1
|
Chen F, Wang Q, Mu Y, Sun S, Yuan X, Shang P, Ji B. Systematic profiling and identification of the peptide-mediated interactions between human Yes-associated protein and its partners in esophageal cancer. J Mol Recognit 2021; 35:e2947. [PMID: 34964176 DOI: 10.1002/jmr.2947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
Human Yes-associated protein (YAP) is involved in the Hippo signaling pathway and serves as a coactivator to modulate gene expression, which contains a transactivation domain (TD) responsible for binding to the downstream TEA domain family (TEAD) of transcription factors and two WW1/2 domains that recognize the proline-rich motifs (PRMs) present in a variety of upstream protein partners through peptide-mediated interactions (PMIs). The downstream YAP TD-TEAD interactions are closely associated with gastric cancer, and a number of therapeutic agents have been developed to target the interactions. In contrast, the upstream YAP WW1/2-partner interactions are thought to be involved in esophageal cancer but still remain largely unexplored. Here, we attempted to elucidate the complicated PMIs between the YAP WW1/2 domains and various PRMs of YAP-interacting proteins. A total of 106 peptide segments carrying the class I WW-binding motif [P/L]Px[Y/P] were extracted from 22 partner candidates, which are potential recognition sites of YAP WW1/2 domains. Structural and energetic analyses of the intermolecular interactions between the domains and peptides created a systematic domain-peptide binding profile, from which a number of biologically functional PMIs were identified and then substantiated in vitro using fluorescence spectroscopy assays. It is revealed that: (a) The sequence requirement for the partner recognition site binding to YAP WW1/2 domains is a decapeptide segment that contains a core PRM motif as well as two three-residue extensions from each side of the motif; the core motif and extended sections are responsible for the binding stability and recognition specificity of domain-peptide interaction, respectively. (b) There is an exquisite difference in the recognition specificity of the two domains; the LPxP and PPxP appear to more prefer WW1 than WW2, whereas the WW2 can bind more effectively to LPxY and PPxY than WW1. (c) WW2 generally exhibits a higher affinity to the panel of recognition site candidates than WW1. In addition, a number of partner peptides were found as promising recognition sites of the two domains and/or to have a good selectivity between the two domains. For example, the DVL1 peptide was determined to have moderate affinity to WW2 and strong selectivity for WW2 over WW1. Hydrogen bonds play a central role in selectivity.
Collapse
Affiliation(s)
- Fei Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Qifei Wang
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yushu Mu
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Shibin Sun
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xulong Yuan
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Pan Shang
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Bo Ji
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
2
|
Ji Z, Li H, Yang Z, Huang X, Ke X, Ma S, Lin Z, Lu Y, Zhang M. Kibra Modulates Learning and Memory via Binding to Dendrin. Cell Rep 2020; 26:2064-2077.e7. [PMID: 30784589 DOI: 10.1016/j.celrep.2019.01.097] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 10/27/2022] Open
Abstract
Kibra is a synaptic scaffold protein regulating learning and memory. Alterations of Kibra-encoding gene WWC1 cause various neuronal disorders, including Alzheimer's disease and Tourette syndrome. However, the molecular mechanism underlying Kibra's function in neurons is poorly understood. Here we discover that Kibra, via its N-terminal WW12 tandem domains, binds to a postsynaptic density enriched protein, Dendrin, with a nanomolar dissociation constant. On the basis of the structure of Kibra WW12 in complex with Dendrin PY motifs, we developed a potent peptide inhibitor capable of specifically blocking the binding between Kibra and Dendrin in neurons. Systematic administration of the inhibitory peptide attenuated excitatory synaptic transmission, completely blocked long-term potentiation induction, and impaired spatial learning and memory. A Kibra mutation found in Tourette syndrome patients causes defects in binding to Dendrin. Thus, Kibra can modulate spatial learning and memory via binding to Dendrin.
Collapse
Affiliation(s)
- Zeyang Ji
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhou Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Ke
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sehui Ma
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijie Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Biophysical studies and modelling indicate the binding preference of TAZ WW domain for LATS1 PPxY motif. Biochem Biophys Res Commun 2018; 502:307-312. [PMID: 29787761 DOI: 10.1016/j.bbrc.2018.05.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/22/2022]
Abstract
The Hippo tumor suppressor pathway is an important regulator of cell proliferation and apoptosis, and signal transduction occurs through phosphorylation of the effector protein TAZ by the serine/threonine kinase LATS1/2. Here, we report the biophysical and computational studies to characterize the interaction between TAZ and LATS1/2 through WW domain-PPxY motif binding. We show that the TAZ WW domain exhibits a binding preference for the second of the two PPxY motifs of LATS1 in vitro. We modelled the structure of the domain in complex with LATS1 PPxY2 peptide and, through molecular dynamics simulations, show that WW domain-PPxY2 complex is stable with some flexibility in the peptide region. Next, we predict and verify that L143 and T150 of the WW domain are important for TAZ binding with the PPxY2 peptide using mutational and isothermal titration calorimetric studies. Furthermore, we suggest that the electrostatic potential of charged residues within the binding pocket may influence the ligand affinity among otherwise highly similar WW domains.
