1
|
Gestaut D, Zhao Y, Park J, Ma B, Leitner A, Collier M, Pintilie G, Roh SH, Chiu W, Frydman J. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell 2022; 185:4770-4787.e20. [PMID: 36493755 PMCID: PMC9735246 DOI: 10.1016/j.cell.2022.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of β-tubulin using human prefoldin and TRiC. We find unstructured β-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded β-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.
Collapse
Affiliation(s)
- Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Zhao
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Boxue Ma
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miranda Collier
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea,Co-Corresponding authors: (lead contact), ,
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA,Department of Genetics, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| |
Collapse
|
2
|
Ahn HK, Yoon JT, Choi I, Kim S, Lee HS, Pai HS. Functional characterization of chaperonin containing T-complex polypeptide-1 and its conserved and novel substrates in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2741-2757. [PMID: 30825377 PMCID: PMC6506772 DOI: 10.1093/jxb/erz099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 05/31/2023]
Abstract
Chaperonin containing T-complex polypeptide-1 (CCT) is an evolutionarily conserved chaperonin multi-subunit complex that mediates protein folding in eukaryotes. It is essential for cell growth and survival in yeast and mammals, with diverse substrate proteins. However, only a few studies on plant CCT have been reported to date, due to the essentiality of CCT subunit genes and the large size of the complex. Here, we have investigated the structure and function of the Arabidopsis CCT complex in detail. The plant CCT consisted of eight subunits that assemble to form a high-molecular-mass protein complex, shown by diverse methods. CCT-deficient cells exhibited depletion of cortical microtubules, accompanied by a reduction in cellular α- and β-tubulin levels due to protein degradation. Cycloheximide-chase assays suggested that CCT is involved in the folding of tubulins in plants. Furthermore, CCT interacted with PPX1, the catalytic subunit of protein phosphatase 4, and may participate in the folding of PPX1 as its substrate. CCT also interacted with Tap46, a regulatory subunit of PP2A family phosphatases, but Tap46 appeared to function in PPX1 stabilization, rather than as a CCT substrate. Collectively, our findings reveal the essential functions of CCT chaperonin in plants and its conserved and novel substrates.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Sumin Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ho-Seok Lee
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| |
Collapse
|
3
|
Pouchucq L, Lobos-Ruiz P, Araya G, Valpuesta JM, Monasterio O. The chaperonin CCT promotes the formation of fibrillar aggregates of γ-tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:519-526. [PMID: 29339327 DOI: 10.1016/j.bbapap.2018.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
Abstract
The type II chaperonin CCT is involved in the prevention of the pathogenesis of numerous human misfolding disorders, as it sequesters misfolded proteins, blocks their aggregation and helps them to achieve their native state. In addition, it has been reported that CCT can prevent the toxicity of non-client amyloidogenic proteins by the induction of non-toxic aggregates, leading to new insight in chaperonin function as an aggregate remodeling factor. Here we add experimental evidence to this alternative mechanism by which CCT actively promotes the formation of conformationally different aggregates of γ-tubulin, a non-amyloidogenic CCT client protein, which are mediated by specific CCT-γ-tubulin interactions. The in vitro-induced aggregates were in some cases long fiber polymers, which compete with the amorphous aggregates. Direct injection of unfolded purified γ-tubulin into single-cell zebra fish embryos allowed us to relate this in vitro activity with the in vivo formation of intracellular aggregates. Injection of a CCT-binding deficient γ-tubulin mutant dramatically diminished the size of the intracellular aggregates, increasing the toxicity of the misfolded protein. These results point to CCT having a role in the remodeling of aggregates, constituting one of its many functions in cellular proteostasis.
