1
|
Gu SC, Xie ZG, Gu MJ, Wang CD, Xu LM, Gao C, Yuan XL, Wu Y, Hu YQ, Cao Y, Ye Q. Myricetin mitigates motor disturbance and decreases neuronal ferroptosis in a rat model of Parkinson's disease. Sci Rep 2024; 14:15107. [PMID: 38956066 PMCID: PMC11219851 DOI: 10.1038/s41598-024-62910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death form characterized by reactive oxygen species (ROS) overgeneration and lipid peroxidation. Myricetin, a flavonoid that exists in numerous plants, exhibits potent antioxidant capacity. Given that iron accumulation and ROS-provoked dopaminergic neuron death are the two main pathological hallmarks of Parkinson's disease (PD), we aimed to investigate whether myricetin decreases neuronal death through suppressing ferroptosis. The PD models were established by intraperitoneally injecting 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into rats and by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+), respectively. Ferroptosis was identified by assessing the levels of Fe2+, ROS, malondialdehyde (MDA), and glutathione (GSH). The results demonstrated that myricetin treatment effectively mitigated MPTP-triggered motor impairment, dopamine neuronal death, and α-synuclein (α-Syn) accumulation in PD models. Myricetin also alleviated MPTP-induced ferroptosis, as evidenced by decreased levels of Fe2+, ROS, and MDA and increased levels of GSH in the substantia nigra (SN) and serum in PD models. All these changes were reversed by erastin, a ferroptosis activator. In vitro, myricetin treatment restored SH-SY5Y cell viability and alleviated MPP+-induced SH-SY5Y cell ferroptosis. Mechanistically, myricetin accelerated nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and subsequent glutathione peroxidase 4 (Gpx4) expression in MPP+-treated SH-SY5Y cells, two critical inhibitors of ferroptosis. Collectively, these data demonstrate that myricetin may be a potential agent for decreasing dopaminergic neuron death by inhibiting ferroptosis in PD.
Collapse
Affiliation(s)
- Si-Chun Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Zhi-Guo Xie
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Min-Jue Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Chang-De Wang
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Li-Min Xu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Chen Gao
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Xiao-Lei Yuan
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - You Wu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Yu-Qing Hu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Yang Cao
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China.
| | - Qing Ye
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Sharma A, Shah OP, Sharma L, Gulati M, Behl T, Khalid A, Mohan S, Najmi A, Zoghebi K. Molecular Chaperones as Therapeutic Target: Hallmark of Neurodegenerative Disorders. Mol Neurobiol 2024; 61:4750-4767. [PMID: 38127187 DOI: 10.1007/s12035-023-03846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Misfolded and aggregated proteins build up in neurodegenerative illnesses, which causes neuronal dysfunction and ultimately neuronal death. In the last few years, there has been a significant upsurge in the level of interest towards the function of molecular chaperones in the control of misfolding and aggregation. The crucial molecular chaperones implicated in neurodegenerative illnesses are covered in this review article, along with a variety of their different methods of action. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones serve critical roles in preserving protein homeostasis. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones have integral roles in preserving regulation of protein balance. It has been demonstrated that aging, a significant risk factor for neurological disorders, affects how molecular chaperones function. The aggregation of misfolded proteins and the development of neurodegeneration may be facilitated by the aging-related reduction in chaperone activity. Molecular chaperones have also been linked to the pathophysiology of several instances of neuron withering illnesses, enumerating as Parkinson's disease, Huntington's disease, and Alzheimer's disease. Molecular chaperones have become potential therapy targets concerning with the prevention and therapeutic approach for brain disorders due to their crucial function in protein homeostasis and their connection to neurodegenerative illnesses. Protein homeostasis can be restored, and illness progression can be slowed down by methods that increase chaperone function or modify their expression. This review emphasizes the importance of molecular chaperones in the context of neuron withering disorders and their potential as therapeutic targets for brain disorders.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India, Amity University, Mohali, India.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box 2424, 11111, Khartoum, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia.
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Mohammed S, Russo I, Ramazzina I. Uncovering the Role of Natural and Synthetic Small Molecules in Counteracting the Burden of α-Synuclein Aggregates and Related Toxicity in Different Models of Parkinson's Disease. Int J Mol Sci 2023; 24:13370. [PMID: 37686175 PMCID: PMC10488152 DOI: 10.3390/ijms241713370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A proteostasis network represents a sophisticated cellular system that controls the whole process which leads to properly folded functional proteins. The imbalance of proteostasis determines a quantitative increase in misfolded proteins prone to aggregation and elicits the onset of different diseases. Among these, Parkinson's Disease (PD) is a progressive brain disorder characterized by motor and non-motor signs. In PD pathogenesis, alpha-Synuclein (α-Syn) loses its native structure, triggering a polymerization cascade that leads to the formation of toxic inclusions, the PD hallmark. Because molecular chaperones represent a "cellular arsenal" to counteract protein misfolding and aggregation, the modulation of their expression represents a compelling PD therapeutic strategy. This review will discuss evidence concerning the effects of natural and synthetic small molecules in counteracting α-Syn aggregation process and related toxicity, in different in vitro and in vivo PD models. Firstly, the role of small molecules that modulate the function(s) of chaperones will be highlighted. Then, attention will be paid to small molecules that interfere with different steps of the protein-aggregation process. This overview would stimulate in-depth research on already-known small molecules or the development of new ones, with the aim of developing drugs that are able to modify the progression of the disease.
Collapse
Affiliation(s)
- Salihu Mohammed
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, Via Europa 11, 25123 Brescia, Italy;
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Ileana Ramazzina
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
- Biostructures and Biosystems National Institute (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
4
|
Ma C, Feng Y, Li X, Sun L, He Z, Gan J, He M, Zhang X, Chen X. Potential Therapeutic Effects of Policosanol from Insect Wax on Caenorhabditis elegans Models of Parkinson's Disease. J Neuroimmune Pharmacol 2023; 18:127-144. [PMID: 36637699 DOI: 10.1007/s11481-022-10057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/17/2022] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The standard treatments for PD focus on symptom relief rather than attempting to address the underlying degenerative processes completely. This study aimed to evaluate the potential therapeutic effects of policosanol derived from insect wax (PIW) by investigating improvements in disease symptoms represented in Caenorhabditis elegans models of PD. For our assessments, we used the following three models: NL5901, which is a transgenic model for α-synuclein aggregation; wild-type N2 induced with 6-hydroxydopamine (6-OHDA); and 6-OHDA-induced BZ555 as a model for loss of dopaminergic neurons (DNs). Specifically, we examined the effects of PIW treatment on α-synuclein aggregation, the loss of DNs, lipid abundance, and the lifespan of treated organisms. Further, we examined treatment-related changes in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), glutathione S-transferase (GST), and superoxide dismutase (SOD), as well as the mRNA production profiles of relevant genes. A 10 µg/mL dose of PIW reduced the aggregation of α-synuclein in NL5901 and suppressed the loss of DNs in 6-OHDA-induced BZ555. Overall, PIW treatment decreased ROS and MDA levels, restored lipid abundance, and prolonged the lifespans of worms in all the three models, which may be associated with changes in the expression profiles of genes related to cell survival and oxidative stress response pathways. Our findings show that PIW alleviated the symptoms of PD in these models, possibly by regulating the stress responses initiated by injuries such as α-synuclein aggregation or 6-OHDA treatment.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Long Sun
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Zhao He
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Jin Gan
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Minjie He
- Health Management Center, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan Province, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China.