Collapse
|
4
|
Giangreco F, Höfinger S, Bakalis E, Zerbetto F. Impact of the green tea ingredient epigallocatechin gallate and a short pentapeptide (Ile-Ile-Ala-Glu-Lys) on the structural organization of mixed micelles and the related uptake of cholesterol. Biochim Biophys Acta Gen Subj 2018; 1862:1956-1963. [PMID: 29886279 DOI: 10.1016/j.bbagen.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND High levels of blood cholesterol are conventionally linked to an increased risk of developing cardiovascular disease (Grundy, 1986). Here we examine the molecular mode of action of natural products with known cholesterol-lowering activity, such as for example the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys. METHODS Molecular Dynamics simulations are used to gain insight into the formation process of mixed micelles and, correspondingly, how active agents epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys could possibly interfere with it. RESULTS Self-assembly of physiological micelles occurs on the order of 35-50 ns; most of the structural properties of mixed micelles are unaffected by epigallocatechin gallate or Ile-Ile-Ala-Glu-Lys which integrate into the micellar surface; the diffusive motion of constituting lipids palmitoyl-oleoyl-phosphatidylcholine and cholesterol is significantly down-regulated by both epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys; CONCLUSIONS: The molecular mode of action of natural compounds epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys is a significant down-regulation of the diffusive motion of micellar lipids. GENERAL SIGNIFICANCE Natural compounds like the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys, lead to a significant down-regulation of the diffusive motion of micellar lipids thereby modulating cholesterol absorption into physiological micelles.
Collapse
Affiliation(s)
- Francesco Giangreco
- Department of Chemistry "G. Ciamician" University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy; Alfa Analisi srl, via Giovanni XXIII 7, I-73037 Poggiardo, Lecce, Italy.
| | - Siegfried Höfinger
- VSC Research Center, ZID, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna, Austria; Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA.
| | - Evangelos Bakalis
- Department of Chemistry "G. Ciamician" University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy
| | - Francesco Zerbetto
- Department of Chemistry "G. Ciamician" University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy
| |
Collapse
|
5
|
Iglesias-Bexiga M, Castillo F, Cobos ES, Oka T, Sudol M, Luque I. WW domains of the yes-kinase-associated-protein (YAP) transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands. PLoS One 2015; 10:e0113828. [PMID: 25607641 PMCID: PMC4301871 DOI: 10.1371/journal.pone.0113828] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 10/31/2014] [Indexed: 12/28/2022] Open
Abstract
YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling.
Collapse
Affiliation(s)
- Manuel Iglesias-Bexiga
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Francisco Castillo
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Eva S. Cobos
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Tsutomu Oka
- Weis Center for Research, Geisinger Clinic, M.C. 26–08, 100 North Academy Avenue, Danville, PA, 17822–2608, United States of America
| | - Marius Sudol
- Weis Center for Research, Geisinger Clinic, M.C. 26–08, 100 North Academy Avenue, Danville, PA, 17822–2608, United States of America
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
- * E-mail:
| |
Collapse
|
6
|
Holt C, Carver JA, Ecroyd H, Thorn DC. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods. J Dairy Sci 2013; 96:6127-46. [PMID: 23958008 DOI: 10.3168/jds.2013-6831] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/09/2013] [Indexed: 12/27/2022]
Abstract
A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional ingredients in other foods.
Collapse
Affiliation(s)
- C Holt
- Institute of Molecular, Cell and Systems Biology, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
7
|
Stein M, Pilli M, Bernauer S, Habermann BH, Zerial M, Wade RC. The interaction properties of the human Rab GTPase family--comparative analysis reveals determinants of molecular binding selectivity. PLoS One 2012; 7:e34870. [PMID: 22523562 PMCID: PMC3327705 DOI: 10.1371/journal.pone.0034870] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/06/2012] [Indexed: 01/07/2023] Open
Abstract
Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity.
Collapse
Affiliation(s)
- Matthias Stein
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail: (MS); (RW)
| | - Manohar Pilli
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Sabine Bernauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bianca H. Habermann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- * E-mail: (MS); (RW)
| |
Collapse
|
8
|
Luck K, Charbonnier S, Travé G. The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett 2012; 586:2648-61. [PMID: 22709956 DOI: 10.1016/j.febslet.2012.03.056] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/18/2022]
Abstract
The canonical binding mode of PDZ domains to target motifs involves a small interface, unlikely to fully account for PDZ-target interaction specificities. Here, we review recent work on sequence context, defined as the regions surrounding not only the PDZ domains but also their target motifs. We also address the theoretical problem of defining the core of PDZ domains and the practical issue of designing PDZ constructs. Sequence context is found to introduce structural diversity, to impact the stability and solubility of constructs, and to deeply influence binding affinity and specificity, thereby increasing the difficulty of predicting PDZ-motif interactions. We expect that sequence context will have similar importance for other protein interactions mediated by globular domains binding to short linear motifs.
