1
|
Pederson K, Meints GA, Drobny GP. Base Dynamics in the HhaI Protein Binding Site. J Phys Chem B 2023; 127:7266-7275. [PMID: 37561575 PMCID: PMC10461302 DOI: 10.1021/acs.jpcb.3c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Protein-DNA interactions play an important role in numerous biological functions within the living cell. In many of these interactions, the DNA helix is significantly distorted upon protein-DNA complex formation. The HhaI restriction-modification system is one such system, where the methylation target is flipped out of the helix when bound to the methyltransferase. However, the base flipping mechanism is not well understood. The dynamics of the binding site of the HhaI methyltransferase and endonuclease (underlined) within the DNA oligomer [d(G1A2T3A4G5C6G7C8T9A10T11C12)]2 are studied using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs deuterated on the base of nucleotides within and flanking the [5'-GCGC-3']2 sequence indicate that all of these positions are structurally flexible. Previously, conformational flexibility within the phosphodiester backbone and furanose ring within the target sequence has been observed and hypothesized to play a role in the distortion mechanism. However, whether that distortion was occurring through an active or passive mechanism remained unclear. These NMR data demonstrate that although the [5'-GCGC-3']2 sequence is dynamic, the target cytosine is not passively flipping out of the double-helix on the millisecond-picosecond time scale. Additionally, although previous studies have shown that both the furanose ring and phosphodiester backbone experience a change in dynamics upon methylation, which may play a role in recognition and cleavage by the endonuclease, our observations here indicate that methylation has no effect on the dynamics of the base itself.
Collapse
Affiliation(s)
- Kari Pederson
- Department
of Chemistry & Biochemistry, California
State University at Dominguez Hills, Carson, California 90747, United States
| | - Gary A. Meints
- Department
of Chemistry, Missouri State University, Springfield, Missouri 65897, United States
| | - Gary P. Drobny
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United
States
| |
Collapse
|
2
|
Da LT, Yu J. Base-flipping dynamics from an intrahelical to an extrahelical state exerted by thymine DNA glycosylase during DNA repair process. Nucleic Acids Res 2019; 46:5410-5425. [PMID: 29762710 PMCID: PMC6009601 DOI: 10.1093/nar/gky386] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Thymine DNA glycosylase (TDG) is a DNA repair enzyme that excises a variety of mismatched or damaged nucleotides (nts), e.g. dU, dT, 5fC and 5caC. TDG is shown to play essential roles in maintaining genome integrity and correctly programming epigenetic modifications through DNA demethylation. After locating the lesions, TDG employs a base-flipping strategy to recognize the damaged nucleobases, whereby the interrogated nt is extruded from the DNA helical stack and binds into the TDG active site. The dynamic mechanism of the base-flipping process at an atomistic resolution, however, remains elusive. Here, we employ the Markov State Model (MSM) constructed from extensive all-atom molecular dynamics (MD) simulations to reveal the complete base-flipping process for a G.T mispair at a tens of microsecond timescale. Our studies identify critical intermediates of the mispaired dT during its extrusion process and reveal the key TDG residues involved in the inter-state transitions. Notably, we find an active role of TDG in promoting the intrahelical nt eversion, sculpturing the DNA backbone, and penetrating into the DNA minor groove. Three additional TDG substrates, namely dU, 5fC, and 5caC, are further tested to evaluate the substituent effects of various chemical modifications of the pyrimidine ring on base-flipping dynamics.
Collapse
Affiliation(s)
- Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
3
|
Aranda J, Zinovjev K, Świderek K, Roca M, Tuñón I. Unraveling the Reaction Mechanism of Enzymatic C5-Cytosine Methylation of DNA. A Combined Molecular Dynamics and QM/MM Study of Wild Type and Gln119 Variant. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan Aranda
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
| | - Kirill Zinovjev
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
| | - Katarzyna Świderek
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Maite Roca
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Yang C, Kim E, Pak Y. Free energy landscape and transition pathways from Watson-Crick to Hoogsteen base pairing in free duplex DNA. Nucleic Acids Res 2015; 43:7769-78. [PMID: 26250116 PMCID: PMC4652778 DOI: 10.1093/nar/gkv796] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/27/2015] [Indexed: 11/20/2022] Open
Abstract
Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson–Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine–thymine (A–T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events.
Collapse
Affiliation(s)
- Changwon Yang
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
5
|
Base flip in DNA studied by molecular dynamics simulationsof differently-oxidized forms of methyl-Cytosine. Int J Mol Sci 2014; 15:11799-816. [PMID: 24995694 PMCID: PMC4139815 DOI: 10.3390/ijms150711799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023] Open
Abstract
Distortions in the DNA sequence, such as damage or mispairs, are specifically recognized and processed by DNA repair enzymes. Many repair proteins and, in particular, glycosylases flip the target base out of the DNA helix into the enzyme’s active site. Our molecular dynamics simulations of DNA with intact and damaged (oxidized) methyl-cytosine show that the probability of being flipped is similar for damaged and intact methyl-cytosine. However, the accessibility of the different 5-methyl groups allows direct discrimination of the oxidized forms. Hydrogen-bonded patterns that vary between methyl-cytosine forms carrying a carbonyl oxygen atom are likely to be detected by the repair enzymes and may thus help target site recognition.