| | - Xiaoming Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| |
Collapse
|
5
|
Addabbo RM, Hutchinson RB, Allaman HJ, Dalphin MD, Mecha MF, Liu Y, Staikos A, Cavagnero S. Critical Beginnings: Selective Tuning of Solubility and Structural Accuracy of Newly Synthesized Proteins by the Hsp70 Chaperone System. J Phys Chem B 2023; 127:3990-4014. [PMID: 37130318 PMCID: PMC10829761 DOI: 10.1021/acs.jpcb.2c08485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proteins are particularly prone to aggregation immediately after release from the ribosome, and it is therefore important to elucidate the role of chaperones during these key steps of protein life. The Hsp70 and trigger factor (TF) chaperone systems interact with nascent proteins during biogenesis and immediately post-translationally. It is unclear, however, whether these chaperones can prevent formation of soluble and insoluble aggregates. Here, we address this question by monitoring the solubility and structural accuracy of globin proteins biosynthesized in an Escherichia coli cell-free system containing different concentrations of the bacterial Hsp70 and TF chaperones. We find that Hsp70 concentrations required to grant solubility to newly synthesized proteins are extremely sensitive to client-protein sequence. Importantly, Hsp70 concentrations yielding soluble client proteins are insufficient to prevent formation of soluble aggregates. In fact, for some aggregation-prone protein variants, avoidance of soluble-aggregate formation demands Hsp70 concentrations that exceed cellular levels in E. coli. In all, our data highlight the prominent role of soluble aggregates upon nascent-protein release from the ribosome and show the limitations of the Hsp70 chaperone system in the case of highly aggregation-prone proteins. These results demonstrate the need to devise better strategies to prevent soluble-aggregate formation upon release from the ribosome.
Collapse
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Rachel B. Hutchinson
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Heather J. Allaman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| |
Collapse
|
6
|
Xiong C, Zhu Y, Luo Q, Phan CW, Huo Y, Li P, Li Q, Jin X, Huang W. Neuroprotective effects of a novel peptide from Lignosus rhinocerotis against 6-hydroxydopamine-induced apoptosis in PC12 cells by inhibiting NF-κB activation. Food Sci Nutr 2023; 11:2152-2165. [PMID: 37181320 PMCID: PMC10171544 DOI: 10.1002/fsn3.3050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022] Open
Abstract
According to previous studies, oxidative stress is a leading cause of dopaminergic neuron death and may contribute to the pathogenesis of Parkinson's disease (PD). In the current study, we used chromatography of gel filtration to identify a novel peptide (Lignosus rhinocerotis peptide [LRP]) from the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden. Its neuroprotective effect was evaluated using an in vitro PD model constructed by 6-hydroxydopamine (6-OHDA)-stimulated to apoptosis in PC12 cells. The molecular weight of LRP is determined as 1532 Da and the secondary structure is irregular. The simple amino acid sequence of LRP is Thr-Leu-Ala-Pro-Thr-Phe-Leu-Ser-Ser-Leu-Gly-Pro-Cys-Leu-Leu. Notably, LRP has the ability to significantly boost the viability of PC12 cells after exposure to 6-OHDA, as well as enhance the cellular activity of antioxidative enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). LRP also lowers the level of malondialdehyde (MDA), decreases the activation performance of Caspase-3, and reduces 6-OHDA-induced apoptosis via inhibition of nuclear factor-kappa B (NF-κB) activation. These data indicate that LRP may have the potential to act as a neuroprotective agent.
Collapse
Affiliation(s)
- Chuan Xiong
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Yu Zhu
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Qiang Luo
- The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Chia Wei Phan
- Mushroom Research CentreUniversiti MalayaKuala LumpurMalaysia
- Department of Pharmaceutical Life SciencesFaculty of PharmacyUniversiti MalayaKuala LumpurMalaysia
| | - Yujie Huo
- Yunnan Plateau Characteristic Agricultural Industry Research InstituteYunnan Agricultural UniversityKunmingChina
| | - Ping Li
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Qiang Li
- College of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Xin Jin
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| |
Collapse
|
7
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
8
|
Carecho R, Figueira I, Terrasso AP, Godinho‐Pereira J, de Oliveira Sequeira C, Pereira SA, Milenkovic D, Leist M, Brito C, Nunes dos Santos C. Circulating (Poly)phenol Metabolites: Neuroprotection in a 3D Cell Model of Parkinson's Disease. Mol Nutr Food Res 2022; 66:e2100959. [PMID: 34964254 PMCID: PMC9788306 DOI: 10.1002/mnfr.202100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Diets rich in (poly)phenols have been associated with positive effects on neurodegenerative disorders, such as Parkinson's disease (PD). Several low-molecular weight (poly)phenol metabolites (LMWPM) are found in the plasma after consumption of (poly)phenol-rich food. It is expected that LMWPM, upon reaching the brain, may have beneficial effects against both oxidative stress and neuroinflammation, and possibly attenuate cell death mechanisms relate to the loss of dopaminergic neurons in PD. METHODS AND RESULTS This study investigates the neuroprotective potential of two blood-brain barrier permeant LMWPM, catechol-O-sulfate (cat-sulf), and pyrogallol-O-sulfate (pyr-sulf), in a human 3D cell model of PD. Neurospheroids were generated from LUHMES neuronal precursor cells and challenged by 1-methyl-4-phenylpyridinium (MPP+ ) to induce neuronal stress. LMWPM pretreatments were differently neuroprotective towards MPP+ insult, presenting distinct effects on the neuronal transcriptome. Particularly, cat-sulf pretreatment appeared to boost counter-regulatory defense mechanisms (preconditioning). When MPP+ is applied, both LMWPM positively modulated glutathione metabolism and heat-shock response, as also favorably shifting the balance of pro/anti-apoptotic proteins. CONCLUSIONS Our findings point to the potential of LMWPM to trigger molecular mechanisms that help dopaminergic neurons to cope with a subsequent toxic insult. They are promising molecules to be further explored in the context of preventing and attenuating parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Rafael Carecho
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
| | - Inês Figueira
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
| | - Ana Paula Terrasso
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | - Joana Godinho‐Pereira
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | | | - Sofia Azeredo Pereira
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
| | - Dragan Milenkovic
- INRAEUNHUniversité Clermont Auvergne63122St Genes ChampanelleFrance
- Department of NutritionUniversity of California Davis95616DavisCAUSA
| | - Marcel Leist
- In‐vitro Toxicology and BiomedicineUniversity of Konstanz78457ConstanceGermany
| | - Catarina Brito
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | - Cláudia Nunes dos Santos
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| |
Collapse
|
9
|
Kim S, Choi JG, Kim SW, Park SC, Kang YR, Park DS, Son M, Lee CH. Inhibition of α-synuclein aggregation by MT101-5 is neuroprotective in mouse models of Parkinson's disease. Biomed Pharmacother 2022; 154:113637. [PMID: 36058149 DOI: 10.1016/j.biopha.2022.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, after Alzheimer's disease, and becomes increasingly prevalent with age. α-Synuclein (α-syn) forms the major filamentous component of Lewy bodies, which are pathological hallmarks of α-synucleinopathies such as PD. We evaluated the neuroprotective effects of MT101-5, a standardized herbal formula that consists of an ethanolic extract of Genkwae Flos, Clematidis Radix, and Gastrodiae Rhizoma, against α-synuclein-induced cytotoxicity in vivo. MT101-5 protected against behavioral deficits and loss of dopaminergic neurons in human α-syn-overexpressing transgenic mice after treatment with 30 mg/kg/day for 5 months. We investigated transcriptomic changes within MT101-5 mechanisms of action (MOA) suppressing α-syn aggregation in an α-synuclein preformed fibril (α-syn PFF) mouse model of sporadic PD. We found that inhibition of α-syn fibril formation was associated with changes in transcripts in mitochondrial biogenesis, electron transport, chaperones, and proteasomes following treatment with MT101-5. These results suggest that the mixed herbal formula MT101-5 may be used as a pharmaceutical agent for preventing or improving PD.