Collapse
Affiliation(s)
- Katja Luck
- UMR 7242, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Bd Sébastien Brant, BP 10413, 67412 Illkirch, Cedex, France.
| | | | | |
Collapse
|
9
|
López de Victoria A, Kieslich CA, Rizos AK, Krambovitis E, Morikis D. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties. BMC BIOPHYSICS 2012; 5:3. [PMID: 22313935 PMCID: PMC3295656 DOI: 10.1186/2046-1682-5-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/07/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. RESULTS Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. CONCLUSIONS We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3 loop with coreceptors CCR5/CXCR4, whereas the charge distribution contributes to the specific short-range interactions responsible for the formation of the bound complex. We also propose a scheme for coreceptor selectivity based on the sequence glycosylation motif, the 11/24/25 rule, and net charge.
Collapse
Affiliation(s)
| | - Chris A Kieslich
- Department of Bioengineering, University of California, Riverside 92521, USA
| | - Apostolos K Rizos
- Department of Chemistry, University of Crete and Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003, Heraklion, Crete, Greece
| | - Elias Krambovitis
- Department of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside 92521, USA
| |
Collapse
|
10
|
Hou T, Li Y, Wang W. Prediction of peptides binding to the PKA RIIalpha subunit using a hierarchical strategy. ACTA ACUST UNITED AC 2011; 27:1814-21. [PMID: 21586518 DOI: 10.1093/bioinformatics/btr294] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Favorable interaction between the regulatory subunit of the cAMP-dependent protein kinase (PKA) and a peptide in A-kinase anchoring proteins (AKAPs) is critical for translocating PKA to the subcellular sites where the enzyme phosphorylates its substrates. It is very hard to identify AKAPs peptides binding to PKA due to the high sequence diversity of AKAPs. RESULTS We propose a hierarchical and efficient approach, which combines molecular dynamics (MD) simulations, free energy calculations, virtual mutagenesis (VM) and bioinformatics analyses, to predict peptides binding to the PKA RIIα regulatory subunit in the human proteome systematically. Our approach successfully retrieved 15 out of 18 documented RIIα-binding peptides. Literature curation supported that many newly predicted peptides might be true AKAPs. Here, we present the first systematic search for AKAP peptides in the human proteome, which is useful to further experimental identification of AKAPs and functional analysis of their biological roles.
Collapse
Affiliation(s)
- Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | | | | |
Collapse
|
11
|
The effect of electrostatics on factor H function and related pathologies. J Mol Graph Model 2011; 29:1047-55. [PMID: 21605993 DOI: 10.1016/j.jmgm.2011.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 12/15/2022]
Abstract
Factor H (FH) contributes to the regulation of the complement system by binding to polyanionic surfaces and the proteins C3b/C3c/C3d. This implicates charge and electrostatic interactions in recognition and binding of FH. Despite the large amount of experimental and pathology data the exact mechanism at molecular level is not yet known. We have implemented a computational framework for comparative analysis of the charge and electrostatic diversity of FH modules and C3b domains to identify electrostatic hotspots and predict potential binding sites. Our electrostatic potential clustering analysis shows that charge distributions and electrostatic potential distributions are more useful in understanding C3b-FH interactions than net charges alone. We present a model of non-specific electrostatic interactions of FH with polyanion-rich surfaces and specific interactions with C3b, using our computational data and existing experimental data. We discuss the electrostatic contributions to the formation of the C3b-FH complex and the competition between FH and Factor Bb (Bb) for binding to C3b. We also discuss the significance of mutations of charged amino acids in the pathobiology of FH-mediated disease, such as age-related macular degeneration, atypical hemolytic uremic syndrome, and dense deposit disease. Our data can be used to guide future experimental studies.
