo XP, Sun YC. New Insights into the Non-orthodox Two Component Rcs Phosphorelay System. Front Microbiol 2017; 8:2014. [PMID: 29089936 PMCID: PMC5651002 DOI: 10.3389/fmicb.2017.02014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023] Open
Abstract
The Rcs phosphorelay system, a non-orthodox two-component regulatory system, integrates environmental signals, regulates gene expression, and alters the physiological behavior of members of the Enterobacteriaceae family of Gram-negative bacteria. Recent studies of Rcs system focused on protein interactions, functions, and the evolution of Rcs system components and its auxiliary regulatory proteins. Herein we review the latest advances on the Rcs system proteins, and discuss the roles that the Rcs system plays in the environmental adaptation of various Enterobacteriaceae species.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Ancona V, Chatnaparat T, Zhao Y. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol Genet Genomics 2015; 290:1265-76. [PMID: 25577258 DOI: 10.1007/s00438-015-0988-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
In Erwinia amylovora, the Rcs phosphorelay system is essential for amylovoran production and virulence. To further understand the role of conserved aspartate residue (D56) in the phosphor receiver (PR) domain and lysine (K180) residue in the function domain of RcsB, amino acid substitutions of RcsB mutant alleles were generated by site-directed mutagenesis and complementation of various rcs mutants were performed. A D56E substitution of RcsB, which mimics the phosphorylation state of RcsB, complemented the rcsB mutant, resulting in increased amylovoran production and gene expression, reduced swarming motility, and restored pathogenicity. In contrast, D56N and K180A or K180Q substitutions of RcsB did not complement the rcsB mutant. Electrophoresis mobility shift assays showed that D56E, but not D56N, K180Q and K180A substitutions of RcsB bound to promoters of amsG and flhD, indicating that both D56 and K180 are required for DNA binding. Interestingly, the RcsBD56E allele could also complement rcsAB, rcsBC and rcsABCD mutants with restored virulence and increased amylovoran production, indicating that RcsB phosphorylation is essential for virulence of E. amylovora. In addition, mutations of T904 and A905, but not phosphorylation mimic mutation of D876 in the PR domain of RcsC, constitutively activate the Rcs system, suggesting that phosphor transfer is required for activating the Rcs system and indicating both A905 and T904 are required for the phosphatase activity of RcsC. Our results demonstrated that RcsB phosphorylation and dephosphorylation, phosphor transfer from RcsC are essential for the function of the Rcs system, and also suggested that constitutive activation of the Rcs system could reduce the fitness of E. amylovora.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
13
|
Pescaretti MDLM, Farizano JV, Morero R, Delgado MA. A novel insight on signal transduction mechanism of RcsCDB system in Salmonella enterica serovar typhimurium. PLoS One 2013; 8:e72527. [PMID: 24023746 PMCID: PMC3762810 DOI: 10.1371/journal.pone.0072527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/11/2013] [Indexed: 12/21/2022] Open
Abstract
The RcsCDB system of Salmonella enterica serovar Typhimurium is implicated in the control of capsule and flagella synthesis. The hybrid sensor RcsC, the phosphotransferase RcsD and the RcsB regulator, constitute the main components of the RcsCDB system. The proposed Rcs signaling cascade involves the autophosphorylation of RcsC and the transfer of the phosphate group to RcsB, mediated by RcsD. We previously reported that the overexpression of rcsB repress the transcription of rcsD by an autoregulation mechanism. Moreover, we demonstrated that during the rcsD repression, the RcsB-dependent flagellar modulation remained active. These results suggest that the Rcs phosphorelay mechanism occurs even in the absence of RcsD. In this work, we established the existence of two alternative phosphorelay pathways driving activation of this system. We demonstrated that RcsC and RcsD can act as histidine kinase proteins which, after autophosphorylated, are able to independently transfer the phosphate to RcsB. Our results suggest that these pathways could be activated by different environmental signals, leading different levels of RcsB-phosphorylated to produce a differential gene modulation. These findings contribute to a better understanding of the complexity and importance of the Rcs system activation, where more than one phosphate flow pathway increases the possibilities to exert gene regulation for a quick environmental changes response.
