1
|
Oot RA, Couoh-Cardel S, Sharma S, Stam NJ, Wilkens S. Breaking up and making up: The secret life of the vacuolar H + -ATPase. Protein Sci 2017; 26:896-909. [PMID: 28247968 DOI: 10.1002/pro.3147] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 01/24/2023]
Abstract
The vacuolar ATPase (V-ATPase; V1 Vo -ATPase) is a large multisubunit proton pump found in the endomembrane system of all eukaryotic cells where it acidifies the lumen of subcellular organelles including lysosomes, endosomes, the Golgi apparatus, and clathrin-coated vesicles. V-ATPase function is essential for pH and ion homeostasis, protein trafficking, endocytosis, mechanistic target of rapamycin (mTOR), and Notch signaling, as well as hormone secretion and neurotransmitter release. V-ATPase can also be found in the plasma membrane of polarized animal cells where its proton pumping function is involved in bone remodeling, urine acidification, and sperm maturation. Aberrant (hypo or hyper) activity has been associated with numerous human diseases and the V-ATPase has therefore been recognized as a potential drug target. Recent progress with moderate to high-resolution structure determination by cryo electron microscopy and X-ray crystallography together with sophisticated single-molecule and biochemical experiments have provided a detailed picture of the structure and unique mode of regulation of the V-ATPase. This review summarizes the recent advances, focusing on the structural and biophysical aspects of the field.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Sergio Couoh-Cardel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Stuti Sharma
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Nicholas J Stam
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| |
Collapse
|
2
|
Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: novel structural findings and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:857-79. [PMID: 24508215 DOI: 10.1016/j.bbabio.2014.01.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/25/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Kadmon Pharmaceuticals Corporation, Alexandria Center for Life Science, 450 East 29th Street, New York, NY 10016, USA.
| | - John L Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, Singapore 637551, Republic of Singapore; Bioinformatics Institute, A(⁎)STAR, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
3
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
4
|
Dip PV, Saw WG, Roessle M, Marshansky V, Grüber G. Solution structure of subunit a, a 104-363, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation. J Bioenerg Biomembr 2012; 44:341-50. [DOI: 10.1007/s10863-012-9442-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/19/2012] [Indexed: 11/30/2022]
|
5
|
Vma8p-GFP fusions can be functionally incorporated into V-ATPase, suggesting structural flexibility at the top of V1. Int J Mol Sci 2011; 12:4693-704. [PMID: 21845105 PMCID: PMC3155378 DOI: 10.3390/ijms12074693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 12/25/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) complex of yeast (Saccharomyces cerevisiae) is comprised of two sectors, V(1) (catalytic) and V(O) (proton transfer). The hexameric (A(3)B(3)) cylinder of V(1) has a central cavity that must accommodate at least part of the rotary stalk of V-ATPase, a key component of which is subunit D (Vma8p). Recent electron microscopy (EM) data for the prokaryote V-ATPase complex (Thermus thermophilus) suggest that subunit D penetrates deeply into the central cavity. The functional counterpart of subunit D in mitochondrial F(1)F(O)-ATP synthase, subunit γ, occupies almost the entire length of the central cavity. To test whether the structure of yeast Vma8p mirrors that of subunit γ, we probed the location of the C-terminus of Vma8p by attachment of a large protein adduct, green fluorescent protein (GFP). We found that truncated Vma8p proteins lacking up to 40 C-terminal residues fused to GFP can be incorporated into functional V-ATPase complexes, and are able to support cell growth under alkaline conditions. We conclude that large protein adducts can be accommodated at the top of the central cavity of V(1) without compromising V-ATPase function, arguing for structural flexibility of the V(1) sector.
Collapse
|
6
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
7
|
Ma B, Xiang Y, An L. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cell Signal 2011; 23:1244-56. [PMID: 21397012 DOI: 10.1016/j.cellsig.2011.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/09/2022]
Abstract
Vacuolar-type H(+)-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V(1) responsible for ATP hydrolysis, and subunits a, c, c', c″, and d assembly the 250-kDa membrane-integral V(0) harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V(1) and V(0) subunits, in which the V(1) must be completely assembled prior to association with the V(0), accordingly the V(0) failing to assemble cannot provide a membrane anchor for the V(1), thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V(1) and V(0), the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca(2+), and its inhibitors and activators.