Collapse
|
12
|
Shao X, Tan CSH, Voss C, Li SSC, Deng N, Bader GD. A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain-peptide interaction from primary sequence. ACTA ACUST UNITED AC 2010; 27:383-90. [PMID: 21127034 PMCID: PMC3031032 DOI: 10.1093/bioinformatics/btq657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motivation: Predicting protein interactions involving peptide recognition domains is essential for understanding the many important biological processes they mediate. It is important to consider the binding strength of these interactions to help us construct more biologically relevant protein interaction networks that consider cellular context and competition between potential binders. Results: We developed a novel regression framework that considers both positive (quantitative) and negative (qualitative) interaction data available for mouse PDZ domains to quantitatively predict interactions between PDZ domains, a large peptide recognition domain family, and their peptide ligands using primary sequence information. First, we show that it is possible to learn from existing quantitative and negative interaction data to infer the relative binding strength of interactions involving previously unseen PDZ domains and/or peptides given their primary sequence. Performance was measured using cross-validated hold out testing and testing with previously unseen PDZ domain–peptide interactions. Second, we find that incorporating negative data improves quantitative interaction prediction. Third, we show that sequence similarity is an important prediction performance determinant, which suggests that experimentally collecting additional quantitative interaction data for underrepresented PDZ domain subfamilies will improve prediction. Availability and Implementation: The Matlab code for our SemiSVR predictor and all data used here are available at http://baderlab.org/Data/PDZAffinity. Contact:gary.bader@utoronto.ca; dengnaiyang@cau.edu.cn Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiaojian Shao
- Department of Applied Mathematics, College of Science, China Agricultural University, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
13
|
Abia D, Bastolla U, Chacón P, Fábrega C, Gago F, Morreale A, Tramontano A. In memoriam. Proteins 2010; 78:iii-viii. [DOI: 10.1002/prot.22660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC. Comparative binding energy analysis for binding affinity and target selectivity prediction. Proteins 2009; 78:135-53. [DOI: 10.1002/prot.22579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Gil-Redondo R, Klett J, Gago F, Morreale A. gCOMBINE: A graphical user interface to perform structure-based comparative binding energy (COMBINE) analysis on a set of ligand-receptor complexes. Proteins 2009; 78:162-72. [DOI: 10.1002/prot.22543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Wunderlich Z, Mirny LA. Using genome-wide measurements for computational prediction of SH2-peptide interactions. Nucleic Acids Res 2009; 37:4629-41. [PMID: 19502496 PMCID: PMC2724268 DOI: 10.1093/nar/gkp394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peptide-recognition modules (PRMs) are used throughout biology to mediate protein–protein interactions, and many PRMs are members of large protein domain families. Recent genome-wide measurements describe networks of peptide–PRM interactions. In these networks, very similar PRMs recognize distinct sets of peptides, raising the question of how peptide-recognition specificity is achieved using similar protein domains. The analysis of individual protein complex structures often gives answers that are not easily applicable to other members of the same PRM family. Bioinformatics-based approaches, one the other hand, may be difficult to interpret physically. Here we integrate structural information with a large, quantitative data set of SH2 domain–peptide interactions to study the physical origin of domain–peptide specificity. We develop an energy model, inspired by protein folding, based on interactions between the amino-acid positions in the domain and peptide. We use this model to successfully predict which SH2 domains and peptides interact and uncover the positions in each that are important for specificity. The energy model is general enough that it can be applied to other members of the SH2 family or to new peptides, and the cross-validation results suggest that these energy calculations will be useful for predicting binding interactions. It can also be adapted to study other PRM families, predict optimal peptides for a given SH2 domain, or study other biological interactions, e.g. protein–DNA interactions.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Biophysics Program, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
17
|
Scheper J, Oliva B, Villà-Freixa J, Thomson TM. Analysis of electrostatic contributions to the selectivity of interactions between RING-finger domains and ubiquitin-conjugating enzymes. Proteins 2009; 74:92-103. [PMID: 18615712 DOI: 10.1002/prot.22120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The zinc-coordinated protein motifs known as RING-finger domains, present on a class of ubiquitin ligases (E3's), recruit ubiquitin-conjugating enzymes (E2s), tethering them to substrate proteins for covalent modification with ubiquitin. Each RING-finger domain can recruit different E2s, and these interactions are frequently selective, in that certain RING-finger domains associate preferentially with certain E2s. This selectivity acquires particular biological relevance when the recruited E2s exert specialized functions. We have explored the determinants that specify the presence or absence of experimentally detectable interaction between two RING-finger domains, those on RNF11 and RNF103, and two E2s, UBC13, a specialized E2 that catalyzes ubiquitin chain elongation through Lys63 of ubiquitin, and UbcH7, which mediates polyubiquitylation through Lys48. Through the iterative use of computational predictive tools and experimental validations, we have found that these interactions and their selectivity are partly governed by the combinations of electrostatic interactions linking specific residues of the contact interfaces. Our analysis also predicts that the main determinants of selectivity of these interactions reside on the RING-finger domains, rather than on the E2s. The application of some of these rules of interaction selectivity has permitted us to experimentally manipulate the selectivity of interaction of the RING-finger domain-E2 pairs under study.