Collapse
Affiliation(s)
- Sinyeon Kim
- MtheraPharma Co., Ltd., 38, Magokjungang 8-ro 1-gil, Gangseo-gu, Seoul, the Republic of Korea
| | - Jin Gyu Choi
- MtheraPharma Co., Ltd., 38, Magokjungang 8-ro 1-gil, Gangseo-gu, Seoul, the Republic of Korea
| | - Se Woong Kim
- MtheraPharma Co., Ltd., 38, Magokjungang 8-ro 1-gil, Gangseo-gu, Seoul, the Republic of Korea
| | - Sang Cheol Park
- MtheraPharma Co., Ltd., 38, Magokjungang 8-ro 1-gil, Gangseo-gu, Seoul, the Republic of Korea
| | - Yu-Ra Kang
- MtheraPharma Co., Ltd., 38, Magokjungang 8-ro 1-gil, Gangseo-gu, Seoul, the Republic of Korea
| | - Dong Seok Park
- MtheraPharma Co., Ltd., 38, Magokjungang 8-ro 1-gil, Gangseo-gu, Seoul, the Republic of Korea
| | - Miwon Son
- MtheraPharma Co., Ltd., 38, Magokjungang 8-ro 1-gil, Gangseo-gu, Seoul, the Republic of Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, the Republic of Korea.
| |
Collapse
|
10
|
Di Domenico F, Lanzillotta C. The disturbance of protein synthesis/degradation homeostasis is a common trait of age-related neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:49-87. [PMID: 36088079 DOI: 10.1016/bs.apcsb.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein homeostasis or "proteostasis" represent the process that regulates the balance of the intracellular functional and "healthy" proteins. Proteostasis is fundamental to preserve physiological metabolic processes in the cell and it allow to respond to any given stimulus as the expression of components of the proteostasis network is customized according to the proteomic demands of different cellular environments. In conditions that promote unfolding/misfolding of proteins chaperones act as signaling molecules inducing extreme measures to either fix the problem or destroy unfolded proteins. When the chaperone machinery fails under pathological insults unfolded proteins induce the endoplasmic reticulum (ER) stress activating the unfolded protein response (UPR) machinery. The activation of the UPR restores ER proteostasis primarily through the transcriptional remodeling of ER protein folding, trafficking, and degradation pathways, such as the ubiquitin proteasome system (UPS). If these mechanisms do not manage to clear the aberrant proteins, proteasome overload and become defective, and misfolded proteins may form aggregates thus extending the UPR mechanism. These aggregates are then attempted to be cleared by macroautophagy. Impaired proteostasis promote the accumulation of misfolded proteins that exacerbate the damage to chaperones, surveillance systems and/or degradative activities. Remarkably, the removal of toxic misfolded proteins is critical for all cells, but it is especially significant in neurons since these cannot be readily replaced. In neurons, the maintenance of efficient proteostasis is essential to healthy aging since the dysregulation of the proteostasis network can lead to neurodegenerative disease. Each of these brain pathologies is characterized by the repeated misfolding of one of more peculiar proteins, which evade both the protein folding machinery and cellular degradation mechanisms and begins to form aggregates that nucleate out into large fibrillar aggregates. In this chapter we describe the mechanisms, associated with faulty proteostasis, that promote the formation of protein aggregates, amyloid fibrils, intracellular, and extracellular inclusions in the most common nondegenerative disorders also referred to as protein misfolding disorders.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
The C-terminal domain of Hsp70 is responsible for paralog-specific regulation of ribonucleotide reductase. PLoS Genet 2022; 18:e1010079. [PMID: 35417483 PMCID: PMC9037926 DOI: 10.1371/journal.pgen.1010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
The Hsp70 family of molecular chaperones is well-conserved and expressed in all organisms. In budding yeast, cells express four highly similar cytosolic Hsp70s Ssa1, 2, 3 and 4 which arose from gene duplication. Ssa1 and 2 are constitutively expressed while Ssa3 and 4 are induced upon heat shock. Recent evidence suggests that despite their amino acid similarity, these Ssas have unique roles in the cell. Here we examine the relative importance of Ssa1-4 in the regulation of the enzyme ribonucleotide reductase (RNR). We demonstrate that cells expressing either Ssa3 or Ssa4 as their sole Ssa are compromised for their resistance to DNA damaging agents and activation of DNA damage response (DDR)-regulated transcription. In addition, we show that the steady state levels and stability of RNR small subunits Rnr2 and Rnr4 are reduced in Ssa3 or Ssa4-expressing cells, a result of decreased Ssa-RNR interaction. Interaction between the Hsp70 co-chaperone Ydj1 and RNR is correspondingly decreased in cells only expressing Ssa3 and 4. Through studies of Ssa2/4 domain swap chimeras, we determined that the C-terminal domain of Ssas are the source of this functional specificity. Taking together, our work suggests a distinct role for Ssa paralogs in regulating DNA replication mediated by C-terminus sequence variation. Cells require molecular chaperones to fold proteins into their active conformation. A major mystery however is why cells express so many highly-related and apparently redundant Hsp70 paralogs. We examined the role of four Hsp70 paralogs in budding yeast (Ssa1, 2, 3 and 4) on the activity of the ribonucleotide reductase (RNR complex). Importantly, we demonstrate there is selectivity of RNR subunits for Ssa1 and Ssa2 subunits, which is dictated by the co-chaperone Ydj1. Taken together, our work provides new insight into the functional specificity of Hsp70 paralogs using a native client protein.