Collapse
|
6
|
Matje DM, Krivacic CT, Dahlquist FW, Reich NO. Distal structural elements coordinate a conserved base flipping network. Biochemistry 2013; 52:1669-76. [PMID: 23409802 DOI: 10.1021/bi301284f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the most dramatic illustrations of enzymatic promotion of a high-energy intermediate is observed in DNA modification and repair enzymes where an individual base is rotated (flipped) 180° around the deoxyribose-phosphate backbone and into the active site. While the end states have been extensively characterized, experimental techniques have yet to yield a full description of the base flipping process and the role played by the enzyme. The C5 cytosine methyltransferase M.HhaI coordinates an ensemble of reciprocal DNA and enzyme rearrangements to efficiently flip the target cytosine from the DNA helix. We sought to understand the role of individual amino acids during base flipping. Our results demonstrate that M.HhaI initiates base flipping before closure of the catalytic loop and utilizes the conserved serine 85 in the catalytic loop to accelerate flipping and maintain distortion of the DNA backbone. Serine 87, which forms specific contacts within the DNA helix after base flipping, is not involved in the flipping process or in maintaining the catalytically competent complex. At the base of the catalytic loop, glycine 98 acts as a hinge to allow conformational dynamism of the loop and mutation to alanine inhibits stabilization of the closed loop. Our results illustrate how an enzyme utilizes numerous, distal residues in concert to transform substrate recognition into catalysis.
Collapse
Affiliation(s)
- Douglas M Matje
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106-9510, United States
| | | | | | | |
Collapse
|
7
|
Xu B, Schones DE, Wang Y, Liang H, Li G. A structural-based strategy for recognition of transcription factor binding sites. PLoS One 2013; 8:e52460. [PMID: 23320072 PMCID: PMC3540023 DOI: 10.1371/journal.pone.0052460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/19/2012] [Indexed: 12/30/2022] Open
Abstract
Scanning through genomes for potential transcription factor binding sites (TFBSs) is becoming increasingly important in this post-genomic era. The position weight matrix (PWM) is the standard representation of TFBSs utilized when scanning through sequences for potential binding sites. However, many transcription factor (TF) motifs are short and highly degenerate, and methods utilizing PWMs to scan for sites are plagued by false positives. Furthermore, many important TFs do not have well-characterized PWMs, making identification of potential binding sites even more difficult. One approach to the identification of sites for these TFs has been to use the 3D structure of the TF to predict the DNA structure around the TF and then to generate a PWM from the predicted 3D complex structure. However, this approach is dependent on the similarity of the predicted structure to the native structure. We introduce here a novel approach to identify TFBSs utilizing structure information that can be applied to TFs without characterized PWMs, as long as a 3D complex structure (TF/DNA) exists. This approach utilizes an energy function that is uniquely trained on each structure. Our approach leads to increased prediction accuracy and robustness compared with those using a more general energy function. The software is freely available upon request.
Collapse
Affiliation(s)
- Beisi Xu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, Liaoning, China
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Dustin E. Schones
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Yongmei Wang
- Department of Chemistry, University of Memphis, Memphis, Tennessee, United States of America
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
8
|
Abstract
It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNA's flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global thermodynamic and kinetic picture of the binding landscape of DNA will become available in a few years. MD will become a crucial tool in areas such as biomolecular engineering and synthetic biology. MD has also been shown to be an excellent source of parameters for mesoscopic models of DNA flexibility. Such models can be refined through atomistic MD simulations on small duplexes and then applied to the study of entire chromosomes. Recent evidence suggests that MD-derived elastic models can successfully predict the position of regulatory regions in DNA and can help advance our understanding of nucleosome positioning and chromatin plasticity. If these results are confirmed, MD simulations can become the ultimate tool to decipher a physical code that can contribute to gene regulation. We are entering the golden age of MD simulations of DNA. Undoubtedly, the expectations are high, but the challenges are also enormous. These include the need for more accurate potential energy functionals and for longer and more complex simulations in more realistic systems. The joint research effort of several groups will be crucial for adapting the technique to the requirements of the coming decade.