Collapse
Affiliation(s)
- Binyun Ma
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, 730000, Lanzhou, China
| | | | | |
Collapse
|
8
|
Hildenbrand ZL, Molugu SK, Stock D, Bernal RA. The C-H peripheral stalk base: a novel component in V1-ATPase assembly. PLoS One 2010; 5:e12588. [PMID: 20838636 PMCID: PMC2933246 DOI: 10.1371/journal.pone.0012588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/10/2010] [Indexed: 11/18/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) are molecular machines responsible for creating electrochemical gradients and preserving pH-dependent cellular compartments by way of proton translocation across the membrane. V-ATPases employ a dynamic rotary mechanism that is driven by ATP hydrolysis and the central rotor stalk. Regulation of this rotational catalysis is the result of a reversible V1Vo-domain dissociation that is required to preserve ATP during instances of cellular starvation. Recently the method by which the free V1-ATPase abrogates the hydrolytic breakdown of ATP upon dissociating from the membrane has become increasingly clear. In this instance the central stalk subunit F adopts an extended conformation to engage in a bridging interaction tethering the rotor and stator components together. However, the architecture by which this mechanism is stabilized has remained ambiguous despite previous work. In an effort to elucidate the method by which the rotational catalysis is maintained, the architecture of the peripheral stalks and their respective binding interactions was investigated using cryo-electron microscopy. In addition to confirming the bridging interaction exuded by subunit F for the first time in a eukaryotic V-ATPase, subunits C and H are seen interacting with one another in a tight interaction that provides a base for the three EG peripheral stalks. The formation of a CE3G3H sub-assembly appears to be unique to the dissociated V-ATPase and highlights the stator architecture in addition to revealing a possible intermediate in the assembly mechanism of the free V1-ATPase.
Collapse
Affiliation(s)
- Zacariah L. Hildenbrand
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sudheer K. Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Daniela Stock
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ricardo A. Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
The NMR solution structure of subunit G (G(61)(-)(101)) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1961-8. [PMID: 20599533 DOI: 10.1016/j.bbamem.2010.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/20/2022]
Abstract
Subunit G is an essential stalk subunit of the eukaryotic proton pump V(1)V(O) ATPase. Previously the structure of the N-terminal region, G(1)(-)(59), of the 13kDa subunit G was solved at higher resolution. Here solution NMR was performed to determine the structure of the recombinant C-terminal region (G(61)(-)(101)) of subunit G of the Saccharomyces cerevisiae V(1)V(O) ATPase. The protein forms an extended alpha-helix between residues 64 and 100, whereby the first five- and the last residues of G(61)(-)(101) are flexible. The surface charge distribution of G(61)(-)(101) reveals an amphiphilic character at the C-terminus due to positive and negative charge distribution at one side and a hydrophobic surface on the opposite side of the structure. The hydrophobic surface pattern is mainly formed by alanine residues. The alanine residues 72, 74 and 81 were exchanged by a single cysteine in the entire subunit G. Cysteines at positions 72 and 81 showed disulfide formation. In contrast, no crosslink could be formed for the mutant Ala74Cys. Together with the recently determined NMR solution structure of G(1)(-)(59), the presented solution structure of G(61)(-)(101) enabled us to present a first structural model of the entire subunit G of the S. cerevisiae V(1)V(O) ATPase.
Collapse
|
10
|
Rishikesan S, Thaker YR, Priya R, Gayen S, Manimekalai MSS, Hunke C, Grüber G. Spectroscopical identification of residues of subunit G of the yeast V-ATPase in its connection with subunit E. Mol Membr Biol 2009; 25:400-10. [DOI: 10.1080/09687680802183434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Diab H, Ohira M, Liu M, Cobb E, Kane PM. Subunit interactions and requirements for inhibition of the yeast V1-ATPase. J Biol Chem 2009; 284:13316-13325. [PMID: 19299516 DOI: 10.1074/jbc.m900475200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disassembly of the yeast V-ATPase into cytosolic V(1) and membrane V(0) sectors inactivates MgATPase activity of the V(1)-ATPase. This inactivation requires the V(1) H subunit (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767), but its mechanism is not fully understood. The H subunit has two domains. Interactions of each domain with V(1) and V(0) subunits were identified by two-hybrid assay. The B subunit of the V(1) catalytic headgroup interacted with the H subunit N-terminal domain (H-NT), and the C-terminal domain (H-CT) interacted with V(1) subunits B, E (peripheral stalk), and D (central stalk), and the cytosolic N-terminal domain of V(0) subunit Vph1p. V(1)-ATPase complexes from yeast expressing H-NT are partially inhibited, exhibiting 26% the MgATPase activity of complexes with no H subunit. The H-CT domain does not copurify with V(1) when expressed in yeast, but the bacterially expressed and purified H-CT domain inhibits MgATPase activity in V(1) lacking H almost as well as the full-length H subunit. Binding of full-length H subunit to V(1) was more stable than binding of either H-NT or H-CT, suggesting that both domains contribute to binding and inhibition. Intact H and H-CT can bind to the expressed N-terminal domain of Vph1p, but this fragment of Vph1p does not bind to V(1) complexes containing subunit H. We propose that upon disassembly, the H subunit undergoes a conformational change that inhibits V(1)-ATPase activity and precludes V(0) interactions.