Collapse
|
12
|
Guo Y, Liu Y, Wang H, Liu P. Long noncoding RNA SRY-box transcription factor 2 overlapping transcript participates in Parkinson's disease by regulating the microRNA-942-5p/nuclear apoptosis-inducing factor 1 axis. Bioengineered 2021; 12:8570-8582. [PMID: 34607512 PMCID: PMC8806952 DOI: 10.1080/21655979.2021.1987126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder. Studies have shown that long noncoding RNA SRY-box transcription factor 2 overlapping transcript (lncRNA SOX2-OT) is highly expressed in PD patients, but its specific functions and mechanisms require further research. To address this gap, this study utilized an in vitro PD cell model induced by 1-methyl-4-phenylpyridinium (MPP+). Cell viability, apoptosis, lactate dehydrogenase (LDH) activity, inflammatory factor secretion, and oxidative stress indicators were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheyltetrazolium bromide assay, LDH assay, flow cytometry, enzyme linked immunosorbent assay (ELISA), and corresponding kits, respectively. Gene and protein expression were measured using quantitative real-time-PCR and western blotting, respectively. The results indicated that microRNA-942-5p (miR-942-5p) was a direct target of lncRNA SOX2-OT and nuclear apoptosis-inducing factor 1 (NAIF1) was a direct target of miR-942-5p. The expression levels of lncRNA SOX2-OT and NAIF1 were increased, and miR-942-5p expression was decreased in SH-SY5Y cells following MPP+ treatment. In addition, MPP+ treatment reduced SH-SY5Y cell viability, increased apoptosis; increased cleaved caspase-3 protein expression and cleaved caspase-3/caspase-3 ratio; enhanced lactate dehydrogenase viability; increased tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and reactive oxygen species, and decreased superoxide dismutase activity in SH-SY5Y cells were inhibited by SOX2-OT-siRNA, and these inhibitions were reversed by miR-942-5p inhibitor. Moreover, the protective role of miR-942-5p mimic in MPP+-induced SH-SY5Y cells was eliminated by the NAIF1 plasmid. Overall, lncRNA SOX2-OT-mediated regulation of oxidative stress, inflammation, and neuronal apoptosis were directly controlled by the miR-942-5p/NAIF1 signal axis in MPP+-induced SH-SY5Y cells.
Collapse
Affiliation(s)
- Yabi Guo
- Rehabilitation Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yanyang Liu
- Rehabilitation Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hong Wang
- Rehabilitation Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Peijun Liu
- Rehabilitation Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
13
|
Medeiros J, Bamm VV, Jany C, Coackley C, Ward ME, Harauz G, Ryan SD, Ladizhansky V. Partial magic angle spinning NMR 1H, 13C, 15N resonance assignments of the flexible regions of a monomeric alpha-synuclein: conformation of C-terminus in the lipid-bound and amyloid fibril states. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:297-303. [PMID: 33797711 DOI: 10.1007/s12104-021-10020-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Alpha-synuclein (α-syn) is a small presynaptic protein that is believed to play an important role in the pathogenesis of Parkinson's disease (PD). It localizes to presynaptic terminals where it partitions between a cytosolic soluble and a lipid-bound state. Recent evidence suggests that α-syn can also associate with mitochondrial membranes where it interacts with a unique anionic phospholipid cardiolipin (CL). Here, we examine the conformation of the flexible fragments of a monomeric α-syn bound to lipid vesicles composed of anionic 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids, of tetraoleoyl CL (TOCL) and DOPC, and of fibrils. The dynamic properties of α-syn associated with DOPA:DOPC vesicles were the most favorable for conducting three-dimensional NMR experiments, and the 13C, 15N and amide 1H chemical shifts of the flexible and disordered C-terminus of α-syn could be assigned using three-dimensional through-bond magic angle spinning NMR spectroscopy. Although the C-terminus is more dynamically constrained in fibrils and in α-syn bound to TOCL:DOPC vesicles, a direct comparison of carbon chemical shifts detected using through bond two-dimensional spectroscopy indicates that the C-terminus is flexible and unstructured in all the three samples.
Collapse
Affiliation(s)
- Justin Medeiros
- Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Catherine Jany
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Carla Coackley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Meaghan E Ward
- Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - George Harauz
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Scott D Ryan
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
14
|
Rajasekaran S, Peterson PP, Liu Z, Robinson LC, Witt SN. α-Synuclein inhibits Snx3-retromer retrograde trafficking of the conserved membrane-bound proprotein convertase Kex2 in the secretory pathway of Saccharomyces cerevisiae. Hum Mol Genet 2021; 31:705-717. [PMID: 34570221 DOI: 10.1093/hmg/ddab284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
We tested the ability of alpha-synuclein (α-syn) to inhibit Snx3-retromer mediated retrograde trafficking of Kex2 and Ste13 between late endosomes and the trans-Golgi (TGN) using a Saccharomyces cerevisiae model of Parkinson's disease (PD). Kex2 and Ste13 are a conserved, membrane-bound proprotein convertase and dipeptidyl aminopeptidase, respectively, that process pro-α-factor and pro-killer toxin. Each of these proteins contains a cytosolic tail that binds to sorting nexin Snx3. Using a combination of techniques, including fluorescence microscopy, western blotting and a yeast mating assay, we found that α-syn disrupts Snx3-retromer trafficking of Kex2-GFP and GFP-Ste13 from the late endosome to the TGN, resulting in these two proteins transiting to the vacuole by default. Using three α-syn variants (A53T, A30P, and α-synΔC, which lacks residues 101-140), we further found that A53T and α-synΔC, but not A30P, reduce Snx3-retromer trafficking of Kex2-GFP, which is likely to be due to weaker binding of A30P to membranes. Degradation of Kex2 and Ste13 in the vacuole should result in the secretion of unprocessed, inactive forms of α-factor, which will reduce mating efficiency between MATa and MATα cells. We found that wild-type α-syn but not A30P significantly inhibited the secretion of α-factor. Collectively, our results support a model in which the membrane-binding ability of α-syn is necessary to disrupt Snx3-retromer retrograde recycling of these two conserved endopeptidases.