Collapse
Affiliation(s)
- María de las Mercedes Pescaretti
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Tucumán, Argentina
| | - Juan V. Farizano
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Tucumán, Argentina
| | - Roberto Morero
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Tucumán, Argentina
| | - Mónica A. Delgado
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Tucumán, Argentina
- * E-mail:
| |
Collapse
|
14
|
Lobanov MY, Suvorina MY, Dovidchenko NV, Sokolovskiy IV, Surin AK, Galzitskaya OV. A novel web server predicts amino acid residue protection against hydrogen–deuterium exchange. Bioinformatics 2013; 29:1375-81. [DOI: 10.1093/bioinformatics/btt168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Rogov VV, Rogova NY, Bernhard F, Löhr F, Dötsch V. A disulfide bridge network within the soluble periplasmic domain determines structure and function of the outer membrane protein RCSF. J Biol Chem 2011; 286:18775-83. [PMID: 21471196 DOI: 10.1074/jbc.m111.230185] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RcsF, a proposed auxiliary regulator of the regulation of capsule synthesis (rcs) phosphorelay system, is a key element for understanding the RcsC-D-A/B signaling cascade, which is responsible for the regulation of more than 100 genes and is involved in cell division, motility, biofilm formation, and virulence. The RcsC-D-A/B system is one of the most complex bacterial signal transduction pathways, consisting of several membrane-bound and soluble proteins. RcsF is a lipoprotein attached to the outer membrane and plays an important role in activating the RcsC-d-A/B pathway. The exact mechanism of activation of the rcs phosphorelay by RcsF, however, remains unknown. We have analyzed the sequence of RcsF and identified three structural elements: 1) an N-terminal membrane-anchored helix (residues 3-13), 2) a loop (residues 14-48), and 3) a C-terminal folded domain (residues 49-134). We have determined the structure of this C-terminal domain and started to investigate its interaction with potential partners. Important features of its structure are two disulfide bridges between Cys-74 and Cys-118 and between Cys-109 and Cys-124. To evaluate the importance of this RcsF disulfide bridge network in vivo, we have examined the ability of the full-length protein and of specific Cys mutants to initiate the rcs signaling cascade. The results indicate that the Cys-74/Cys-118 and the Cys-109/Cys-124 residues correlate pairwise with the activity of RcsF. Interaction studies showed a weak interaction with an RNA hairpin. However, no interaction could be detected with reagents that are believed to activate the rcs phosphorelay, such as lysozyme, glucose, or Zn(2+) ions.
Collapse
Affiliation(s)
- Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
16
|
Schmöe K, Rogov V, Rogova N, Löhr F, Güntert P, Bernhard F, Dötsch V. Structural Insights into Rcs Phosphotransfer: The Newly Identified RcsD-ABL Domain Enhances Interaction with the Response Regulator RcsB. Structure 2011; 19:577-87. [DOI: 10.1016/j.str.2011.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
17
|
Solution structure and phospho-PmrA recognition mode of PmrD from Klebsiella pneumoniae. J Struct Biol 2010; 172:319-30. [DOI: 10.1016/j.jsb.2010.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 11/19/2022]
|
18
|
Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc Natl Acad Sci U S A 2010; 107:10902-7. [PMID: 20498088 DOI: 10.1073/pnas.1001656107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NMR structural studies of membrane proteins (MP) are hampered by complications in MP expression, technical difficulties associated with the slow process of NMR spectral peak assignment, and limited distance information obtainable for transmembrane (TM) helices. To overcome the inherent challenges in the determination of MP structures, we have developed a rapid and cost-efficient strategy that combines cell-free (CF) protein synthesis, optimized combinatorial dual-isotope labeling for nearly instant resonance assignment, and fast acquisition of long-distance information using paramagnetic probes. Here we report three backbone structures for the TM domains of the three classes of Escherichia coli histidine kinase receptors (HKRs). The ArcB and QseC TM domains are both two-helical motifs, whereas the KdpD TM domain comprises a four-helical bundle with shorter second and third helices. The interhelical distances (up to 12 A) reveal weak interactions within the TM domains of all three receptors. Determined consecutively within 8 months, these structures offer insight into the abundant and underrepresented in the Protein Data Bank class of 2-4 TM crossers and demonstrate the efficiency of our CF combinatorial dual-labeling strategy, which can be applied to solve MP structures in high numbers and at a high speed. Our results greatly expand the current knowledge of HKR structure, opening the doors to studies on their widespread and pharmaceutically important bacterial signaling mechanism.