Collapse
Affiliation(s)
- Heba Diab
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Masashi Ohira
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Mali Liu
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Ester Cobb
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
12
|
Muench SP, Huss M, Song CF, Phillips C, Wieczorek H, Trinick J, Harrison MA. Cryo-electron Microscopy of the Vacuolar ATPase Motor Reveals its Mechanical and Regulatory Complexity. J Mol Biol 2009; 386:989-99. [DOI: 10.1016/j.jmb.2009.01.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Guillard M, Dimopoulou A, Fischer B, Morava E, Lefeber DJ, Kornak U, Wevers RA. Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. Biochim Biophys Acta Mol Basis Dis 2009; 1792:903-14. [PMID: 19171192 DOI: 10.1016/j.bbadis.2008.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 02/08/2023]
Abstract
Glycosylation of proteins is one of the most important post-translational modifications. Defects in the glycan biosynthesis result in congenital malformation syndromes, also known as congenital disorders of glycosylation (CDG). Based on the iso-electric focusing patterns of plasma transferrin and apolipoprotein C-III a combined defect in N- and O-glycosylation was identified in patients with autosomal recessive cutis laxa type II (ARCL II). Disease-causing mutations were identified in the ATP6V0A2 gene, encoding the a2 subunit of the vacuolar H(+)-ATPase (V-ATPase). The V-ATPases are multi-subunit, ATP-dependent proton pumps located in membranes of cells and organels. In this article, we describe the structure, function and regulation of the V-ATPase and the phenotypes currently known to result from V-ATPase mutations. A clinical overview of cutis laxa syndromes is presented with a focus on ARCL II. Finally, the relationship between ATP6V0A2 mutations, the glycosylation defect and the ARCLII phenotype is discussed.
Collapse
Affiliation(s)
- Mailys Guillard
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N, Kish-Trier E, Heck AJR, Kane PM, Wilkens S. Structure of the yeast vacuolar ATPase. J Biol Chem 2008; 283:35983-95. [PMID: 18955482 PMCID: PMC2602884 DOI: 10.1074/jbc.m805345200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/15/2008] [Indexed: 01/01/2023] Open
Abstract
The subunit architecture of the yeast vacuolar ATPase (V-ATPase) was analyzed by single particle transmission electron microscopy and electrospray ionization (ESI) tandem mass spectrometry. A three-dimensional model of the intact V-ATPase was calculated from two-dimensional projections of the complex at a resolution of 25 angstroms. Images of yeast V-ATPase decorated with monoclonal antibodies against subunits A, E, and G position subunit A within the pseudo-hexagonal arrangement in the V1, the N terminus of subunit G in the V1-V0 interface, and the C terminus of subunit E at the top of the V1 domain. ESI tandem mass spectrometry of yeast V1-ATPase showed that subunits E and G are most easily lost in collision-induced dissociation, consistent with a peripheral location of the subunits. An atomic model of the yeast V-ATPase was generated by fitting of the available x-ray crystal structures into the electron microscopy-derived electron density map. The resulting atomic model of the yeast vacuolar ATPase serves as a framework to help understand the role the peripheral stalk subunits are playing in the regulation of the ATP hydrolysis driven proton pumping activity of the vacuolar ATPase.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grüber G, Marshansky V. New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). Bioessays 2008; 30:1096-109. [PMID: 18937357 DOI: 10.1002/bies.20827] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adenosine triphosphate, ATP, is the energy currency of living cells. While ATP synthases of archae and ATP synthases of pro- and eukaryotic organisms operate as energy producers by synthesizing ATP, the eukaryotic V-ATPase hydrolyzes ATP and thus functions as energy transducer. These enzymes share features like the hydrophilic catalytic- and the membrane-embedded ion-translocating sector, allowing them to operate as nano-motors and to transform the transmembrane electrochemical ion gradient into ATP or vice versa. Since archaea are rooted close to the origin of life, the A-ATP synthase is probably more similar in its composition and function to the "original" enzyme, invented by Nature billion years ago. On the contrary, the V-ATPases have acquired specific structural, functional and regulatory features during evolution. This review will summarize the current knowledge on the structure, mechanism and regulation of A-ATP synthases and V-ATPases. The importance of V-ATPase in pathophysiology of diseases will be discussed.