Collapse
Affiliation(s)
- Alberto Pérez
- Joint IRB-BSC Program in Computational Biology, Institute of Research in Biomedicine Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
| | - F. Javier Luque
- Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal 643, Barcelona 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Program in Computational Biology, Institute of Research in Biomedicine Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain, and Instituto Nacional de Bioinformàtica, Parc Científic de Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
| |
Collapse
|
9
|
Matje DM, Coughlin DF, Connolly BA, Dahlquist FW, Reich NO. Determinants of precatalytic conformational transitions in the DNA cytosine methyltransferase M.HhaI. Biochemistry 2011; 50:1465-73. [PMID: 21229971 DOI: 10.1021/bi101446g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA methyltransferase M.HhaI is an excellent model for understanding how recognition of a nucleic acid substrate is translated into site-specific modification. In this study, we utilize direct, real-time monitoring of the catalytic loop position via engineered tryptophan fluorescence reporters to dissect the conformational transitions that occur in both enzyme and DNA substrate prior to methylation of the target cytosine. Using nucleobase analogues in place of the target and orphan bases, the kinetics of the base flipping and catalytic loop closure rates were determined, revealing that base flipping precedes loop closure as the rate-determining step prior to methyl transfer. To determine the mechanism by which individual specific hydrogen bond contacts at the enzyme-DNA interface mediate these conformational transitions, nucleobase analogues lacking hydrogen bonding groups were incorporated into the recognition sequence to disrupt the major groove recognition elements. The consequences of binding, loop closure, and catalysis were determined for four contacts, revealing large differences in the contribution of individual hydrogen bonds to DNA recognition and conformational transitions on the path to catalysis. Our results describe how M.HhaI utilizes direct readout contacts to accelerate extrication of the target base that offer new insights into the evolutionary history of this important class of enzymes.
Collapse
Affiliation(s)
- Douglas M Matje
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | | | | | | | | |
Collapse
|
10
|
Vasumathi V, Daniel M. Base-pair opening and bubble transport in a DNA double helix induced by a protein molecule in a viscous medium. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:061904. [PMID: 20365187 DOI: 10.1103/physreve.80.061904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/03/2009] [Indexed: 05/29/2023]
Abstract
The protein-DNA interaction dynamics is studied by modeling the DNA bases as classical spins in a coupled spin system, which are bosonized and coupled to thermal phonons and longitudinal motion of the protein molecule in the nonviscous limit. The nonlinear dynamics of this protein-DNA complex molecular system is governed by the completely integrable nonlinear Schrödinger (NLS) equation which admits N -soliton solutions. The soliton excitations of the DNA bases in the two strands make localized base-pair opening and travel along the DNA chain in the form of a bubble. This may characterize the bubble generated during the transcription process, when an RNA polymerase binds to a promoter site in the DNA double helical chain. When the protein-DNA molecular system interacts with the surrounding viscous solvating water medium, the dynamics is governed by a perturbed NLS equation. This equation is solved using a multiple scale perturbation analysis, by treating the viscous effect as a weak perturbation, and the results show that the viscosity of the solvent medium damps out the soliton as time progresses.
Collapse
Affiliation(s)
- V Vasumathi
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India.
| | | |
Collapse
|
11
|
Song K, Campbell AJ, Bergonzo C, de Los Santos C, Grollman AP, Simmerling C. An Improved Reaction Coordinate for Nucleic Acid Base Flipping Studies. J Chem Theory Comput 2009; 5:3105-13. [PMID: 26609990 DOI: 10.1021/ct9001575] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Base flipping is a common strategy utilized by many enzymes to gain access to the functional groups of nucleic acid bases in duplex DNA which are otherwise protected by the DNA backbone and hydrogen bonding with their partner bases. Several X-ray crystallography studies have revealed flipped conformations of nucleotides bound to enzymes. However, little is known about the base-flipping process itself, even less about the role of the enzymes. Computational studies have used umbrella sampling to elicit the free energy profile of the base-flipping process using a pseudodihedral angle to represent the reaction coordinate. In this study, we have used an unrestrained trajectory in which a flipped base spontaneously reinserted into the helix in order to evaluate and improve the previously defined pseudodihedral angle. Our modified pseudodihedral angles use a new atom selection to improve the numerical stability of the restraints and also provide better correlation to the extent of flipping observed in simulations. Furthermore, on the basis of the comparison of potential of mean force (PMF) generated using different reaction coordinates, we observed that the shape of a flipping PMF profile is strongly dependent on the definition of the reaction coordinate, even for the same data set.