Collapse
|
19
|
Stewart RC. Protein histidine kinases: assembly of active sites and their regulation in signaling pathways. Curr Opin Microbiol 2010; 13:133-41. [PMID: 20117042 PMCID: PMC2847664 DOI: 10.1016/j.mib.2009.12.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022]
Abstract
Protein histidine kinases (PHKs) function in Two Component Signaling pathways utilized extensively by bacteria and archaea. Many PHKs participate in three distinct, but interrelated signaling reactions: autophoshorylation, phosphotransfer (to a partner Response Regulator (RR) protein), and dephosphorylation of this RR. Detailed biochemical and structural characterization of several PHKs has revealed how the domains of these proteins can interact to assemble the three active sites that promote the necessary chemistry and how these domain interactions might be regulated in response to sensory input: the relative orientation of helices in the PHK dimerization domain can reorient, via cogwheeling (rotation) and kinking (bending), to effect changes in PHK activities that probably involve sequestration/release of the PHK catalytic domain by the dimerization domain.
Collapse
Affiliation(s)
- Richard C Stewart
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
20
|
Abstract
The capsule is a cell surface structure composed of long-chain polysaccharides that envelops many isolates of Escherichia coli. It protects the cell against host defenses or physical environmental stresses, such as desiccation. The component capsular polysaccharides (CPSs) are major surface antigens in E. coli. They are named K antigens (after the German word Kapsel). Due to variations in CPS structures, more than 80 serologically unique K antigens exist in E. coli. Despite the hypervariability in CPS structures, only two capsule-assembly strategies exist in E. coli. These have led to the assignment of group 1 and group 2 capsules, and many of the key elements of the corresponding assembly pathways have been resolved. Structural features, as well as genetic and regulatory variations, give rise to additional groups 3 and 4. These employ the same biosynthesis processes described in groups 2 and 1, respectively. Each isolate possesses a distinctive set of cytosolic and inner-membrane enzymes, which generate a precise CPS structure, defining a given K serotype. Once synthesized, a multiprotein complex is needed to translocate the nascent CPS across the Gram-negative cell envelope to the outer surface of the outer membrane, where the capsule structure is assembled. While the translocation machineries for group 1 and group 2 CPSs are fundamentally different from one another, they possess no specificity for a given CPS structure. Each is conserved in all isolates producing capsules belonging to a particular group.
Collapse
|
21
|
Xu Q, Carlton D, Miller MD, Elsliger MA, Sri Krishna S, Abdubek P, Astakhova T, Burra P, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Sefcovic N, Trame C, Trout CV, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus. J Mol Biol 2009; 390:686-98. [PMID: 19450606 PMCID: PMC2726009 DOI: 10.1016/j.jmb.2009.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 11/27/2022]
Abstract
Cell-cycle-regulated stalk biogenesis in Caulobacter crescentus is controlled by a multistep phosphorelay system consisting of the hybrid histidine kinase ShkA, the histidine phosphotransfer (HPt) protein ShpA, and the response regulator TacA. ShpA shuttles phosphoryl groups between ShkA and TacA. When phosphorylated, TacA triggers a downstream transcription cascade for stalk synthesis in an RpoN-dependent manner. The crystal structure of ShpA was determined to 1.52 A resolution. ShpA belongs to a family of monomeric HPt proteins that feature a highly conserved four-helix bundle. The phosphorylatable histidine His56 is located on the surface of the helix bundle and is fully solvent exposed. One end of the four-helix bundle in ShpA is shorter compared with other characterized HPt proteins, whereas the face that potentially interacts with the response regulators is structurally conserved. Similarities of the interaction surface around the phosphorylation site suggest that ShpA is likely to share a common mechanism for molecular recognition and phosphotransfer with yeast phosphotransfer protein YPD1 despite their low overall sequence similarity.