Collapse
Affiliation(s)
- Luis Pouchucq
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Laboratorio de Biotecnología Vegetal Ambiental, Departamento de Biotecnología, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Pablo Lobos-Ruiz
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gissela Araya
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José María Valpuesta
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Concha-Marambio L, Maldonado P, Lagos R, Monasterio O, Montecinos-Franjola F. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration. PLoS One 2017; 12:e0185707. [PMID: 28982174 PMCID: PMC5628889 DOI: 10.1371/journal.pone.0185707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/18/2017] [Indexed: 01/16/2023] Open
Abstract
Cytokinesis is the last stage in the cell cycle. In prokaryotes, the protein FtsZ guides cell constriction by assembling into a contractile ring-shaped structure termed the Z-ring. Constriction of the Z-ring is driven by the GTPase activity of FtsZ that overcomes the energetic barrier between two protein conformations having different propensities to assemble into polymers. FtsZ is found in psychrophilic, mesophilic and thermophilic organisms thereby functioning at temperatures ranging from subzero to >100°C. To gain insight into the functional adaptations enabling assembly of FtsZ in distinct environmental conditions, we analyzed the energetics of FtsZ function from mesophilic Escherichia coli in comparison with FtsZ from thermophilic Methanocaldococcus jannaschii. Presumably, the assembly may be similarly modulated by temperature for both FtsZ orthologs. The temperature dependence of the first-order rates of nucleotide hydrolysis and of polymer disassembly, indicated an entropy-driven destabilization of the FtsZ-GTP intermediate. This destabilization was true for both mesophilic and thermophilic FtsZ, reflecting a conserved mechanism of disassembly. From the temperature dependence of the critical concentrations for polymerization, we detected a change of opposite sign in the heat capacity, that was partially explained by the specific changes in the solvent-accessible surface area between the free and polymerized states of FtsZ. At the physiological temperature, the assembly of both FtsZ orthologs was found to be driven by a small positive entropy. In contrast, the assembly occurred with a negative enthalpy for mesophilic FtsZ and with a positive enthalpy for thermophilic FtsZ. Notably, the assembly of both FtsZ orthologs is characterized by a critical concentration of similar value (1–2 μM) at the environmental temperatures of their host organisms. These findings suggest a simple but robust mechanism of adaptation of FtsZ, previously shown for eukaryotic tubulin, by adjustment of the critical concentration for polymerization.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paula Maldonado
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail: (OM); (FMF)
| | - Felipe Montecinos-Franjola
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail: (OM); (FMF)
| |
Collapse
|
5
|
Montecinos-Franjola F, Ross JA, Sánchez SA, Brunet JE, Lagos R, Jameson DM, Monasterio O. Studies on the dissociation and urea-induced unfolding of FtsZ support the dimer nucleus polymerization mechanism. Biophys J 2012; 102:2176-85. [PMID: 22824282 DOI: 10.1016/j.bpj.2012.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/31/2012] [Accepted: 03/12/2012] [Indexed: 01/23/2023] Open
Abstract
FtsZ is a major protein in bacterial cytokinesis that polymerizes into single filaments. A dimer has been proposed to be the nucleating species in FtsZ polymerization. To investigate the influence of the self-assembly of FtsZ on its unfolding pathway, we characterized its oligomerization and unfolding thermodynamics. We studied the assembly using size-exclusion chromatography and fluorescence spectroscopy, and the unfolding using circular dichroism and two-photon fluorescence correlation spectroscopy. The chromatographic analysis demonstrated the presence of monomers, dimers, and tetramers with populations dependent on protein concentration. Dilution experiments using fluorescent conjugates revealed dimer-to-monomer and tetramer-to-dimer dissociation constants in the micromolar range. Measurements of fluorescence lifetimes and rotational correlation times of the conjugates supported the presence of tetramers at high protein concentrations and monomers at low protein concentrations. The unfolding study demonstrated that the three-state unfolding of FtsZ was due to the mainly dimeric state of the protein, and that the monomer unfolds through a two-state mechanism. The monomer-to-dimer equilibrium characterized here (K(d) = 9 μM) indicates a significant fraction (~10%) of stable dimers at the critical concentration for polymerization, supporting a role of the dimeric species in the first steps of FtsZ polymerization.
Collapse
Affiliation(s)
- Felipe Montecinos-Franjola
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
6
|
Martin-Galiano AJ, Oliva MA, Sanz L, Bhattacharyya A, Serna M, Yebenes H, Valpuesta JM, Andreu JM. Bacterial tubulin distinct loop sequences and primitive assembly properties support its origin from a eukaryotic tubulin ancestor. J Biol Chem 2011; 286:19789-803. [PMID: 21467045 DOI: 10.1074/jbc.m111.230094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of the unique bacterial tubulin BtubA/B from Prosthecobacter is very similar to eukaryotic αβ-tubulin but, strikingly, BtubA/B fold without eukaryotic chaperones. Our sequence comparisons indicate that BtubA and BtubB do not really correspond to either α- or β-tubulin but have mosaic sequences with intertwining features from both. Their nucleotide-binding loops are more conserved, and their more divergent sequences correspond to discrete surface zones of tubulin involved in microtubule assembly and binding to eukaryotic cytosolic chaperonin, which is absent from the Prosthecobacter dejongeii draft genome. BtubA/B cooperatively assembles over a wider range of conditions than αβ-tubulin, forming pairs of protofilaments that coalesce into bundles instead of microtubules, and it lacks the ability to differentially interact with divalent cations and bind typical tubulin drugs. Assembled BtubA/B contain close to one bound GTP and GDP. Both BtubA and BtubB subunits hydrolyze GTP, leading to disassembly. The mutant BtubA/B-S144G in the tubulin signature motif GGG(T/S)G(S/T)G has strongly inhibited GTPase, but BtubA-T147G/B does not, suggesting that BtubB is a more active GTPase, like β-tubulin. BtubA/B chimera bearing the β-tubulin loops M, H1-S2, and S9-S10 in BtubB fold, assemble, and have reduced GTPase activity. However, introduction of the α-tubulin loop S9-S10 with its unique eight-residue insertion impaired folding. From the sequence analyses, its primitive assembly features, and the properties of the chimeras, we propose that BtubA/B were acquired shortly after duplication of a spontaneously folding α- and β-tubulin ancestor, possibly by horizontal gene transfer from a primitive eukaryotic cell, followed by divergent evolution.