Collapse
Affiliation(s)
- Kun Song
- Department of Chemistry, Department of Pharmacological Sciences, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400
| | - Arthur J Campbell
- Department of Chemistry, Department of Pharmacological Sciences, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400
| | - Christina Bergonzo
- Department of Chemistry, Department of Pharmacological Sciences, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400
| | - Carlos de Los Santos
- Department of Chemistry, Department of Pharmacological Sciences, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400
| | - Arthur P Grollman
- Department of Chemistry, Department of Pharmacological Sciences, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400
| | - Carlos Simmerling
- Department of Chemistry, Department of Pharmacological Sciences, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400
| |
Collapse
|
12
|
Xu B, Yang Y, Liang H, Zhou Y. An all-atom knowledge-based energy function for protein-DNA threading, docking decoy discrimination, and prediction of transcription-factor binding profiles. Proteins 2009; 76:718-30. [PMID: 19274740 PMCID: PMC2743280 DOI: 10.1002/prot.22384] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
How to make an accurate representation of protein-DNA interaction by an energy function is a long-standing unsolved problem in structural biology. Here, we modified a statistical potential based on the distance-scaled, finite ideal-gas reference state so that it is optimized for protein-DNA interactions. The changes include a volume-fraction correction to account for unmixable atom types in proteins and DNA in addition to the usage of a low-count correction, residue/base-specific atom types, and a shorter cutoff distance for protein-DNA interactions. The new statistical energy functions are tested in threading and docking decoy discriminations and prediction of protein-DNA binding affinities and transcription-factor binding profiles. The results indicate that new proposed energy functions are among the best in existing energy functions for protein-DNA interactions. The new energy functions are available as a web-server called DDNA 2.0 at http://sparks.informatics.iupui.edu. The server version was trained by the entire 212 protein-DNA complexes.
Collapse
Affiliation(s)
- Beisi Xu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | |
Collapse
|
13
|
Pederson K, Meints GA, Shajani Z, Miller PA, Drobny GP. Backbone dynamics in the DNA HhaI protein binding site. J Am Chem Soc 2008; 130:9072-9. [PMID: 18570423 PMCID: PMC2710389 DOI: 10.1021/ja801243d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dynamics of the phosphodiester backbone in the [5'-GCGC-3'] 2 moiety of the DNA oligomer [d(G 1A 2T 3A 4 G 5 C 6 G 7 C 8T 9A 10T 11C 12)] 2 are studied using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs nonstereospecifically deuterated on the 5' methylene group of nucleotides within the [5'-GCGC-3'] 2 moiety indicated that all of these positions are structurally flexible. Previous work has shown that methylation reduces the amplitude of motion in the phosphodiester backbone and furanose ring of the same DNA, and our observations indicate that methylation perturbs backbone dynamics through not only a loss of mobility but also a change of direction of motion. These NMR data indicate that the [5'-GCGC-3'] 2 moiety is dynamic, with the largest amplitude motions occurring nearest the methylation site. The change of orientation of this moiety in DNA upon methylation may make the molecule less amenable to binding to the HhaI endonuclease.
Collapse
Affiliation(s)
- Kari Pederson
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | |
Collapse
|
14
|
MacKerell AD, Nilsson L. Molecular dynamics simulations of nucleic acid-protein complexes. Curr Opin Struct Biol 2008; 18:194-9. [PMID: 18281210 PMCID: PMC2871683 DOI: 10.1016/j.sbi.2007.12.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/17/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Molecular dynamics simulation studies of protein-nucleic acid complexes are more complicated than studies of either component alone-the force field has to be properly balanced, the systems tend to become very large, and a careful treatment of solvent and of electrostatic interactions is necessary. Recent investigations into several protein-DNA and protein-RNA systems have shown the feasibility of the simulation approach, yielding results of biological interest not readily accessible to experimental methods.
Collapse
Affiliation(s)
- Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore MD 21201, USA
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 HUDDINGE, Sweden
| |
Collapse
|
15
|
Youngblood B, Buller F, Reich NO. Determinants of sequence-specific DNA methylation: target recognition and catalysis are coupled in M.HhaI. Biochemistry 2008; 45:15563-72. [PMID: 17176077 DOI: 10.1021/bi061414t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sequence specificity studies of the wild-type bacterial DNA cytosine C5 methyltransferase HhaI were carried out with cognate (5'GCGC3') and noncognate DNA substrates containing single base pair changes at the first and the fourth position (underlined). Specificity for noncognate site methylation at the level of kcat/KDDNA is decreased 9000-80000-fold relative to the cognate site, manifested through changes in methylation, or a prior step, and changes in KDDNA. Analysis of a new high-resolution enzyme-DNA cocrystal structure provides a partial mechanistic understanding of this discrimination. To probe the significance of conformational transitions occurring prior to catalysis in determining specificity, we analyzed the double mutant (H127A/T132A). These amino acid substitutions disrupt the interface between the flexible loop (residues 80-99), which interacts with the DNA minor groove, and the active site. The mutant's methylation of the cognate site is essentially unchanged, yet its methylation of noncognate sites is decreased up to 460-fold relative to the wild-type enzyme. We suggest that a significant contribution to M.HhaI's specificity involves the stabilization of reaction intermediates prior to methyl transfer, mediated by DNA minor groove-protein flexible loop interactions.