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA,USA
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA,USA
| | - Prasad Burra
- Joint Center for Structural Genomics, http://www.jcsg.org
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA,USA
| | - Ylva Elias
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anna Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - Slawomir K. Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA,USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA,USA
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Kevin K. Jin
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Abhinav Kumar
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel McMullan
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA,USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Silvya Oommachen
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Jessica Paulsen
- Joint Center for Structural Genomics, http://www.jcsg.org
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Christopher L. Rife
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Natasha Sefcovic
- Joint Center for Structural Genomics, http://www.jcsg.org
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Christine Trame
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Christina V. Trout
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| | - Henry van den Bedem
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA,USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA,USA
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
22
|
Modulation of the Rcs-mediated signal transfer by conformational flexibility. Biochem Soc Trans 2008; 36:1427-32. [DOI: 10.1042/bst0361427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Rcs (regulator of capsule synthesis) signalling complex comprises the membrane-associated hybrid sensor kinases RcsC and RcsD, the transcriptional regulator RcsB and the two co-inducers RcsA and RcsF. Acting as a global regulatory network, the Rcs phosphorelay controls multiple cellular pathways including capsule synthesis, cell division, motility, biofilm formation and virulence mechanisms. Signal-dependent communication of the individual Rcs domains showing histidine kinase, phosphoreceiver, phosphoryl transfer and DNA-binding activities is characteristic and essential for the modulation of signal transfer. We have analysed the structures of core elements of the Rcs network including the RcsC-PR (phosphoreceiver domain of RcsC) and the RcsD-HPt (histidine phosphotransfer domain of RcsD), and we have started to characterize the dynamics and recognition mechanisms of the proteins. RcsC-PR represents a typical CheY-like α/β/α sandwich fold and it shows a large conformational flexibility near the active-site residue Asp875. NMR analysis revealed that RcsC-PR is able to adopt preferred conformations upon Mg2+ co-ordination, BeF3− activation, phosphate binding and RcsD-HPt recognition. In contrast, the α-helical structure of RcsD-HPt is conformationally stable and contains a recognition area in close vicinity to the active-site His842 residue. Our studies indicate the importance of protein dynamics and conformational exchange for the differential response to the variety of signals perceived by complex regulatory networks.
Collapse
|
23
|
Hsu JL, Chen HC, Peng HL, Chang HY. Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem 2008; 283:9933-44. [PMID: 18256026 DOI: 10.1074/jbc.m708836200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain bacterial two-component sensor kinases possess a histidine-containing phosphotransfer (Hpt) domain to carry out a multistep phosphotransferring reaction to a cognate response regulator. Pseudomonas aeruginosa PAO1 contains three genes that encode proteins with an Hpt domain but lack a kinase domain. To identify the sensor kinase coupled to these Hpt proteins, a phosphorelay profiling assay was performed. Among the 12 recombinant orphan sensor kinases tested, 4 of these sensors (PA1611, PA1976, PA2824, and RetS) transferred the phosphoryl group to HptB (PA3345). The in vivo interaction between HptB and each of the sensors was also confirmed using the bacterial two-hybrid assay. Interestingly, the phosphoryl groups from these sensors all appeared to be transferred via HptB to PA3346, a novel phosphatase consisting of an N-terminal receiver domain and a eukaryotic type Ser/Thr phosphatase domain, and resulted in a significant increase of its phosphatase activity. The subsequent reverse transcription-PCR analysis revealed an operon structure of hptB-PA3346-PA3347, suggesting a coordinate expression of the three genes to carry out a signal transduction. The possibility was supported by the analysis showing PA3347 is able to be phosphorylated on Ser-56, and this phosphoryl group could be removed by PA3346 protein. Finally, analysis of PA3346 and PA3347 gene knock-out mutants revealed that these genes are associated with bacterial swarming activity and biofilm formation. Together, these results disclose a novel multistep phosphorelay system that is essential for P. aeruginosa to respond to a wide spectrum of environmental signals.