Collapse
Affiliation(s)
- Antonio J Martin-Galiano
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lundin VF, Leroux MR, Stirling PC. Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci 2010; 35:288-97. [PMID: 20116259 DOI: 10.1016/j.tibs.2009.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/25/2022]
Abstract
Actins and tubulins are abundant cytoskeletal proteins that support diverse cellular processes. Owing to the unique properties of these filament-forming proteins, an intricate cellular machinery consisting minimally of the chaperonin CCT, prefoldin, phosducin-like proteins, and tubulin cofactors has evolved to facilitate their biogenesis. More recent evidence also suggests that regulated degradation pathways exist for actin (via TRIM32) and tubulin (via parkin or cofactor E-like). Collectively, these pathways maintain the quality control of cytoskeletal proteins ('proteostasis'), ensuring the appropriate function of microfilaments and microtubules. Here, we focus on the molecular mechanisms of the quality control of actin and tubulin, and discuss emerging links between cytoskeletal proteostasis and human diseases.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
8
|
Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments. Biophys J 2007; 94:1796-806. [PMID: 18024502 DOI: 10.1529/biophysj.107.115493] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Essential cell division protein FtsZ is an assembling GTPase which directs the cytokinetic ring formation in dividing bacterial cells. FtsZ shares the structural fold of eukaryotic tubulin and assembles forming tubulin-like protofilaments, but does not form microtubules. Two puzzling problems in FtsZ assembly are the nature of protofilament association and a possible mechanism for nucleated self-assembly of single-stranded protofilaments above a critical FtsZ concentration. We assembled two-dimensional arrays of FtsZ on carbon supports, studied linear polymers of FtsZ with cryo-electron microscopy of vitrified unsupported solutions, and formulated possible polymerization models. Nucleated self-assembly of FtsZ from Escherichia coli with GTP and magnesium produces flexible filaments 4-6 nm-wide, only compatible with a single protofilament. This agrees with previous scanning transmission electron microscopy results and is supported by recent cryo-electron tomography studies of two bacterial cells. Observations of double-stranded FtsZ filaments in negative stain may come from protofilament accretion on the carbon support. Preferential protofilament cyclization does not apply to FtsZ assembly. The apparently cooperative polymerization of a single protofilament with identical intermonomer contacts is explained by the switching of one inactive monomer into the active structure preceding association of the next, creating a dimer nucleus. FtsZ behaves as a cooperative linear assembly machine.
Collapse
|
9
|
Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SAL, Denlinger DL. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci U S A 2007; 104:11130-7. [PMID: 17522254 PMCID: PMC2040864 DOI: 10.1073/pnas.0703538104] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of an Hsp70 cognate, Hsc70, is uninfluenced by diapause, and Hsp90 is actually down-regulated during diapause, thus diapause differs from common stress responses that elicit synchronous up-regulation of all Hsps. Up-regulation of the Hsps begins at the onset of diapause, persists throughout the overwintering period, and ceases within hours after the fly receives the signal to reinitiate development. The up-regulation of Hsps appears to be common to diapause in species representing diverse insect orders including Diptera, Lepidoptera, Coleoptera, and Hymenoptera as well as in diapauses that occur in different developmental stages (embryo, larva, pupa, adult). Suppressing expression of Hsp23 and Hsp70 in flies by using RNAi did not alter the decision to enter diapause or the duration of diapause, but it had a profound effect on the pupa's ability to survive low temperatures. We thus propose that up-regulation of Hsps during diapause is a major factor contributing to cold-hardiness of overwintering insects.