Collapse
Affiliation(s)
- Ben Youngblood
- Department of Chemistry and Biochemistry and Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510
| | | | | |
Collapse
|
16
|
Youngblood B, Shieh FK, Buller F, Bullock T, Reich NO. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation. Biochemistry 2007; 46:8766-75. [PMID: 17616174 DOI: 10.1021/bi7005948] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S-adenosyl-L-methionine- (AdoMet-) dependent methyltransferases are widespread, play critical roles in diverse biological pathways, and are antibiotic and cancer drug targets. Presently missing from our understanding of any AdoMet-dependent methyl-transfer reaction is a high-resolution structure of a precatalytic enzyme/AdoMet/DNA complex. The catalytic mechanism of DNA cytosine methylation was studied by structurally and functionally characterizing several active site mutants of the bacterial enzyme M.HhaI. The 2.64 A resolution protein/DNA/AdoMet structure of the inactive C81A M.HhaI mutant suggests that active site water, an approximately 13 degree tilt of the target base toward the active site nucleophile, and the presence or absence of the cofactor methylsulfonium are coupled via a hydrogen-bonding network involving Tyr167. The active site in the mutant complex is assembled to optimally align the pyrimidine for nucleophilic attack and subsequent methyl transfer, consistent with previous molecular dynamics ab initio and quantum mechanics/molecular mechanics calculations. The mutant/DNA/AdoHcy structure (2.88 A resolution) provides a direct comparison to the postcatalytic complex. A third C81A ternary structure (2.22 A resolution) reveals hydrolysis of AdoMet to adenosine in the active site, further validating the coupling between the methionine portion of AdoMet and ultimately validating the structural observation of a prechemistry/postchemistry water network. Disruption of this hydrogen-bonding network by a Tyr167 to Phe167 mutation does not alter the kinetics of nucleophilic attack or methyl transfer. However, the Y167F mutant shows detectable changes in kcat, caused by the perturbed kinetics of AdoHcy release. These results provide a basis for including an extensive hydrogen-bonding network in controlling the rate-limiting product release steps during cytosine methylation.
Collapse
Affiliation(s)
- Ben Youngblood
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | | | |
Collapse
|
17
|
Bouvier B, Grubmüller H. A molecular dynamics study of slow base flipping in DNA using conformational flooding. Biophys J 2007; 93:770-86. [PMID: 17496048 PMCID: PMC1913169 DOI: 10.1529/biophysj.106.091751] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Individual DNA bases are known to be able to flip out of the helical stack, providing enzymes with access to the genetic information otherwise hidden inside the helix. Consequently, base flipping is a necessary first step to many more complex biological processes such as DNA transcription or replication. Much remains unknown about this elementary step, despite a wealth of experimental and theoretical studies. From the theoretical point of view, the involved timescale of milliseconds or longer requires the use of enhanced sampling techniques. In contrast to previous theoretical studies employing umbrella sampling along a predefined flipping coordinate, this study attempts to induce flipping without prior knowledge of the pathway, using information from a molecular dynamics simulation of a B-DNA fragment and the conformational flooding method. The relevance to base flipping of the principal components of the simulation is assayed, and a combination of modes optimally related to the flipping of the base through either helical groove is derived for each of the two bases of the central guanine-cytosine basepair. By applying an artificial flooding potential along these collective coordinates, the flipping mechanism is accelerated to within the scope of molecular dynamics simulations. The associated free energy surface is found to feature local minima corresponding to partially flipped states, particularly relevant to flipping in isolated DNA; further transitions from these minima to the fully flipped conformation are accelerated by additional flooding potentials. The associated free energy profiles feature similar barrier heights for both bases and pathways; the flipped state beyond is a broad and rugged attraction basin, only a few kcal/mol higher in energy than the closed conformation. This result diverges from previous works but echoes some aspects of recent experimental findings, justifying the need for novel approaches to this difficult problem: this contribution represents a first step in this direction. Important structural factors involved in flipping, both local (sugar-phosphate backbone dihedral angles) and global (helical axis bend), are also identified.
Collapse
Affiliation(s)
- Benjamin Bouvier
- Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
18
|
Robertson TA, Varani G. An all-atom, distance-dependent scoring function for the prediction of protein-DNA interactions from structure. Proteins 2006; 66:359-74. [PMID: 17078093 DOI: 10.1002/prot.21162] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have developed an all-atom statistical potential function for the prediction of protein-DNA interactions from their structures, and show that this method outperforms similar, lower-resolution statistical potentials in a series of decoy discrimination experiments. The all-atom formalism appears to capture details of atomic interactions that are missed by the lower-resolution methods, with the majority of the discriminatory power arising from its description of short-range atomic contacts. We show that, on average, the method is able to identify 90% of near-native docking decoys within the best-scoring 10% of structures in a given decoy set, and it compares favorably with an optimized physical potential function in a test of structure-based identification of DNA binding-sequences. These results demonstrate that all-atom statistical functions specific to protein-DNA interactions can achieve great discriminatory power despite the limited size of the structural database. They also suggest that the statistical scores may soon be able to achieve accuracy on par with more complex, physical potential functions.