Collapse
Affiliation(s)
- Santhanasabapathy Rajasekaran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Patricia P Peterson
- Department of Biological Sciences, The University of New Orleans, New Orleans, LA 70148 USA
| | - Zhengchang Liu
- Department of Biological Sciences, The University of New Orleans, New Orleans, LA 70148 USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Stephan N Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| |
Collapse
|
15
|
Shadrina M, Slominsky P. Modeling Parkinson's Disease: Not Only Rodents? Front Aging Neurosci 2021; 13:695718. [PMID: 34421573 PMCID: PMC8377290 DOI: 10.3389/fnagi.2021.695718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common chronic progressive multifactorial neurodegenerative disease. In most cases, PD develops as a sporadic idiopathic disease. However, in 10%–15% of all patients, Mendelian inheritance of the disease is observed in an autosomal dominant or autosomal recessive manner. To date, mutations in seven genes have been convincingly confirmed as causative in typical familial forms of PD, i.e., SNCA, LRRK2, VPS35, PRKN, PINK1, GBA, and DJ-1. Family and genome-wide association studies have also identified a number of candidate disease genes and a common genetic variability at 90 loci has been linked to risk for PD. The analysis of the biological function of both proven and candidate genes made it possible to conclude that mitochondrial dysfunction, lysosomal dysfunction, impaired exosomal transport, and immunological processes can play important roles in the development of the pathological process of PD. The mechanisms of initiation of the pathological process and its earliest stages remain unclear. The study of the early stages of the disease (before the first motor symptoms appear) is extremely complicated by the long preclinical period. In addition, at present, the possibility of performing complex biochemical and molecular biological studies familial forms of PD is limited. However, in this case, the analysis of the state of the central nervous system can only be assessed by indirect signs, such as the level of metabolites in the cerebrospinal fluid, peripheral blood, and other biological fluids. One of the potential solutions to this problem is the analysis of disease models, in which it is possible to conduct a detailed in-depth study of all aspects of the pathological process, starting from its earliest stages. Many modeling options are available currently. An analysis of studies published in the 2000s suggests that toxic models in rodents are used in the vast majority of cases. However, interesting and important data for understanding the pathogenesis of PD can be obtained from other in vivo models. Within the framework of this review, we will consider various models of PD that were created using various living organisms, from unicellular yeast (Saccharomyces cerevisiae) and invertebrate (Nematode and Drosophila) forms to various mammalian species.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
16
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
17
|
Tamtaji OR, Hadinezhad T, Fallah M, Shahmirzadi AR, Taghizadeh M, Behnam M, Asemi Z. The Therapeutic Potential of Quercetin in Parkinson's Disease: Insights into its Molecular and Cellular Regulation. Curr Drug Targets 2021; 21:509-518. [PMID: 31721700 DOI: 10.2174/1389450120666191112155654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNc). PD is a multifactorial disorder, with several different factors being suggested to play a synergistic pathophysiological role, including oxidative stress, autophagy, underlying pro-inflammatory events and neurotransmitters abnormalities. Overall, PD can be viewed as the product of a complex interaction of environmental factors acting on a given genetic background. The importance of this subject has gained more attention to discover novel therapies to prevent as well as treat PD. According to previous research, drugs used to treat PD have indicated significant limitations. Therefore, the role of flavonoids has been extensively studied in PD treatment. Quercetin, a plant flavonol from the flavonoid group, has been considered as a supplemental therapy for PD. Quercetin has pharmacological functions in PD by controlling different molecular pathways. Although few studies intended to evaluate the basis for the use of quercetin in the context of PD have been conducted so far, at present, there is very little evidence available addressing the underlying mechanisms of action. Various principal aspects of these treatment procedures remain unknown. Here, currently existing knowledge supporting the use of quercetin for the clinical management of PD has been reviewed.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Tooba Hadinezhad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Chaudhury S, Keegan BM, Blagg BSJ. The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies. Med Res Rev 2021; 41:202-222. [PMID: 32844464 PMCID: PMC8485878 DOI: 10.1002/med.21729] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
Heat shock proteins (Hsps) are molecular chaperones that also play important roles in the activation of the heat shock response (HSR). The HSR is an evolutionary conserved and protective mechanism that is used to counter abnormal physiological conditions, stressors, and disease states, such as those exemplified in cancer and/or neurodegeneration. In normal cells, heat shock factor-1 (HSF-1), the transcription factor that regulates the HSR, remains in a dormant multiprotein complex that is formed upon association with chaperones (Hsp90, Hsp70, etc.), co-chaperones, and client proteins. However, under cellular stress, HSF-1 dissociates from Hsp90 and induces the transcriptional upregulation of Hsp70 to afford protection against the encountered cellular stress. As a consequence of both peripheral and central neuropathies, cellular stress occurs and results in the accumulation of unfolded and/or misfolded proteins, which can be counterbalanced by activation of the HSR. Since Hsp90 is the primary regulator of the HSR, modulation of Hsp90 by small molecules represents an attractive therapeutic approach against both peripheral and central neuropathies.
Collapse
Affiliation(s)
- Subhabrata Chaudhury
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bradley M Keegan
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
19
|
Sharma S, Sourirajan A, Baumler DJ, Dev K. Saccharomyces cerevisiae ER membrane protein complex subunit 4 (EMC4) plays a crucial role in eIF2B-mediated translation regulation and survival under stress conditions. J Genet Eng Biotechnol 2020; 18:15. [PMID: 32476094 PMCID: PMC7261713 DOI: 10.1186/s43141-020-00029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
Background Eukaryotic initiation factor 2B (eIF2B) initiates and regulates translation initiation in eukaryotes. eIF2B gene mutations cause leukoencephalopathy called vanishing white matter disease (VWM) in humans and slow growth (Slg−) and general control derepression (Gcd−) phenotypes in Saccharomyces cerevisiae. Results To suppress eIF2B mutations, S. cerevisiae genomic DNA library was constructed in high-copy vector (YEp24) and transformed into eIF2B mutant S. cerevisiae strains. The library was screened for wild-type genes rescuing S. cerevisiae (Slg−) and (Gcd−) phenotypes. A genomic clone, Suppressor-I (Sup-I), rescued S. cerevisiae Slg− and Gcd− phenotypes (gcd7-201 gcn2∆). The YEp24/Sup-I construct contained truncated TAN1, full length EMC4, full length YGL230C, and truncated SAP4 genes. Full length EMC4 (chaperone protein) gene was sub-cloned into pEG (KG) yeast expression vector and overexpressed in gcd7-201 gcn2∆ strain which suppressed the Slg− and Gcd− phenotype. A GST-Emc4 fusion protein of 47 kDa was detected by western blotting using α-GST antibodies. Suppression was specific to gcd7-201 gcn2∆ mutation in eIF2Bβ and Gcd1-502 gcn2∆ in eIF2Bγ subunit. Emc4p overexpression also protected the wild type and mutant (gcd7-201 gcn2∆, GCD7 gcn2∆, and GCD7 GCN2∆) strains from H2O2, ethanol, and caffeine stress. Conclusions Our results suggest that Emc4p is involved in eIF2B-mediated translational regulation under stress and could provide an amenable tool to understand the eIF2B-mediated defects.
Collapse
|
20
|
Friesen EL, Zhang YT, Earnshaw R, De Snoo ML, O'Hara DM, Agapova V, Chau H, Ngana S, Chen KS, Kalia LV, Kalia SK. BAG5 Promotes Alpha-Synuclein Oligomer Formation and Functionally Interacts With the Autophagy Adaptor Protein p62. Front Cell Dev Biol 2020; 8:716. [PMID: 32850835 PMCID: PMC7417480 DOI: 10.3389/fcell.2020.00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones are critical to maintaining intracellular proteostasis and have been shown to have a protective role against alpha-synuclein-mediated toxicity. Co-chaperone proteins regulate the activity of molecular chaperones and connect the chaperone network to protein degradation and cell death pathways. Bcl-2 associated athanogene 5 (BAG5) is a co-chaperone that modulates proteostasis by inhibiting the activity of Heat shock protein 70 (Hsp70) and several E3 ubiquitin ligases, resulting in enhanced neurodegeneration in models of Parkinson's disease (PD). Here we identify a novel interaction between BAG5 and p62/sequestosome-1 (SQSTM1), suggesting that BAG5 may bridge the chaperone network to autophagy-mediated protein degradation. We found that BAG5 enhanced the formation of pathogenic alpha-synuclein oligomers and regulated the levels and subcellular distribution of p62. These results extend the role of BAG5 in alpha-synuclein processing and intracellular proteostasis.