Collapse
Affiliation(s)
- Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | | |
Collapse
|
16
|
Diepholz M, Venzke D, Prinz S, Batisse C, Flörchinger B, Rössle M, Svergun DI, Böttcher B, Féthière J. A Different Conformation for EGC Stator Subcomplex in Solution and in the Assembled Yeast V-ATPase: Possible Implications for Regulatory Disassembly. Structure 2008; 16:1789-98. [DOI: 10.1016/j.str.2008.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/29/2022]
|
17
|
Structural organization of the V-ATPase and its implications for regulatory assembly and disassembly. Biochem Soc Trans 2008; 36:1027-31. [DOI: 10.1042/bst0361027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
V-ATPases (vacuolar ATPases) are membrane-bound multiprotein complexes that are localized in the endomembrane systems of eukaryotic cells and in the plasma membranes of some specialized cells. They couple ATP hydrolysis with the transport of protons across membranes. On nutrient shortage, V-ATPases disassemble into a membrane-embedded part (V0), which contains the proton translocation machinery, and an extrinsic part (V1), which carries the nucleotide-binding sites. Disassembly decouples ATP hydrolysis and proton translocation. Furthermore, the disassembled parts are inactive, leading to an efficient shutdown of ATP consumption. On restoring the nutrient levels, V1 and V0 reassemble and restore ATP-hydrolysis activity coupled with proton translocation. This reversible assembly/disassembly process has certain conformational constraints, which are best fulfilled by adopting a unique conformation before disassembly.
Collapse
|
18
|
Jefferies KC, Cipriano DJ, Forgac M. Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 2008; 476:33-42. [PMID: 18406336 PMCID: PMC2543942 DOI: 10.1016/j.abb.2008.03.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/05/2008] [Accepted: 03/07/2008] [Indexed: 02/07/2023]
Abstract
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V(1)) responsible for hydrolysis of ATP and an integral domain (V(0)) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V(1) and V(0) domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
| |
Collapse
|
19
|
The V-ATPase in Paramecium: functional specialization by multiple gene isoforms. Pflugers Arch 2008; 457:599-607. [DOI: 10.1007/s00424-007-0417-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 11/23/2007] [Accepted: 11/29/2007] [Indexed: 11/25/2022]
|
20
|
Esteban O, Bernal RA, Donohoe M, Videler H, Sharon M, Robinson CV, Stock D. Stoichiometry and localization of the stator subunits E and G in Thermus thermophilus H+-ATPase/synthase. J Biol Chem 2007; 283:2595-603. [PMID: 18055467 DOI: 10.1074/jbc.m704941200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton-translocating ATPases are central to biological energy conversion. Although eukaryotes contain specialized F-ATPases for ATP synthesis and V-ATPases for proton pumping, eubacteria and archaea typically contain only one enzyme for both tasks. Although many eubacteria contain ATPases of the F-type, some eubacteria and all known archaea contain ATPases of the A-type. A-ATPases are closely related to V-ATPases but simpler in design. Although the nucleotide-binding and transmembrane rotor subunits share sequence homology between A-, V-, and F-ATPases, the peripheral stalk is strikingly different in sequence, composition, and stoichiometry. We have analyzed the peripheral stalk of Thermus thermophilus A-ATPase by using phage display-derived single-domain antibody fragments in combination with electron microscopy and tandem mass spectrometry. Our data provide the first direct evidence for the existence of two peripheral stalks in the A-ATPase, each one composed of heterodimers of subunits E and G arranged symmetrically around the soluble A(1) domain. To our knowledge, this is the first description of phage display-derived antibody selection against a multi-subunit membrane protein used for purification and single particle analysis by electron microscopy. It is also the first instance of the derivation of subunit stoichiometry by tandem mass spectrometry to an intact membrane protein complex. Both approaches could be applicable to the structural analysis of other membrane protein complexes.