Collapse
Affiliation(s)
- Jye-Lin Hsu
- Institute of Molecular Medicine, National Tsing Hua University, 101 Guang Fu Road 2nd Section, Hsin Chu 300, Taiwan, Republic of China
| | | | | | | |
Collapse
|
24
|
Rogov VV, Rogova NY, Bernhard F, Koglin A, Löhr F, Dötsch V. A New Structural Domain in the Escherichia coli RcsC Hybrid Sensor Kinase Connects Histidine Kinase and Phosphoreceiver Domains. J Mol Biol 2006; 364:68-79. [PMID: 17005198 DOI: 10.1016/j.jmb.2006.07.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 01/11/2023]
Abstract
The Rcs signalling pathway controls a variety of physiological functions like capsule synthesis, cell division or motility in prokaryotes. The Rcs regulation cascade, involving a multi-step phosphorelay between the two membrane-bound hybrid sensor kinases RcsC and RcsD and the global regulator RcsB, is, up to now, one of the most complicated regulatory systems in bacteria. To understand the structural basis of Rcs signal transduction, NMR spectroscopy was employed to determine the solution structure of the RcsC C terminus, possessing a phosphoreceiver domain (RcsC-PR), and a region previously described as a long linker between the histidine kinase domain of RcsC (RcsC-HK) and the RcsC-PR. We have found that the linker region comprises an independent structural domain of a new alpha/beta organization, which we named RcsC-ABL domain (Alpha/Beta/Loop). The ABL domain appears to be a conserved and unique structural element of RcsC-like kinases with no significant sequence homology to other proteins. The second domain of the C terminus, the RcsC-PR domain, represents a well-folded CheY-like phosphoreceiver domain with the central parallel beta-sheet covered with two alpha-helical layers on both sides. We have mapped the interaction of RcsC-ABL and RcsC-PR with the histidine phosphotransfer domain (HPt) of RcsD. In addition we have characterized the interaction with and the conformational effects of Mg2+ and the phosphorylation mimetic BeF(-)(3) on RcsC-ABL and RcsC-PR.
Collapse
Affiliation(s)
- Vladimir V Rogov
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, JW Goethe-University, Frankfurt-am-Main, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
RcsC, RcsB, and RcsA were first identified as a sensor kinase, a response regulator, and an auxiliary regulatory protein, respectively, regulating the genes of capsular polysaccharide synthesis. Recent advances have demonstrated that these proteins are part of a complex phosphorelay, in which phosphate travels from the histidine kinase domain in RcsC to a response regulator domain in the same protein; from there to a phosphotransfer protein, RcsD; and from there to RcsB. In addition to capsule synthesis, which requires the unstable regulatory protein RcsA, RcsB also stimulates transcription of a small RNA, RprA; the cell division gene ftsZ; and genes encoding membrane and periplasmic proteins, including the osmotically inducible genes osmB and osmC. The Rcs system appears to play an important role in the later stages of biofilm development; induction of Rcs signaling by surfaces is consistent with this role.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
26
|
Minogue TD, Carlier AL, Koutsoudis MD, von Bodman SB. The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene. Mol Microbiol 2005; 56:189-203. [PMID: 15773989 DOI: 10.1111/j.1365-2958.2004.04529.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LuxR-type quorum-sensing transcription factor EsaR functions as a repressor of exopolysaccharide (EPS) synthesis in the phytopathogenic bacterium Pantoea stewartii ssp. stewartii. The cell density-dependent expression of EPS is critical for Stewart's wilt disease development. Strains deficient in the synthesis of a diffusible acyl-homoserine lactone inducer remain repressed for EPS synthesis and are consequently avirulent. In contrast, disruption of the esaR gene leads to hypermucoidy and attenuated disease development. Ligand-free EsaR functions as a negative autoregulator of the esaR gene and responds to exogenous acyl-homoserine lactone for derepression. The focus of this study was to define the mechanism by which EsaR governs the expression of the cps locus, which encodes functions required for stewartan EPS synthesis and membrane translocation. Genetic and biochemical studies show that EsaR directly represses the transcription of the rcsA gene. RcsA encodes an essential coactivator for RcsA/RcsB-mediated transcriptional activation of cps genes. In vitro assays identify an EsaR DNA binding site within the rcsA promoter that is reasonably well conserved with the previously described esaR box. We also describe that RcsA positively controls its own expression. Interestingly, promoter proximal genes within the cps cluster are significantly more acyl-homoserine lactone responsive than genes located towards the middle or 3' end of the gene cluster. We will discuss a possible role of EsaR-mediated quorum sensing in the differential expression of the cps operon.