Collapse
Affiliation(s)
- Erik L Friesen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Yu Tong Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Rebecca Earnshaw
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Mitch L De Snoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Darren M O'Hara
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Victoria Agapova
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Hien Chau
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Sophie Ngana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Kevin S Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Lorraine V Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020; 49:e22. [PMID: 32493529 DOI: 10.1017/s0033583520000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
Collapse
|
22
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
23
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
24
|
The Yeast Hsp70 Cochaperone Ydj1 Regulates Functional Distinction of Ssa Hsp70s in the Hsp90 Chaperoning Pathway. Genetics 2020; 215:683-698. [PMID: 32299842 DOI: 10.1534/genetics.120.303190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
Heat-shock protein (Hsp) 90 assists in the folding of diverse sets of client proteins including kinases and growth hormone receptors. Hsp70 plays a major role in many Hsp90 functions by interacting and modulating conformation of its substrates before being transferred to Hsp90s for final maturation. Each eukaryote contains multiple members of the Hsp70 family. However, the role of different Hsp70 isoforms in Hsp90 chaperoning actions remains unknown. Using v-Src as an Hsp90 substrate, we examined the role of each of the four yeast cytosolic Ssa Hsp70s in regulating Hsp90 functions. We show that the strain expressing stress-inducible Ssa3 or Ssa4, and the not constitutively expressed Ssa1 or Ssa2, as the sole Ssa Hsp70 isoform reduces v-Src-mediated growth defects. The study shows that although different Hsp70 isoforms interact similarly with Hsp90s, v-Src maturation is less efficient in strains expressing Ssa4 as the sole Hsp70. We further show that the functional distinction between Ssa2 and Ssa4 is regulated by its C-terminal domain. Further studies reveal that Ydj1, which is known to assist substrate transfer to Hsp70s, interacts relatively weakly with Ssa4 compared with Ssa2, which could be the basis for poor maturation of the Hsp90 client in cells expressing stress-inducible Ssa4 as the sole Ssa Hsp70. The study thus reveals a novel role of Ydj1 in determining the functional distinction among Hsp70 isoforms with respect to the Hsp90 chaperoning action.
Collapse
|
25
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
26
|
Tan Y, Gao L, Yin Q, Sun Z, Man X, Du Y, Chen Y. Thyroid hormone levels and structural parameters of thyroid homeostasis are correlated with motor subtype and disease severity in euthyroid patients with Parkinson's disease. Int J Neurosci 2020; 131:346-356. [PMID: 32186220 DOI: 10.1080/00207454.2020.1744595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This study is to investigate the relationship between thyroid function and Parkinson's disease (PD).Materials and Methods: Totally 77 PD patients were included, who were divided into tremor-dominant-type (TDT), akinetic-rigid-type (ART) and mixed-type (MXT) subgroups. Parkinsonism severity and stage was assessed by modified H-Y stage. Thyroid-stimulating hormone (TSH), fT3 and fT4 levels were detected to analyze thyroid function. Parameters of thyroid homeostasis, including thyroid's secretory capacity (SPINA-GT), the total deiodinase activity (SPINA-GD) and Jostel's TSH index and the thyrotroph thyroid hormone sensitivity index (TTSI), were calculated and compared.Results: Thyroid hormone levels in PD patients were lower than normal controls. Patients with TDT/MXT had significantly higher fT4 level than those with ART. TSH levels were 1.73 ± 0.93 and 2.06 ± 1.04 ulU/ml for patients with TDT/MXT and ART, respectively. The patients in the TDT/MXT group had significantly lower SPINA-GD while significantly higher SPINA-GT than ART group. The fT3 level was significantly higher in early group than advanced group. TSH index in the early group was significantly higher than the advanced group. The fT4 level was negatively correlated with UPDRS motor score. Univariate and multivariable logistic regression analysis indicated that fT4 was positively correlated with PD motor subtype, which disappeared after adjusting for confounding factors. The fT3 level was negatively correlated with PD disease severity, even after adjusting for confounding factors. In female PD patients, fT4 level in TDT/MXT group was significantly higher than ART group. Male PD patients had higher fT4 levels in early patients than advanced patients. Percentage of patients exhibiting ART was decreased significantly in higher fT4 level subgroups. With the increase of TSH index and TTSI, the proportion of advanced PD patients gradually decreased. The proportion of PD patients with TDT/MXT motor subtype gradually increased with the quartiles of SPINA-GT.Conclusion: Thyroid hormone levels and structural parameters of thyroid homeostasis are correlated with motor subtype and disease severity in euthyroid patients with PD.
Collapse
Affiliation(s)
- Yinyin Tan
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Gao
- The People Hospital of Huaiyin Jinan, Jinan, China
| | - Qingqing Yin
- Department of Geriatrics, Department of Geriatric Neurology, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhanfang Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiao Man
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yan Chen
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
27
|
Teil M, Arotcarena ML, Faggiani E, Laferriere F, Bezard E, Dehay B. Targeting α-synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules 2020; 10:biom10030391. [PMID: 32138193 PMCID: PMC7175302 DOI: 10.3390/biom10030391] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's Disease (PD) is characterized both by the loss of dopaminergic neurons in the substantia nigra and the presence of cytoplasmic inclusions called Lewy Bodies. These Lewy Bodies contain the aggregated α-synuclein (α-syn) protein, which has been shown to be able to propagate from cell to cell and throughout different regions in the brain. Due to its central role in the pathology and the lack of a curative treatment for PD, an increasing number of studies have aimed at targeting this protein for therapeutics. Here, we reviewed and discussed the many different approaches that have been studied to inhibit α-syn accumulation via direct and indirect targeting. These analyses have led to the generation of multiple clinical trials that are either completed or currently active. These clinical trials and the current preclinical studies must still face obstacles ahead, but give hope of finding a therapy for PD with time.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Florent Laferriere
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
28
|
Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:53-68. [PMID: 32297211 DOI: 10.1007/978-3-030-40204-4_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein homeostasis (Proteostasis) is essential for correct and efficient protein function within the living cell. Among the critical components of the Proteostasis Network (PN) are molecular chaperones that serve widely in protein biogenesis under physiological conditions, and prevent protein misfolding and aggregation enhanced by conditions of cellular stress. For Alzheimer's, Parkinson's, Huntington's diseases and ALS, multiple classes of molecular chaperones interact with the highly aggregation-prone proteins amyloid-β, tau, α-synuclein, huntingtin and SOD1 to influence the course of proteotoxicity associated with these neurodegenerative diseases. Accordingly, overexpression of molecular chaperones and induction of the heat shock response have been shown to be protective in a wide range of animal models of these diseases. In contrast, for cancer cells the upregulation of chaperones has the undesirable effect of promoting cellular survival and tumor growth by stabilizing mutant oncoproteins. In both situations, physiological levels of molecular chaperones eventually become functionally compromised by the persistence of misfolded substrates, leading to a decline in global protein homeostasis and the dysregulation of diverse cellular pathways. The phenomenon of chaperone competition may underlie the broad pathology observed in aging and neurodegenerative diseases, and restoration of physiological protein homeostasis may be a suitable therapeutic avenue for neurodegeneration as well as for cancer.