Collapse
Affiliation(s)
- Olga Esteban
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The acidity of intracellular compartments and the extracellular environment is crucial to various cellular processes, including membrane trafficking, protein degradation, bone resorption and sperm maturation. At the heart of regulating acidity are the vacuolar (V-)ATPases--large, multisubunit complexes that function as ATP-driven proton pumps. Their activity is controlled by regulating the assembly of the V-ATPase complex or by the dynamic regulation of V-ATPase expression on membrane surfaces. The V-ATPases have been implicated in a number of diseases and, coupled with their complex isoform composition, represent attractive and potentially highly specific drug targets.
Collapse
Affiliation(s)
- Michael Forgac
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111, USA.
| |
Collapse
|
22
|
Thaker YR, Roessle M, Grüber G. The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. J Bioenerg Biomembr 2007; 39:275-89. [PMID: 17896169 DOI: 10.1007/s10863-007-9089-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/15/2007] [Indexed: 10/22/2022]
Abstract
The low resolution structure of subunit d (Vma6p) of the Saccharomyces cerevisiae V-ATPase was determined from solution X-ray scattering data. The protein is a boxing glove-shaped molecule consisting of two distinct domains, with a width of about 6.5 nm and 3.5 nm, respectively. To understand the importance of the N- and C-termini inside the protein, four truncated forms of subunit d (d (11-345), d (38-345), d (1-328) and d (1-298)) and mutant subunit d, with a substitution of Cys329 against Ser, were expressed, and only d (11-345), containing all six cysteine residues was soluble. The structural properties of d depends strongly on the presence of a disulfide bond. Changes in response to disulfide formation have been studied by fluorescence- and CD spectroscopy, and biochemical approaches. Cysteins, involved in disulfide bridges, were analyzed by MALDI-TOF mass spectrometry. Finally, the solution structure of subunit d will be discussed in terms of the topological arrangement of the V(1)V(O) ATPase.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Circular Dichroism
- DNA Primers/genetics
- DNA, Fungal/genetics
- Disulfides/chemistry
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Mutagenesis, Site-Directed
- Nuclear Magnetic Resonance, Biomolecular
- Protein Folding
- Protein Structure, Tertiary
- Protein Subunits
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Scattering, Small Angle
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vacuolar Proton-Translocating ATPases/chemistry
- Vacuolar Proton-Translocating ATPases/genetics
- X-Ray Diffraction
Collapse
Affiliation(s)
- Youg R Thaker
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
23
|
Gregorini M, Wang J, Xie XS, Milligan RA, Engel A. Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. J Struct Biol 2007; 158:445-54. [PMID: 17349803 DOI: 10.1016/j.jsb.2007.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 11/19/2022]
Abstract
Bovine V-ATPase from brain clathrin-coated vesicles was investigated by cryo-electron microscopy and single particle analysis. Our studies revealed great flexibility of the central linker region connecting V1 and V0. As a consequence, the two sub-complexes were processed separately and the resulting volumes were merged computationally. We present the first three-dimensional (3D) map of a V-ATPase obtained from cryo-electron micrographs. The overall resolution was estimated 34A by Fourier shell correlation (0.5 cutoff). Our 3D reconstruction shows a large peripheral stalk and a smaller, isolated peripheral density, suggesting a second, less well-resolved peripheral connection. The 3D map reveals new features of the large peripheral stator and of the collar-like density attached to the membrane domain. Our analyses of the membrane domain indicate the presence of six proteolipid subunits. In addition, we could localize the V0 subunit a flanking the large peripheral stalk.
Collapse
Affiliation(s)
- Marco Gregorini
- Maurice E. Müller Institute for Structural Biology, Biozentrum University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Bowman BJ, McCall ME, Baertsch R, Bowman EJ. A Model for the Proteolipid Ring and Bafilomycin/Concanamycin-binding Site in the Vacuolar ATPase of Neurospora crassa. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Clare DK, Orlova EV, Finbow MA, Harrison MA, Findlay JBC, Saibil HR. An expanded and flexible form of the vacuolar ATPase membrane sector. Structure 2006; 14:1149-56. [PMID: 16843896 DOI: 10.1016/j.str.2006.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 11/20/2022]
Abstract
The vacuolar ATPase integral membrane c-ring from Nephrops norvegicus occurs in paired complexes in a double membrane. Using cryo-electron microscopy and single particle image processing of 2D crystals, we have obtained a projection structure of the c-ring of N. norvegicus. The c-ring was found to be very flexible, most likely as a result of an expanded conformation of the c subunits. This structure may support a role for the vacuolar ATPase c-rings in membrane fusion.