Collapse
Affiliation(s)
- Timothy D Minogue
- Department of Plant Science, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
27
|
Löhr F, Rogov VV, Shi M, Bernhard F, Dötsch V. Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues. JOURNAL OF BIOMOLECULAR NMR 2005; 32:309-28. [PMID: 16211484 DOI: 10.1007/s10858-005-1195-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/11/2005] [Indexed: 05/04/2023]
Abstract
A set of three experiments is described which correlate aromatic resonances of histidine and tryptophan residues with amide resonances in 13C/15N-labelled proteins. Provided that backbone 1H and 15N positions of the sequentially following residues are known, this results in sequence-specific assignment of histidine 1H(delta2)/13C(delta2) and 1H(epsilon1)/13C(epsilon1) as well as tryptophan 1H(delta1)/13C(delta1), 1H(zeta2)/13C(zeta2), 1H(eta2)/13C(eta2), 1H(epsilon3)/13C(epsilon3), 1H(zeta3)/13C(zeta3) and 1H(epsilon1)/15N(epsilon1) chemical shifts. In the reverse situation, these residues can be located in the 1H-(15)N correlation map to facilitate backbone assignments. It may be chosen between selective versions for either of the two amino acid types or simultaneous detection of both with complete discrimination against phenylalanine or tyrosine residues in each case. The linkages between delta-proton/carbon and the remaining aromatic as well as backbone resonances do not rely on through-space interactions, which may be ambiguous, but exclusively employ one-bond scalar couplings for magnetization transfer instead. Knowledge of these aromatic chemical shifts is the prerequisite for the analysis of NOESY spectra, the study of protein-ligand interactions involving histidine and tryptophan residues and the monitoring of imidazole protonation states during pH titrations. The new methods are demonstrated with five different proteins with molecular weights ranging from 11 to 28 kDa.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Frankfurt am Main, Biozentrum N230, 1. OG, Marie Curie-Strasse 9, D-60439, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
28
|
Ulrich DL, Kojetin D, Bassler BL, Cavanagh J, Loria JP. Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing. J Mol Biol 2005; 347:297-307. [PMID: 15740742 DOI: 10.1016/j.jmb.2005.01.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/14/2005] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
The marine bacterium Vibrio harveyi controls its bioluminescence by a process known as quorum sensing. In this process, autoinducer molecules are detected by membrane-bound sensor kinase/response regulator proteins (LuxN and LuxQ) that relay a signal via a series of protein phosphorylation reactions to another response regulator protein, LuxO. Phosphorylated LuxO indirectly represses the expression of the proteins responsible for bioluminescence. Integral to this quorum sensing process is the function of the phosphotransferase protein, LuxU. LuxU acts to shuttle the phosphate from the membrane-bound proteins, LuxN and LuxQ, to LuxO. LuxU is a 114 amino acid residue monomeric protein. Solution NMR was used to determine the three-dimensional structure of LuxU. LuxU contains a four-helix bundle topology with the active-site histidine residue (His58) located on alpha-helix C and exposed to solution. The active site represents a cluster of positively charged residues located on an otherwise hydrophobic protein face. NMR spin-relaxation experiments identify a collection of flexible residues localized on the same region of LuxU as His58. The studies described here represent the first structural characterization of an isolated, monomeric bacterial phosphotransferase protein.
Collapse
Affiliation(s)
- Dagny L Ulrich
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|