Collapse
Affiliation(s)
- Timothy A Robertson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
19
|
Youngblood B, Reich NO. Conformational transitions as determinants of specificity for the DNA methyltransferase EcoRI. J Biol Chem 2006; 281:26821-31. [PMID: 16845123 DOI: 10.1074/jbc.m603388200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in DNA bending and base flipping in a previously characterized specificity-enhanced M.EcoRI DNA adenine methyltransferase mutant suggest a close relationship between precatalytic conformational transitions and specificity (Allan, B. W., Garcia, R., Maegley, K., Mort, J., Wong, D., Lindstrom, W., Beechem, J. M., and Reich, N. O. (1999) J. Biol. Chem. 274, 19269-19275). The direct measurement of the kinetic rate constants for DNA bending, intercalation, and base flipping with cognate and noncognate substrates (GAATTT, GGATTC) of wild type M.EcoRI using fluorescence resonance energy transfer and 2-aminopurine fluorescence studies reveals that DNA bending precedes both intercalation and base flipping, and base flipping precedes intercalation. Destabilization of these intermediates provides a molecular basis for understanding how conformational transitions contribute to specificity. The 3500- and 23,000-fold decreases in sequence specificity for noncognate sites GAATTT and GGATTC are accounted for largely by an approximately 2500-fold increase in the reverse rate constants for intercalation and base flipping, respectively. Thus, a predominant contribution to specificity is a partitioning of enzyme intermediates away from the Michaelis complex prior to catalysis. Our results provide a basis for understanding enzyme specificity and, in particular, sequence-specific DNA modification. Because many DNA methyltransferases and DNA repair enzymes induce similar DNA distortions, these results are likely to be broadly relevant.
Collapse
Affiliation(s)
- Ben Youngblood
- Program in Biomolecular Science and Engineering, Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106-9510, USA
| | | |
Collapse
|
20
|
Youngblood B, Shieh FK, De Los Rios S, Perona JJ, Reich NO. Engineered Extrahelical Base Destabilization Enhances Sequence Discrimination of DNA Methyltransferase M.HhaI. J Mol Biol 2006; 362:334-46. [PMID: 16919299 DOI: 10.1016/j.jmb.2006.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/01/2006] [Accepted: 07/14/2006] [Indexed: 11/19/2022]
Abstract
Improved sequence specificity of the DNA cytosine methyltransferase HhaI was achieved by disrupting interactions at a hydrophobic interface between the active site of the enzyme and a highly conserved flexible loop. Transient fluorescence experiments show that mutations disrupting this interface destabilize the positioning of the extrahelical, "flipped" cytosine base within the active site. The ternary crystal structure of the F124A M.HhaI bound to cognate DNA and the cofactor analogue S-adenosyl-l-homocysteine shows an increase in cavity volume between the flexible loop and the core of the enzyme. This cavity disrupts the interface between the loop and the active site, thereby destabilizing the extrahelical target base. The favored partitioning of the base-flipped enzyme-DNA complex back to the base-stacked intermediate results in the mutant enzyme discriminating better than the wild-type enzyme against non-cognate sites. Building upon the concepts of kinetic proofreading and our understanding of M.HhaI, we describe how a 16-fold specificity enhancement achieved with a double mutation at the loop/active site interface is acquired through destabilization of intermediates prior to methyltransfer rather than disruption of direct interactions between the enzyme and the substrate for M.HhaI.
Collapse
Affiliation(s)
- Ben Youngblood
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | |
Collapse
|
21
|
Shieh FK, Youngblood B, Reich NO. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI. J Mol Biol 2006; 362:516-27. [PMID: 16926025 DOI: 10.1016/j.jmb.2006.07.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Arg165 forms part of a previously identified base flipping motif in the bacterial DNA cytosine methyltransferase, M.HhaI. Replacement of Arg165 with Ala has no detectable effect on either DNA or AdoMet affinity, yet causes the base flipping and restacking transitions to be decreased approximately 16 and 190-fold respectively, thus confirming the importance of this motif. However, these kinetic changes cannot account for the mutant's observed 10(5)-fold decreased catalytic rate. The mutant enzyme/cognate DNA cocrystal structure (2.79 A resolution) shows the target cytosine to be positioned approximately 30 degrees into the major groove, which is consistent with a major groove pathway for nucleotide flipping. The pyrimidine-sugar chi angle is rotated to approximately +171 degrees, from a range of -95 degrees to -120 degrees in B DNA, and -77 degrees in the WT M.HhaI complex. Thus, Arg165 is important for maintaining the cytosine positioned for nucleophilic attack by Cys81. The cytosine sugar pucker is in the C2'-endo-C3'-exo (South conformation), in contrast to the previously reported C3'-endo (North conformation) described for the original 2.70 A resolution cocrystal structure of the WT M.HhaI/DNA complex. We determined a high resolution structure of the WT M.HhaI/DNA complex (1.96 A) to better determine the sugar pucker. This new structure is similar to the original, lower resolution WT M.HhaI complex, but shows that the sugar pucker is O4'-endo (East conformation), intermediate between the South and North conformers. In summary, Arg165 plays significant roles in base flipping, cytosine positioning, and catalysis. Furthermore, the previously proposed M.HhaI-mediated changes in sugar pucker may not be an important contributor to the base flipping mechanism. These results provide insights into the base flipping and catalytic mechanisms for bacterial and eukaryotic DNA methyltransferases.