Collapse
|
29
|
Tamtaji OR, Reiter RJ, Alipoor R, Dadgostar E, Kouchaki E, Asemi Z. Melatonin and Parkinson Disease: Current Status and Future Perspectives for Molecular Mechanisms. Cell Mol Neurobiol 2020; 40:15-23. [PMID: 31388798 PMCID: PMC11448849 DOI: 10.1007/s10571-019-00720-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Parkinson disease (PD) is a chronic and neurodegenerative disease with motor and nonmotor symptoms. Multiple pathways are involved in the pathophysiology of PD, including apoptosis, autophagy, oxidative stress, inflammation, α-synuclein aggregation, and changes in the neurotransmitters. Preclinical and clinical studies have shown that melatonin supplementation is an appropriate therapy for PD. Administration of melatonin leads to inhibition of some pathways related to apoptosis, autophagy, oxidative stress, inflammation, α-synuclein aggregation, and dopamine loss in PD. In addition, melatonin improves some nonmotor symptom in patients with PD. Limited studies, however, have evaluated the role of melatonin on molecular mechanisms and clinical symptoms in PD. This review summarizes what is known regarding the impact of melatonin on PD in preclinical and clinical studies.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Islamic Republic of Iran
| | | | - Ebrahim Kouchaki
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
30
|
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell 2019; 18:e13031. [PMID: 31432604 PMCID: PMC6826160 DOI: 10.1111/acel.13031] [Citation(s) in RCA: 453] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease prevalence is rapidly increasing in an aging global population. With this increase comes exponentially rising social and economic costs, emphasizing the immediate need for effective disease‐modifying treatments. Motor dysfunction results from the loss of dopaminergic neurons in the substantia nigra pars compacta and depletion of dopamine in the nigrostriatal pathway. While a specific biochemical mechanism remains elusive, oxidative stress plays an undeniable role in a complex and progressive neurodegenerative cascade. This review will explore the molecular factors that contribute to the high steady‐state of oxidative stress in the healthy substantia nigra during aging, and how this chemical environment renders neurons susceptible to oxidative damage in Parkinson's disease. Contributing factors to oxidative stress during aging and as a pathogenic mechanism for Parkinson's disease will be discussed within the context of how and why therapeutic approaches targeting cellular redox activity in this disorder have, to date, yielded little therapeutic benefit. We present a contemporary perspective on the central biochemical contribution of redox imbalance to Parkinson's disease etiology and argue that improving our ability to accurately measure oxidative stress, dopaminergic neurotransmission and cell death pathways in vivo is crucial for both the development of new therapies and the identification of novel disease biomarkers.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology, Faculty of Medical and Health The University of Sydney Sydney NSW Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway NSW Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology, Faculty of Medical and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
31
|
Sampaio‐Marques B, Guedes A, Vasilevskiy I, Gonçalves S, Outeiro TF, Winderickx J, Burhans WC, Ludovico P. α-Synuclein toxicity in yeast and human cells is caused by cell cycle re-entry and autophagy degradation of ribonucleotide reductase 1. Aging Cell 2019; 18:e12922. [PMID: 30977294 PMCID: PMC6612645 DOI: 10.1111/acel.12922] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/21/2018] [Accepted: 01/20/2019] [Indexed: 12/22/2022] Open
Abstract
α‐Synuclein (aSyn) toxicity is associated with cell cycle alterations, activation of DNA damage responses (DDR), and deregulation of autophagy. However, the relationships between these phenomena remain largely unknown. Here, we demonstrate that in a yeast model of aSyn toxicity and aging, aSyn expression induces Ras2‐dependent growth signaling, cell cycle re‐entry, DDR activation, autophagy, and autophagic degradation of ribonucleotide reductase 1 (Rnr1), a protein required for the activity of ribonucleotide reductase and dNTP synthesis. These events lead to cell death and aging, which are abrogated by deleting RAS2, inhibiting DDR or autophagy, or overexpressing RNR1. aSyn expression in human H4 neuroglioma cells also induces cell cycle re‐entry and S‐phase arrest, autophagy, and degradation of RRM1, the human homologue of RNR1, and inhibiting autophagic degradation of RRM1 rescues cells from cell death. Our findings represent a model for aSyn toxicity that has important implications for understanding synucleinopathies and other age‐related neurodegenerative diseases.
Collapse
Affiliation(s)
- Belém Sampaio‐Marques
- School of Medicine, Life and Health Sciences Research Institute (ICVS) University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Guimarães Portugal
| | - Ana Guedes
- School of Medicine, Life and Health Sciences Research Institute (ICVS) University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Guimarães Portugal
| | - Igor Vasilevskiy
- School of Medicine, Life and Health Sciences Research Institute (ICVS) University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Guimarães Portugal
| | - Susana Gonçalves
- Faculdade de Ciências Médicas, CEDOC – Chronic Diseases Research Center Universidade Nova de Lisboa Lisboa Portugal
| | - Tiago F. Outeiro
- Faculdade de Ciências Médicas, CEDOC – Chronic Diseases Research Center Universidade Nova de Lisboa Lisboa Portugal
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) University Medical Center Göttingen Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration Göttingen Germany
- Max Planck Institute for Experimental Medicine Göttingen Germany
| | | | - William C. Burhans
- Department of Molecular and Cellular Biology Roswell Park Cancer Institute Buffalo New York
| | - Paula Ludovico
- School of Medicine, Life and Health Sciences Research Institute (ICVS) University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Guimarães Portugal
| |
Collapse
|
32
|
Chaari A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int J Biol Macromol 2019; 131:396-411. [DOI: 10.1016/j.ijbiomac.2019.02.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
33
|
Tamtaji OR, Behnam M, Pourattar MA, Jafarpour H, Asemi Z. Aquaporin 4: A key player in Parkinson's disease. J Cell Physiol 2019; 234:21471-21478. [PMID: 31127615 DOI: 10.1002/jcp.28871] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases which occur in aged people worldwide. Given that a sequence of cellular and molecular mechanisms, including oxidative stresses, apoptosis, inflammatory pathways, microglia, astrocyte activation, and aquaporin 4 (AQP4) are associated with initiation and the progression of PD. AQP4 may affect various pathways (i.e., α-synuclein, inflammatory pathways, and microglia and astrocyte activation). Few reports have evaluated the relationship between AQP4 and PD-related cellular and molecular pathways. Here, for the first time, we highlighted the relationship between AQP4 and molecular mechanisms involved in PD pathogenesis.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Hamed Jafarpour
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
34
|
Patel D, Xu C, Nagarajan S, Liu Z, Hemphill WO, Shi R, Uversky VN, Caldwell GA, Caldwell KA, Witt SN. Alpha-synuclein inhibits Snx3-retromer-mediated retrograde recycling of iron transporters in S. cerevisiae and C. elegans models of Parkinson's disease. Hum Mol Genet 2019; 27:1514-1532. [PMID: 29452354 DOI: 10.1093/hmg/ddy059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/12/2018] [Indexed: 01/31/2023] Open
Abstract