Collapse
Affiliation(s)
- Johanna Scheper
- Department of Molecular and Cell Biology, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Blakaj DM, Fernandez-Fuentes N, Chen Z, Hegde R, Fiser A, Burk RD, Brenowitz M. Evolutionary and biophysical relationships among the papillomavirus E2 proteins. Front Biosci (Landmark Ed) 2009; 14:900-17. [PMID: 19273107 DOI: 10.2741/3285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection by human papillomavirus (HPV) may result in clinical conditions ranging from benign warts to invasive cancer. The HPV E2 protein represses oncoprotein transcription and is required for viral replication. HPV E2 binds to palindromic DNA sequences of highly conserved four base pair sequences flanking an identical length variable 'spacer'. E2 proteins directly contact the conserved but not the spacer DNA. Variation in naturally occurring spacer sequences results in differential protein affinity that is dependent on their sensitivity to the spacer DNA's unique conformational and/or dynamic properties. This article explores the biophysical character of this core viral protein with the goal of identifying characteristics that associated with risk of virally caused malignancy. The amino acid sequence, 3d structure and electrostatic features of the E2 protein DNA binding domain are highly conserved; specific interactions with DNA binding sites have also been conserved. In contrast, the E2 protein's transactivation domain does not have extensive surfaces of highly conserved residues. Rather, regions of high conservation are localized to small surface patches. Implications to cancer biology are discussed.
Collapse
Affiliation(s)
- Dukagjin M Blakaj
- Department of Biochemistry, Albert Einstein College of Medicine,1300 Morris Park Avenue, Bronx NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.
Collapse
Affiliation(s)
- Lee Sael
- Department of Computer Science, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - David La
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Bin Li
- Department of Computer Science, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Raif Rustamov
- Department of Mathematics, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, College of Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
- Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47907, USA
- The Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
20
|
Henrich S, Richter S, Wade RC. On the use of PIPSA to guide target-selective drug design. ChemMedChem 2008; 3:413-7. [PMID: 18061917 DOI: 10.1002/cmdc.200700154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Henrich
- EML Research GmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany.
| | | | | |
Collapse
|
21
|
Długosz M, Trylska J. Electrostatic similarity of proteins: application of three dimensional spherical harmonic decomposition. J Chem Phys 2008; 129:015103. [PMID: 18624502 PMCID: PMC2599930 DOI: 10.1063/1.2948414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 05/28/2008] [Indexed: 11/14/2022] Open
Abstract
We present a method for describing and comparing global electrostatic properties of biomolecules based on the spherical harmonic decomposition of electrostatic potential data. Unlike other approaches our method does not require any prior three dimensional structural alignment. The electrostatic potential, given as a volumetric data set from a numerical solution of the Poisson or Poisson-Boltzmann equation, is represented with descriptors that are rotation invariant. The method can be applied to large and structurally diverse sets of biomolecules enabling to cluster them according to their electrostatic features.
Collapse
Affiliation(s)
- Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | | |
Collapse
|
22
|
Richter S, Wenzel A, Stein M, Gabdoulline RR, Wade RC. webPIPSA: a web server for the comparison of protein interaction properties. Nucleic Acids Res 2008; 36:W276-80. [PMID: 18420653 PMCID: PMC2447742 DOI: 10.1093/nar/gkn181] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein molecular interaction fields are key determinants of protein functionality. PIPSA (Protein Interaction Property Similarity Analysis) is a procedure to compare and analyze protein molecular interaction fields, such as the electrostatic potential. PIPSA may assist in protein functional assignment, classification of proteins, the comparison of binding properties and the estimation of enzyme kinetic parameters. webPIPSA is a web server that enables the use of PIPSA to compare and analyze protein electrostatic potentials. While PIPSA can be run with downloadable software (see http://projects.eml.org/mcm/software/pipsa), webPIPSA extends and simplifies a PIPSA run. This allows non-expert users to perform PIPSA for their protein datasets. With input protein coordinates, the superposition of protein structures, as well as the computation and analysis of electrostatic potentials, is automated. The results are provided as electrostatic similarity matrices from an all-pairwise comparison of the proteins which can be subjected to clustering and visualized as epograms (tree-like diagrams showing electrostatic potential differences) or heat maps. webPIPSA is freely available at: http://pipsa.eml.org.
Collapse
Affiliation(s)
- Stefan Richter
- Molecular and Cellular Modeling Group, EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Hou T, Zhang W, Case DA, Wang W. Characterization of Domain–Peptide Interaction Interface: A Case Study on the Amphiphysin-1 SH3 Domain. J Mol Biol 2008; 376:1201-14. [DOI: 10.1016/j.jmb.2007.12.054] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/14/2007] [Accepted: 12/20/2007] [Indexed: 11/25/2022]
|
24
|
Gabdoulline RR, Stein M, Wade RC. qPIPSA: relating enzymatic kinetic parameters and interaction fields. BMC Bioinformatics 2007; 8:373. [PMID: 17919319 PMCID: PMC2174957 DOI: 10.1186/1471-2105-8-373] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 10/05/2007] [Indexed: 11/29/2022] Open
Abstract
Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism.