Collapse
Affiliation(s)
- Joseph P. Rinehart
- *Department of Entomology, Ohio State University, 400 Aronoff Laboratory, 318 West 12th Avenue, Columbus, OH 43210
- Bioscience Research Laboratory, U.S. Department of Agriculture/Agricultural Research Station, 1605 Albrecht Boulevard, Fargo, ND 58105
| | - Aiqing Li
- *Department of Entomology, Ohio State University, 400 Aronoff Laboratory, 318 West 12th Avenue, Columbus, OH 43210
| | - George D. Yocum
- *Department of Entomology, Ohio State University, 400 Aronoff Laboratory, 318 West 12th Avenue, Columbus, OH 43210
- Bioscience Research Laboratory, U.S. Department of Agriculture/Agricultural Research Station, 1605 Albrecht Boulevard, Fargo, ND 58105
| | - Rebecca M. Robich
- *Department of Entomology, Ohio State University, 400 Aronoff Laboratory, 318 West 12th Avenue, Columbus, OH 43210
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115; and
| | - Scott A. L. Hayward
- *Department of Entomology, Ohio State University, 400 Aronoff Laboratory, 318 West 12th Avenue, Columbus, OH 43210
- School of Biological Sciences, Liverpool University, Liverpool L69 7ZB, United Kingdom
| | - David L. Denlinger
- *Department of Entomology, Ohio State University, 400 Aronoff Laboratory, 318 West 12th Avenue, Columbus, OH 43210
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Drabik P, Gusarov S, Kovalenko A. Microtubule stability studied by three-dimensional molecular theory of solvation. Biophys J 2006; 92:394-403. [PMID: 17056728 PMCID: PMC1751377 DOI: 10.1529/biophysj.106.089987] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We study microtubular supramolecular architectures of tubulin dimers self-assembling into linear protofilaments, in turn forming a closed tube, which is an important component of the cytoskeleton. We identify the protofilament arrangements with the lowest free energy using molecular dynamics to optimize tubulin conformations. We then use the three-dimensional molecular theory of solvation to obtain the hydration structure of protofilaments built of optimized tubulins and the solvent-mediated effective potential between them. The latter theoretical method, based on first principles of statistical mechanics, is capable of predicting the structure and thermodynamics of solvation of supramolecular architectures. We obtained a set of profiles of the potential of mean force between protofilaments in a periodic two-dimensional sheet in aqueous solution. The profiles were calculated for a number of amino acid sequences, tubulin conformations, and spatial arrangements of protofilaments. The results indicate that the effective interaction between protofilaments in aqueous solution depends little on the isotypes studied; however, it strongly depends on the M loop conformation of beta-tubulin. Based on the analysis of the potential of mean force between adjacent protofilaments, we found the optimal arrangement of protofilaments, which is in good agreement with other studies. We also decomposed the potential of mean force into its energetic and entropic components, and found that both are considerable in the free-energy balance for the stabilized protofilament arrangements.
Collapse
Affiliation(s)
- Piotr Drabik
- National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
11
|
Mahindroo N, Liou JP, Chang JY, Hsieh HP. Antitubulin agents for the treatment of cancer – a medicinal chemistry update. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.5.647] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
O'Connell PA, Pinto DM, Chisholm KA, MacRae TH. Characterization of the microtubule proteome during post-diapause development of Artemia franciscana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:920-8. [PMID: 16631421 DOI: 10.1016/j.bbapap.2006.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 02/23/2006] [Accepted: 03/13/2006] [Indexed: 01/02/2023]
Abstract
The microtubule proteome encompasses tubulin and a diverse group of proteins which associate with tubulin upon microtubule formation. These proteins either determine microtubule organization and function or their activity is influenced by microtubule association. To characterize the microtubule proteome in Artemia franciscana, tubulin assembly was induced with taxol in vitro after 0 and 12 h of post-diapause development. Proteins obtained by extraction of microtubules with 0.5 M NaCl were electrophoresed in two-dimensional gels and analyzed by mass spectrometry. Fifty-five proteins were identified with 10 of these occurring at both developmental stages, and multiple isoforms were observed for some proteins of the Artemia proteome. Their functions include roles in membrane transport, metabolism, chaperoning and protein synthesis, thus reflecting physiological properties of encysted Artemia such as stress resistance and the ability to rapidly initiate post-diapause development. For example, chaperones may protect tubulin during encystment and facilitate folding in metabolically active embryos. Additionally, the interaction of metabolic enzymes with microtubules funnels reaction intermediates, potentially enhancing efficiency within biochemical processes. This study represents the first systematic characterization of a crustacean microtubule proteome. Although it is difficult to be certain that all protein associations documented herein occur in vivo, the results suggest how protein-protein interactions contribute to cytoplasmic organization while implying how Artemia embryos resist stress and remain capable of development once diapause terminates.
Collapse
Affiliation(s)
- Paul A O'Connell
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | | | | | | |
Collapse
|