Collapse
Affiliation(s)
- Daniel K Clare
- School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Ubbink-Kok T, Nijland J, Slotboom DJ, Lolkema JS. The ntp operon encoding the Na+ V-ATPase of the thermophile Caloramator fervidus. Arch Microbiol 2006; 186:513-7. [PMID: 16967304 DOI: 10.1007/s00203-006-0165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/14/2006] [Accepted: 08/21/2006] [Indexed: 11/29/2022]
Abstract
The V-type ATPase of the thermophile Caloramator fervidus is an ATP-driven Na+ pump. The nucleotide sequence of the ntpFIKECGABD operon containing the structural genes coding for the nine subunits of the enzyme complex was determined. The identity of the proteins in two pairs of subunits (D, E and F, G) that have very similar mobilities on SDS-PAGE of the purified complex (24.3 and 22.7 kDa, and 12.3 and 11.6 kDa) was established by tryptic digestion of the protein bands followed by mass spectrometric analysis of the peptides.
Collapse
Affiliation(s)
- Trees Ubbink-Kok
- Molecular Microbiology, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, Groningen, The Netherlands
| | | | | | | |
Collapse
|
27
|
Bowman BJ, McCall ME, Baertsch R, Bowman EJ. A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem 2006; 281:31885-93. [PMID: 16912037 DOI: 10.1074/jbc.m605532200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar ATPase has been implicated in a variety of physiological processes in eukaryotic cells. Bafilomycin and concanamycin, highly potent and specific inhibitors of the vacuolar ATPase, have been widely used to investigate the enzyme. Derivatives have been developed as possible therapeutic drugs. We have used random mutagenesis and site-directed mutagenesis to identify 23 residues in the c subunit involved in binding these drugs. We generated a model for the structure of the ring of c subunits in Neurospora crassa by using data from the crystal structure of the homologous subunits of the bacterium Enterococcus hirae (Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G., and Walker, J. E. (2005) Science 308, 654-659). In the model 10 of the 11 mutation sites that confer the highest degree of resistance are closely clustered. They form a putative drug-binding pocket at the interface between helices 1 and 2 on one c subunit and helix 4 of the adjacent c subunit. The excellent fit of the N. crassa sequence to the E. hirae structure and the degree to which the structural model predicts the clustering of these residues suggest that the folding of the bacterial and eukaryotic polypeptides is very similar.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA.
| | | | | | | |
Collapse
|
28
|
Ohira M, Smardon AM, Charsky CMH, Liu J, Tarsio M, Kane PM. The E and G Subunits of the Yeast V-ATPase Interact Tightly and Are Both Present at More Than One Copy per V1 Complex. J Biol Chem 2006; 281:22752-60. [PMID: 16774922 DOI: 10.1074/jbc.m601441200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E and G subunits of the yeast V-ATPase are believed to be part of the peripheral or stator stalk(s) responsible for physically and functionally linking the peripheral V1 sector, responsible for ATP hydrolysis, to the membrane V0 sector, containing the proton pore. The E and G subunits interact tightly and specifically, both on a far Western blot of yeast vacuolar proteins and in the yeast two-hybrid assay. Amino acids 13-79 of the E subunit are critical for the E-G two-hybrid interaction. Different tagged versions of the G subunit were expressed in a diploid cell, and affinity purification of cytosolic V1 sectors via a FLAG-tagged G subunit resulted in copurification of a Myc-tagged G subunit, implying more than one G subunit was present in each V1 complex. Similarly, hemagglutinin-tagged E subunit was able to affinity-purify V1 sectors containing an untagged version of the E subunit from heterozygous diploid cells, suggesting that more than one E subunit is present. Overexpression of the subunit G results in a destabilization of subunit E similar to that seen in the complete absence of subunit G (Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H., and Klionsky, D. J. (1997) J. Biol. Chem. 272, 26787-26793). These results are consistent with recent models showing at least two peripheral stalks connecting the V1 and V0 sectors of the V-ATPase and would allow both stalks to be based on an EG dimer.