Collapse
Affiliation(s)
- Razif R Gabdoulline
- Molecular and Cellular Modeling Group, EML Research gGmbH, Schloss Wolfsbrunnenweg 33, Heidelberg, 69118, Germany.
| | | | | |
Collapse
|
25
|
Ang BK, Lim CY, Koh SS, Sivakumar N, Taib S, Lim KB, Ahmed S, Rajagopal G, Ong SH. ArhGAP9, a novel MAP kinase docking protein, inhibits Erk and p38 activation through WW domain binding. J Mol Signal 2007; 2:1. [PMID: 17284314 PMCID: PMC1805438 DOI: 10.1186/1750-2187-2-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/06/2007] [Indexed: 01/13/2023] Open
Abstract
We have identified human ArhGAP9 as a novel MAP kinase docking protein that interacts with Erk2 and p38alpha through complementarily charged residues in the WW domain of ArhGAP9 and the CD domains of Erk2 and p38alpha. This interaction sequesters the MAP kinases in their inactive states through displacement of MAP kinase kinases targeting the same sites. While over-expression of wild type ArhGAP9 caused MAP kinase activation by the epidermal growth factor receptor (EGFR) to be suppressed and preserved the actin stress fibres in quiescent Swiss 3T3 fibroblasts, over-expression of an ArhGAP9 mutant defective in MAP kinase binding restored EGFR-induced MAP kinase activation and resulted in significant disruption of the stress fibres, consistent with the role of Erk activation in disassembly of actin stress fibres. The interaction between ArhGAP9 and the MAP kinases represents a novel mechanism of cross-talk between Rho GTPase and MAP kinase signaling.
Collapse
Affiliation(s)
- Boon K Ang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
- Bioinformatics Institute, 30 Biopolis Street, Matrix, 138671, Singapore
| | - Chun Y Lim
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Sharon S Koh
- Department of Microbiology, Yong Loo Lin School of Medicine, 10 Medical Drive, National University of Singapore, 117597, Singapore
| | - Neelamegam Sivakumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Shahrizan Taib
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Kim B Lim
- Centre for Molecular Medicine, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Sohail Ahmed
- Centre for Molecular Medicine, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Guna Rajagopal
- Bioinformatics Institute, 30 Biopolis Street, Matrix, 138671, Singapore
| | - Siew H Ong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, 10 Medical Drive, National University of Singapore, 117597, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, 10 Medical Drive, National University of Singapore, 117597, Singapore
| |
Collapse
|
26
|
González-Díaz H, Agüero-Chapin G, Varona J, Molina R, Delogu G, Santana L, Uriarte E, Podda G. 2D-RNA-coupling numbers: A new computational chemistry approach to link secondary structure topology with biological function. J Comput Chem 2007; 28:1049-56. [PMID: 17279496 DOI: 10.1002/jcc.20576] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methods for prediction of proteins, DNA, or RNA function and mapping it onto sequence often rely on bioinformatics alignment approach instead of chemical structure. Consequently, it is interesting to develop computational chemistry approaches based on molecular descriptors. In this sense, many researchers used sequence-coupling numbers and our group extended them to 2D proteins representations. However, no coupling numbers have been reported for 2D-RNA topology graphs, which are highly branched and contain useful information. Here, we use a computational chemistry scheme: (a) transforming sequences into RNA secondary structures, (b) defining and calculating new 2D-RNA-coupling numbers, (c) seek a structure-function model, and (d) map biological function onto the folded RNA. We studied as example 1-aminocyclopropane-1-carboxylic acid (ACC) oxidases known as ACO, which control fruit ripening having importance for biotechnology industry. First, we calculated tau(k)(2D-RNA) values to a set of 90-folded RNAs, including 28 transcripts of ACO and control sequences. Afterwards, we compared the classification performance of 10 different classifiers implemented in the software WEKA. In particular, the logistic equation ACO = 23.8 . tau(1)(2D-RNA) + 41.4 predicts ACOs with 98.9%, 98.0%, and 97.8% of accuracy in training, leave-one-out and 10-fold cross-validation, respectively. Afterwards, with this equation we predict ACO function to a sequence isolated in this work from Coffea arabica (GenBank accession DQ218452). The tau(1)(2D-RNA) also favorably compare with other descriptors. This equation allows us to map the codification of ACO activity on different mRNA topology features. The present computational-chemistry approach is general and could be extended to connect RNA secondary structure topology to other functions.