Collapse
Affiliation(s)
- Fa-Kuen Shieh
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
22
|
Banavali NK, Huang N, MacKerell AD. Conserved patterns in backbone torsional changes allow for single base flipping from duplex DNA with minimal distortion of the double helix. J Phys Chem B 2006; 110:10997-1004. [PMID: 16771353 PMCID: PMC2565643 DOI: 10.1021/jp0561322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Base flipping is a structural mechanism common to many DNA processing and repair enzymes. Changes in the local backbone torsions that occur during base flipping and the effect of environment on their behavior are of particular interest in understanding different base flipping mechanisms. In the present study, structures sampled during umbrella sampling molecular dynamics (MD) simulations of base flipping in aqueous and protein-bound environments, carried out with two different MD simulation strategies, are analyzed to find the most significant phosphodiester backbone distortions in the vicinity of the flipping base. Torsional sampling on the 5' side of the flipping base during flipping through the major groove shows similarities to the torsional sampling on the 3' side during flipping through the minor groove and vice versa. In differing environments, this behavior varies only marginally. These compensating torsional changes in the DNA backbone on 5' and 3' sides of the flipping base limit overall distortion of the DNA double helix during single base flipping. Rotameric intermediate states observed during base flipping are identified and postulated to be metastable states implicated in both large-scale structural changes and functional effects of chemical modifications in DNA.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn St, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
23
|
Priyakumar UD, MacKerell AD. Computational approaches for investigating base flipping in oligonucleotides. Chem Rev 2006; 106:489-505. [PMID: 16464016 DOI: 10.1021/cr040475z] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- U Deva Priyakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 21201, USA
| | | |
Collapse
|
24
|
Priyakumar UD, MacKerell AD. NMR imino proton exchange experiments on duplex DNA primarily monitor the opening of purine bases. J Am Chem Soc 2006; 128:678-9. [PMID: 16417331 PMCID: PMC2542507 DOI: 10.1021/ja056445a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations were performed to investigate GC and AT base opening events in DNA. Calculated equilibrium constants between the base open (or flipped) and closed states were shown to be in good agreement with experimental data from NMR imino proton exchange experiments. Analysis of the computed results indicates that the equilbrium constants are dominated by the opening of the A and G bases in the AT and GC base pairs, respectively. Thus, the present results predict that NMR imino proton exchange experiments of base opening are primarily monitoring the opening of purine bases.
Collapse
Affiliation(s)
- U. Deva Priyakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
25
|
Wibowo FR, Rauch C, Trieb M, Liedl KR. M.TaqI facilitates the base flipping via an unusual DNA backbone conformation. Biopolymers 2005; 79:128-38. [PMID: 16047360 DOI: 10.1002/bip.20341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MD simulations have been carried out to understand the dynamical behavior of the DNA substrate of the Thermus aquaticus DNA methyltransferase (M.TaqI) in the methylation process at N6 of adenine. As starting structures, an x-ray structure of M.TaqI in complex with DNA and cofactor analogue (PDB code: 1G 38) and free decamer d(GTTCGATGTC)(2) were taken. The x-ray structure shows two consecutive BII substates that are not observed in the free decamer. These consecutive BII substates are also observed during our simulation. Additionally, their facing backbones adopt the same conformations. These double facing BII substates are stable during the last 9 ns of the trajectories and result in a stretched DNA structure. On the other hand, protein-DNA contacts on 5' and 3' phosphodiester groups of the partner thymine of flipped adenine have changed. The sugar and phosphate parts of thymine have moved further into the empty space left by the flipping base without the influence of protein. Furthermore, readily high populated BII substates at the GpA step of palindromic tetrad TCGA rather than CpG step are observed in the free decamer. On the contrary, the BI substate at the GpA step is observed on the flipped adenine strand. A restrained MD simulation, reproducing the BI/BII pattern in the complex, demonstrated the influence of the unusual backbone conformation on the dynamical behavior of the target base. This finding along with the increased nearby interstrand phosphate distance is supportive to the N6-methylation mechanism.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
26
|
Coman D, Russu IM. A nuclear magnetic resonance investigation of the energetics of basepair opening pathways in DNA. Biophys J 2005; 89:3285-92. [PMID: 16126830 PMCID: PMC1366824 DOI: 10.1529/biophysj.105.065763] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opening of basepairs plays a key role in DNA replication and transcription, and in the action of DNA repair and modification enzymes. In this article, we have used proton exchange to define the energetics of the pathways for basepair opening in two DNA 17-mer duplexes. The rates of exchange of imino protons with solvent protons were measured by NMR spectroscopy for each DNA duplex, as a function of the concentration of exchange catalyst and of temperature. The measurements provided the rates and the equilibrium constants of the opening reactions for individual basepairs at different temperatures. These temperature dependences were used to calculate the enthalpies and the free energies of the barrier to opening and of the open state for each basepair. The results reveal the existence of three distinct patterns of enthalpy changes in the opening reactions. The patterns differ from each other in the location of the kinetic opening barrier relative to the open state. Neighboring bases, which are one or more positions removed from the opening basepair, influence the enthalpic pattern of the opening pathway. The free energies of the opening barriers are found to be linearly related to the free energies of the open state. This correlation is analyzed in terms of rate-equilibrium free energy relationships previously observed in other systems, and suggests that the transition state in the opening reaction is closer to the native closed state of the basepair than to its open state.