Collapse
Affiliation(s)
- Masashi Ohira
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
30
|
Lazarov VK, Fraering PC, Ye W, Wolfe MS, Selkoe DJ, Li H. Electron microscopic structure of purified, active gamma-secretase reveals an aqueous intramembrane chamber and two pores. Proc Natl Acad Sci U S A 2006; 103:6889-94. [PMID: 16636269 PMCID: PMC1458989 DOI: 10.1073/pnas.0602321103] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gamma-secretase is an intramembrane-cleaving aspartyl protease required for the normal development of metazoans because it processes Notch within cellular membranes to release its signaling domain. More than two dozen additional substrates of diverse functions have been reported, including the Notch ligands Delta and Jagged, N- and E-cadherins, and a sodium channel subunit. The protease is causally implicated in Alzheimer's disease because it releases the neurotoxic amyloid beta-peptide (Abeta) from its precursor, APP. Gamma-secretase occurs as a large complex containing presenilin (bearing the active site aspartates), nicastrin, Aph-1, and Pen-2. Because the complex contains at least 18 transmembrane domains, crystallographic approaches to its structure are difficult and remote. We recently purified the human complex essentially to homogeneity from stably expressing mammalian cells. Here, we use EM and single-particle image analysis on the purified enzyme, which produces physiological ratios of Abeta40 and Abeta42, to obtain structural information on an intramembrane protease. The 3D EM structure revealed a large, cylindrical interior chamber of approximately 20-40 A in length, consistent with a proteinaceous proteolytic site that is occluded from the hydrophobic environment of the lipid bilayer. Lectin tagging of the nicastrin ectodomain enabled proper orientation of the globular, approximately 120-A-long complex within the membrane and revealed approximately 20-A pores at the top and bottom that provide potential exit ports for cleavage products to the extra- and intracellular compartments. Our reconstructed 3D map provides a physical basis for hydrolysis of transmembrane substrates within a lipid bilayer and release of the products into distinct subcellular compartments.
Collapse
Affiliation(s)
- Vlado K. Lazarov
- *Biology Department, Brookhaven National Laboratory, Upton, NY 11973; and
| | - Patrick C. Fraering
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Wenjuan Ye
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael S. Wolfe
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Dennis J. Selkoe
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- To whom correspondence may be addressed. E-mail:
or
| | - Huilin Li
- *Biology Department, Brookhaven National Laboratory, Upton, NY 11973; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
31
|
Collopy-Junior I, Kneipp LF, da Silva FC, Rodrigues ML, Alviano CS, Meyer-Fernandes JR. Characterization of an ecto-ATPase activity in Fonsecaea pedrosoi. Arch Microbiol 2006; 185:355-62. [PMID: 16528535 DOI: 10.1007/s00203-006-0100-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
In this work, we characterized an ecto-ATPase activity in intact mycelial forms of Fonsecaea pedrosoi, the primary causative agent of chromoblastomycosis. In the presence of 1 mM EDTA, fungal cells hydrolyzed adenosine-5'-triphosphate (ATP) at a rate of 84.6 +/- 11.3 nmol Pi h(-1) mg(-1) mycelial dry weight. The ecto-ATPase activity was increased at about five times (498.3 +/- 27.6 nmol Pi h(-1) mg(-1)) in the presence of 5 mM MgCl2, with values of Vmax and apparent Km for Mg-ATP(2-) corresponding to 541.9 +/- 48.6 nmol Pi h(-1) mg(-1) cellular dry weight and 1.9 +/- 0.2 mM, respectively. The Mg2+-stimulated ecto-ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1(V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate, and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The surface of the Mg2+ -stimulated ATPase in F. pedrosoi was confirmed by assays in which 4,4'-diisothiocyanostylbene-2,2'-disulfonic acid (DIDS), a membrane impermeant inhibitor, and suramin, an inhibitor of ecto-ATPase and antagonist of P2 purinoreceptors. Based on the differential expression of ecto-ATPases in the different morphological stages of F. pedrosoi, the putative role of this enzyme in fungal biology is discussed.