Collapse
Affiliation(s)
- Humberto González-Díaz
- Department of Organic Chemistry, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chong PA, Lin H, Wrana JL, Forman-Kay JD. An Expanded WW Domain Recognition Motif Revealed by the Interaction between Smad7 and the E3 Ubiquitin Ligase Smurf2. J Biol Chem 2006; 281:17069-17075. [PMID: 16641086 DOI: 10.1074/jbc.m601493200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smurf2 is an E3 ubiquitin ligase that drives degradation of the transforming growth factor-beta receptors and other targets. Recognition of the receptors by Smurf2 is accomplished through an intermediary protein, Smad7. Here we have demonstrated that the WW3 domain of Smurf2 can directly bind to the Smad7 polyproline-tyrosine (PY) motif. Of particular interest, the highly conserved WW domain binding site Trp, which interacts with target PY motifs, is a Phe in the Smurf2 WW3 domain. To examine this interaction, the solution structure of the complex between the Smad7 PY motif region (ELESPPPPYSRYPMD) and the Smurf2 WW3 domain was determined. The structure reveals that, in addition to binding the PY motif, the WW3 domain binds six residues C-terminal to the PY motif (PY-tail). Although the Phe in the WW3 domain binding site decreases affinity relative to the canonical Trp, this is balanced by additional interactions between the PY-tail and the beta1-strand and beta1-beta2 loop of the WW3 domain. The interaction between the Smurf2 WW3 domain and the Smad7 PY motif is the first example of PY motif recognition by a WW domain with a Phe substituted for the binding site Trp. This unusual interaction allows the Smurf2 WW3 domain to recognize a subset of PY motif-containing proteins utilizing an expanded surface to provide specificity.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, Toronto M5G 1X8; Department of Medical Genetics and Microbiology, University of Toronto, Toronto M5S 1A8
| | - Hong Lin
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, Toronto M5G 1X8
| | - Jeffrey L Wrana
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto M5S 1A8; Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5
| | - Julie D Forman-Kay
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, Toronto M5G 1X8; Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
28
|
Fanghänel J, Akiyama H, Uchida C, Uchida T. Comparative analysis of enzyme activities and mRNA levels of peptidyl prolylcis/transisomerases in various organs of wild type andPin1−/−mice. FEBS Lett 2006; 580:3237-45. [PMID: 16697379 DOI: 10.1016/j.febslet.2006.04.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 03/17/2006] [Accepted: 04/26/2006] [Indexed: 11/18/2022]
Abstract
We investigated the enzyme activity of peptidyl prolyl cis/trans isomerases (PPIases) in brain, testis, lung, liver, and mouse embryonic fibroblasts (MEF) of Pin1+/+ and Pin1-/- mice. The aim of this study is to determine if other PPIases can substitute for the loss of Pin1 activity in Pin1-/- mice and what influence Pin1 depletion has on the activities of other PPIases members. The results show that high PPIase activities of Pin1 are found in organs that have the tendency to develop Pin1 knockout phenotypes and, therefore, provide for the first time an enzymological basis for these observations. Furthermore we determined the specific activity (k(cat)/K(M)) of endogenous Pin1 and found that it is strongly reduced as compared with the recombinant protein in all investigated organs. These results suggest that posttranslational modifications may influence the PPIase activity in vivo. The activities originating from cyclophilin and FKBP are not influenced by the Pin1 knockout, but a basal enzymatic activity towards phosphorylated substrates could be found in Pin1-/- lysates. Real time PCR experiments of all PPIases in different mouse organs and MEF of Pin1+/+ and Pin1-/- mice support the finding and reveal the specific expression profiles of PPIases in mice.
Collapse
Affiliation(s)
- Jörg Fanghänel
- Center for Interdisciplinary Research, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | | | | | | |
Collapse
|
29
|
Zhang L, Morikis D. Immunophysical properties and prediction of activities for vaccinia virus complement control protein and smallpox inhibitor of complement enzymes using molecular dynamics and electrostatics. Biophys J 2006; 90:3106-19. [PMID: 16473914 PMCID: PMC1432100 DOI: 10.1529/biophysj.105.068130] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 01/18/2006] [Indexed: 11/18/2022] Open
Abstract
We present immunophysical modeling for VCP, SPICE, and three mutants using MD simulations and Poisson-Boltzmann-type electrostatic calculations. VCP and SPICE are homologous viral proteins that control the complement system by imitating, structurally and functionally, natural regulators of complement activation. VCP and SPICE consist of four CCP modules connected with short flexible loops. MD simulations demonstrate that the rather complex modules of VCP/SPICE and their mutants exhibit a high degree of intermodular spatial mobility, which is affected by surface mutations. Electrostatic calculations using snapshots from the MD trajectories demonstrate variable spatial distribution of the electrostatic potentials, which suggests dynamic binding properties. We use covariance analysis to identify correlated modular oscillations. We also use electrostatic similarity indices to cluster proteins with common electrostatic properties. Our results are compared with experimental data to form correlations between the overall positive electrostatic potential of VCP/SPICE with binding and activity. We show how these correlations can be used to predict binding and activity properties. This work is expected to be useful for understanding the function of native CCP-containing regulators of complement activation and receptors and for the design of antiviral therapeutics and complement inhibitors.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
30
|
Mu Y, Nordenskiöld L, Tam JP. Folding, misfolding, and amyloid protofibril formation of WW domain FBP28. Biophys J 2006; 90:3983-92. [PMID: 16533840 PMCID: PMC1459504 DOI: 10.1529/biophysj.105.076406] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We study the folding mechanism of a triple beta-strand WW domain from the Formin binding protein 28 (FBP28) at atomic resolution with explicit water model using replica exchange molecular dynamics computer simulations. Extended sampling over a wide range of temperatures to obtain the free energy, enthalpy, and entropy surfaces as a function of structural coordinates has been performed. Simulations were started from different configurations covering the folded and unfolded states. In the free energy landscape a transition state is identified and its structures and -values are compared with experimental data from a homologous protein, the prolyl-isomerase Pin1 WW domain. A stable intermediate state is found to accumulate during the simulation characterized by the carboxyl-terminal beta-strand 3 having misregistered hydrogen bonds and where the structural heterogeneity is due to nonnative turn II formation. Furthermore, the aggregation behavior of the FBP28 WW domain may be related to one such misfolded structure, which has a much lower free energy of dimer formation than that of the native dimer. Based on the misfolded dimer, aggregation to form protofibril structure is discussed.