Collapse
Affiliation(s)
- Daniel Coman
- Department of Chemistry and Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut, USA
| | | |
Collapse
|
27
|
Su TJ, Tock MR, Egelhaaf SU, Poon WCK, Dryden DTF. DNA bending by M.EcoKI methyltransferase is coupled to nucleotide flipping. Nucleic Acids Res 2005; 33:3235-44. [PMID: 15942026 PMCID: PMC1143692 DOI: 10.1093/nar/gki618] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The maintenance methyltransferase M.EcoKI recognizes the bipartite DNA sequence 5′-AACNNNNNNGTGC-3′, where N is any nucleotide. M.EcoKI preferentially methylates a sequence already containing a methylated adenine at or complementary to the underlined bases in the sequence. We find that the introduction of a single-stranded gap in the middle of the non-specific spacer, of up to 4 nt in length, does not reduce the binding affinity of M.EcoKI despite the removal of non-sequence-specific contacts between the protein and the DNA phosphate backbone. Surprisingly, binding affinity is enhanced in a manner predicted by simple polymer models of DNA flexibility. However, the activity of the enzyme declines to zero once the single-stranded region reaches 4 nt in length. This indicates that the recognition of methylation of the DNA is communicated between the two methylation targets not only through the protein structure but also through the DNA structure. Furthermore, methylation recognition requires base flipping in which the bases targeted for methylation are swung out of the DNA helix into the enzyme. By using 2-aminopurine fluorescence as the base flipping probe we find that, although flipping occurs for the intact duplex, no flipping is observed upon introduction of a gap. Our data and polymer model indicate that M.EcoKI bends the non-specific spacer and that the energy stored in a double-stranded bend is utilized to force or flip out the bases. This energy is not stored in gapped duplexes. In this way, M.EcoKI can determine the methylation status of two adenine bases separated by a considerable distance in double-stranded DNA and select the required enzymatic response.
Collapse
Affiliation(s)
- Tsueu-Ju Su
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Mark R. Tock
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Stefan U. Egelhaaf
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - Wilson C. K. Poon
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - David T. F. Dryden
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- To whom correspondence should be addressed. Tel: +44 131 650 4735; Fax: +44 131 650 6453;
| |
Collapse
|
28
|
Krosky DJ, Song F, Stivers JT. The origins of high-affinity enzyme binding to an extrahelical DNA base. Biochemistry 2005; 44:5949-59. [PMID: 15835884 DOI: 10.1021/bi050084u] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Base flipping is a highly conserved strategy used by enzymes to gain catalytic access to DNA bases that would otherwise be sequestered in the duplex structure. A classic example is the DNA repair enzyme uracil DNA glycosylase (UDG) which recognizes and excises unwanted uracil bases from DNA using a flipping mechanism. Previous work has suggested that enzymatic base flipping begins with dynamic breathing motions of the enzyme-bound DNA substrate, and then, only very late during the reaction trajectory do strong specific interactions with the extrahelical uracil occur. Here we report that UDG kinetically and thermodynamically prefers substrate sites where the uracil is paired with an unnatural adenine analogue that lacks any Watson-Crick hydrogen-bonding groups. The magnitude of the preference is a striking 43000-fold as compared to an adenine analogue that forms three H-bonds. Transient kinetic and fluorescence measurements suggest that preferential recognition of uracil in the context of a series of incrementally destabilized base pairs arises from two distinct effects: weak or absent hydrogen bonding, which thermodynamically assists extrusion, and, most importantly, increased flexibility of the site which facilitates DNA bending during base flipping. A coupled, stepwise reaction coordinate is implicated in which DNA bending precedes base pair rupture and flipping.
Collapse
Affiliation(s)
- Daniel J Krosky
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|