Collapse
Affiliation(s)
- Italo Collopy-Junior
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21541-590, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Zhang Z, Inoue T, Forgac M, Wilkens S. Localization of subunit C (Vma5p) in the yeast vacuolar ATPase by immuno electron microscopy. FEBS Lett 2006; 580:2006-10. [PMID: 16546180 DOI: 10.1016/j.febslet.2006.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 02/20/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Vacuolar ATPases (V1V0 -ATPases) function in proton translocation across lipid membranes of subcellular compartments. We have used antibody labeling and electron microscopy to define the position of subunit C in the vacuolar ATPase from yeast. The data show that subunit C is binding at the interface of the ATPase and proton channel, opposite from another stalk density previously identified as subunit H [Wilkens S., Inoue T., and Forgac M. (2004) Three-dimensional structure of the vacuolar ATPase - Localization of subunit H by difference imaging and chemical cross-linking. J. Biol. Chem. 279, 41942-41949]. A picture of the vacuolar ATPase stalk domain is emerging in which subunits C and H are positioned to play a role in reversible enzyme dissociation and activity silencing.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
33
|
Gerle C, Tani K, Yokoyama K, Tamakoshi M, Yoshida M, Fujiyoshi Y, Mitsuoka K. Two-dimensional crystallization and analysis of projection images of intact Thermus thermophilus V-ATPase. J Struct Biol 2005; 153:200-6. [PMID: 16377206 DOI: 10.1016/j.jsb.2005.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
H(+)-ATPase/synthases are membrane-bound rotary nanomotors that are essential for energy conversion in nearly all life forms. A member of the family of the vacuolar-type ATPases (V-ATPases) from Thermus thermophilus, sometimes also termed A-type ATPase, was purified to homogeneity and subjected to two-dimensional (2D) crystallization trials. A novel approach to the 2D crystallization of unstable complexes yielded densely packed sheets of V-ATPase, exhibiting crystalline arrays. Aggregation of the V-ATPase under acidic conditions during reconstitution circumvented the continuous dissociation of the whole complex into the V(1) and V(o) domains. The resulting three-dimensional aggregates were converted into 2D sheets by the use of a basic buffer, and after a short annealing cycle, ordered arrays of up to 1.5 microm diameter appeared. Fourier transforms calculated from micrographs taken from the negatively stained sample showed diffraction spots to a resolution of 23A. The Fourier transforms of the untilted images revealed unit-cell dimensions of a=232A, b=132A, and gamma=90 degrees , and a projection map was calculated by merging 11 images. The most probable molecular packing suggests p22(1)2(1) symmetry of the crystals and dimer contacts between the V(1) domains.
Collapse
Affiliation(s)
- Christoph Gerle
- Department of Biophysics, Faculty of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Féthière J, Venzke D, Madden DR, Böttcher B. Peripheral Stator of the Yeast V-ATPase: Stoichiometry and Specificity of Interaction between the EG Complex and Subunits C and H†. Biochemistry 2005; 44:15906-14. [PMID: 16313193 DOI: 10.1021/bi051762f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
V-ATPases are multisubunit membrane protein complexes that use the energy provided by ATP hydrolysis to generate a proton gradient across various intracellular and plasma membranes. In doing so, they maintain an acidic pH in the lumen of intracellular organelles and acidify extracellular milieu to support specific cellular functions. V-ATPases are structurally similar to the F1F0-ATP synthase, with an intrinsic membrane domain (V0) and an extrinsic peripheral domain (V1) joined by several connecting elements. To gain a clear functional understanding of the catalytic mechanism, and of the stability requirements for regulatory processes in the enzyme, a clear topology of the enzyme has to be established. In particular, the composition and arrangement of the peripheral stator subunits must be firmly settled, as these play specific roles in catalysis and regulation. We have designed a strategy allowing us to coexpress different combinations of these subunits to delineate specific interactions. In this study, we report the interaction between the peripheral stator EG complex and subunits C and H of the V-ATPase from the yeast Saccharomyces cerevisae. A combination of analytical gel filtration, native gel electrophoresis, and ultracentrifugation analysis allowed us to ascertain the homogeneity and molar mass of the purified EGC complex as well as of the EG complex, supporting the formation of 1:1(:1) stoichiometric complexes. The EGC complex can be formed in vitro by combining equimolar amounts of subunit C and the EG subcomplex and results most likely from the initial interaction between subunits E and C.
Collapse
Affiliation(s)
- James Féthière
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
35
|
Abstract
The yeast V-ATPase has emerged as an excellent model for other eukaryotic V-ATPases. In this review, recent biochemical and genomic studies of the yeast V-ATPase are described, with a focus on: 1) the role of V(1) subunit H in coupling ATP hydrolysis and proton pumping and 2) identification of the full set of yeast haploid deletion mutants that exhibit the pH and calcium-sensitive growth characteristic of loss of V-ATPase activity. The combination of "close-up" biochemical views of V-ATPase structure and mechanism and "geomic" views of its functional reach promises to provide new insights into the physiological of V-ATPases.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, New York 13210, USA.
| |
Collapse
|