Collapse
Affiliation(s)
- Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore.
| | | | | |
Collapse
|
31
|
Li SSC. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 2006; 390:641-53. [PMID: 16134966 PMCID: PMC1199657 DOI: 10.1042/bj20050411] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions occurring via the recognition of short peptide sequences by modular interaction domains play a central role in the assembly of signalling protein complexes and larger protein networks that regulate cellular behaviour. In addition to spatial and temporal factors, the specificity of signal transduction is intimately associated with the specificity of many co-operative, pairwise binding events upon which various pathways are built. Although protein interaction domains are usually identified via the recognition code, the consensus sequence motif, to which they selectively bind, they are highly versatile and play diverse roles in the cell. For example, a given interaction domain can bind to multiple sequences that exhibit no apparent identity, and, on the other hand, domains of the same class or different classes may favour a given consensus motif. This promiscuity in ligand selection is typified by the SH3 (Src homology 3) domain and several other interaction modules that commonly recognize proline-rich sequences. Furthermore, interaction domains are highly adaptable, a property that is essential for the evolution of novel pathways and modulation of signalling dynamics. The ability of certain interaction domains to perform multiple tasks, however, poses a challenge for the cell to control signalling specificity when cross-talk between pathways is undesired. Extensive structural and biochemical analysis of many interaction domains in recent years has started to shed light on the molecular basis underlying specific compared with diverse binding events that are mediated by interaction domains and the role affinity plays in affecting domain specificity and regulating cellular signal transduction.
Collapse
Affiliation(s)
- Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
32
|
Caro F, Bercovich N, Atorrasagasti C, Levin MJ, Vázquez MP. Protein interactions within the TcZFP zinc finger family members of Trypanosoma cruzi: implications for their functions. Biochem Biophys Res Commun 2005; 333:1017-25. [PMID: 15964555 DOI: 10.1016/j.bbrc.2005.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/03/2005] [Indexed: 11/15/2022]
Abstract
The small zinc finger proteins tbZFP1 and tbZFP2 have been implicated in the control of Trypanosoma brucei differentiation to the procyclic form. Here, we report that the complete ZFP family in Trypanosoma cruzi is composed by four members, ZFP1A and B, and ZFP2A and B. ZFP1B is a paralog specific gene restricted to T. cruzi, while the ZFP2A and B paralogs diverged prior to the trypanosomatid lineage separation. Moreover, we demonstrate that TcZFP1 and TcZFP2 members interact with each other and that this interaction is mediated by a WW domain in TcZFP2. Also, TcZFP2B strongly homodimerizes by a glycine rich region absent in TcZFP2A. We propose a model to discuss the relevance of these protein-protein interactions in terms of the functions of these proteins.
Collapse
Affiliation(s)
- Florence Caro
- Laboratorio de Biología Molecular de la Enfermedad de Chagas-INGEBI-CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
33
|
Wade RC, Henrich S, Wang T. Using 3D protein structures to derive 3D-QSARs. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:241-246. [PMID: 24981491 DOI: 10.1016/j.ddtec.2004.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The three-dimensional structures of proteins are being solved apace, yet this information is often underused in quantitative structure-activity relationship (QSAR) studies. Here, we describe and compare methods for exploiting protein structures to derive 3D-QSARs. These methods can facilitate molecular design and lead optimization and should increasingly become a standard component of the drug designer's repertoire.:
Collapse
Affiliation(s)
- Rebecca C Wade
- Molecular and Cellular Modeling Group, EML Research, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany.
| | - Stefan Henrich
- Molecular and Cellular Modeling Group, EML Research, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
| | - Ting Wang
- Molecular and Cellular Modeling Group, EML Research, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
| |
Collapse
|