We probed the role of alpha-synuclein (α-syn) in modulating sorting nexin 3 (Snx3)-retromer-mediated recycling of iron transporters in Saccharomyces cerevisiae and Caenorhabditis elegans. In yeast, the membrane-bound heterodimer Fet3/Ftr1 is the high affinity iron importer. Fet3 is a membrane-bound multicopper ferroxidase, whose ferroxidase domain is orthologous to human ceruloplasmin (Cp), that oxidizes external Fe+2 to Fe+3; the Fe+3 ions then channel through the Ftr1 permease into the cell. When the concentration of external iron is low (<1 µM), Fet3/Ftr1 is maintained on the plasma membrane by retrograde endocytic-recycling; whereas, when the concentration of external iron is high (>10 µM), Fet3/Ftr1 is endocytosed and shunted to the vacuole for degradation. We discovered that α-syn expression phenocopies the high iron condition: under the low iron condition (<1 µM), α-syn inhibits Snx3-retromer-mediated recycling of Fet3/Ftr1 and instead shunts Fet3/Ftr1 into the multivesicular body pathway to the vacuole. α-Syn inhibits recycling by blocking the association of Snx3-mCherry molecules with endocytic vesicles, possibly by interfering with the binding of Snx3 to phosphatidylinositol-3-monophosphate. In C. elegans, transgenic worms expressing α-syn exhibit an age-dependent degeneration of dopaminergic neurons that is partially rescued by the iron chelator desferoxamine. This implies that α-syn-expressing dopaminergic neurons are susceptible to changes in iron neurotoxicity with age, whereby excess iron enhances α-syn-induced neurodegeneration. In vivo genetic analysis indicates that α-syn dysregulates iron homeostasis in worm dopaminergic neurons, possibly by inhibiting SNX-3-mediated recycling of a membrane-bound ortholog of Cp (F21D5.3), the iron exporter ferroportin (FPN1.1), or both.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Chuan Xu
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Sureshbabu Nagarajan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Zhengchang Liu
- Department of Biological Sciences, The University of New Orleans, New Orleans, LA 70148, USA
| | - Wayne O Hemphill
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Runhua Shi
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Stephan N Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.,Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
35
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
36
|
Derf A, Verekar SA, Jain SK, Deshmukh SK, Bharate SB, Chaudhuri B. Radicicol rescues yeast cell death triggered by expression of human α-synuclein and its A53T mutant, but not by human βA4 peptide and proapoptotic protein bax. Bioorg Chem 2019; 85:152-158. [PMID: 30612081 DOI: 10.1016/j.bioorg.2018.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 11/24/2022]
Abstract
Aggregation/misfolding of α-synuclein and βA4 proteins cause neuronal cell death (NCD) associated with Parkinson's and Alzheimer's disease. It has been suggested that a heat shock protein-90 (Hsp90) inhibitor can prevent NCD by activating the heat shock transcription factor-1 which, in turn, upregulates molecular chaperones such as Hsp70 that targets aggregated/misfolded proteins for refolding/degradation. We have isolated radicicol, an Hsp90 inhibitor, from a fungus occurring in the crevices of marble rocks of Central India. Radicicol, which was found to be a strong antioxidant, was tested for its ability to rescue yeast cells from death induced by expression of wild-type α-synuclein, its more toxic A53T mutant, and βA4. It effectively overcomes wild-type/mutant α-synuclein mediated yeast cell death, concomitantly diminishes ROS levels, reverses mitochondrial dysfunction and prevents nuclear DNA-fragmentation, a hallmark of apoptosis. Surprisingly however, radicicol is unable to rescue yeast cells from death triggered by expression of secreted βA4. Moreover, although radicicol acts as an antioxidant it fails to prevent yeast cell death inflicted by the proapoptotic protein, Bax. Our results indicate that radicicol specifically targets aggregated/misfolded α-synuclein's toxicity and opens up the possibility of using multiple yeast assays to screen natural product libraries for compounds that would unambiguously target α-synuclein aggregation/misfolding.
Collapse
Affiliation(s)
- Asma Derf
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Shilpa A Verekar
- Piramal Life Sciences Limited, Goregaon (East), Mumbai 400 063, India
| | - Shreyans K Jain
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sunil K Deshmukh
- Piramal Life Sciences Limited, Goregaon (East), Mumbai 400 063, India
| | - Sandip B Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| |
Collapse
|
37
|
Abstract
The budding yeast Saccharomyces cerevisiae (S. cerevisiae) has been a remarkable experimental model for the discovery of fundamental biological processes. The high degree of conservation of cellular and molecular processes between the budding yeast and higher eukaryotes has made it a valuable system for the investigation of the molecular mechanisms behind various types of devastating human pathologies. Genetic screens in yeast provided important insight into the toxic mechanisms associated with the accumulation of misfolded proteins. Thus, using yeast genetics and high-throughput screens, novel molecular targets with therapeutic potential have been identified. Here, we describe a yeast screen protocol for the identification of genetic modifiers of alpha-synuclein (aSyn) toxicity, thereby accelerating the identification of novel potential targets for intervention in Parkinson's disease (PD) and other synucleinopathies.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany.
- Max Planck Institute for Experimental Medicine, Goettingen, Germany.
| |
Collapse
|
38
|
From Yeast to Humans: Leveraging New Approaches in Yeast to Accelerate Discovery of Therapeutic Targets for Synucleinopathies. Methods Mol Biol 2019; 2049:419-444. [PMID: 31602625 DOI: 10.1007/978-1-4939-9736-7_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases (ND) represent a growing, global health crisis, one that lacks any disease-modifying therapeutic strategy. This critical need for new therapies must be met with an exhaustive approach to exploit all tools available. A yeast (Saccharomyces cerevisiae) model of α-synuclein toxicity-the protein causally linked to Parkinson's disease and other synucleinopathies-offers a powerful approach that takes advantage of the unique offerings of this system: tractable genetics, robust high-throughput screening strategies, unparalleled data repositories, powerful computational tools, and extensive evolutionary conservation of fundamental biological pathways. These attributes have enabled genetic and small molecule screens that have revealed toxic phenotypes and drug targets that translate directly to patient-derived iPSC neurons. Extending these insights, recent advances in genetic network analyses have generated the first "humanized" α-synuclein network, which has identified druggable proteins and led to validation of the toxic phenotypes in patient-derived cells. Unbiased phenotypic small molecule screens can identify compounds targeting critical proteins within α-synuclein networks. While identification of direct drug targets for phenotypic screen hits represents a bottleneck, high-throughput chemical genetic methods provide a means to uncover cellular targets and pathways for large numbers of compounds in parallel. Taken together, the yeast α-synuclein model and associated tools can reveal insights into underlying cellular pathologies, lead molecules and their cognate targets, and strategies to translate mechanisms of toxicity and cytoprotection into complex neuronal systems.
Collapse
|
39
|
Zhou F, Ju J, Fang Y, Fan X, Yan S, Wang Q, Wei P, Duan F, Miao F, Hu Z, Wang M. Salidroside protected against MPP
+
‐induced Parkinson's disease in PC12 cells by inhibiting inflammation, oxidative stress and cell apoptosis. Biotechnol Appl Biochem 2018; 66:247-253. [PMID: 30548933 DOI: 10.1002/bab.1719] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Feng Zhou
- Department of Neurosurgerythe Affiliated Hospital of Shaanxi University of Chinese Medicine Xianyang China
- Department of NeurosurgeryFirst Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jing Ju
- Operation RoomXianyang IRICO Hospital Xianyang China
| | - Yongjun Fang
- Department of Neurosurgerythe Affiliated Hospital of Shaanxi University of Chinese Medicine Xianyang China
| | - Xiaoxuan Fan
- Department of Neurosurgerythe Affiliated Hospital of Shaanxi University of Chinese Medicine Xianyang China
| | - Shuguang Yan
- Department of Neurosurgerythe Affiliated Hospital of Shaanxi University of Chinese Medicine Xianyang China
| | - Qiang Wang
- Combination of Acupuncture and Medicine Innovation Research CenterShaanxi University of Chinese Medicine Xianyang China
| | - Pengfang Wei
- Department of Neurosurgerythe Affiliated Hospital of Shaanxi University of Chinese Medicine Xianyang China
| | - Fuliang Duan
- Department of Chinese and Western Medicinethe Shaanxi University of Chinese Medicine Xianyang China
| | - Feng Miao
- Department of Cerebropathythe Affiliated Hospital of Shaanxi University of Chinese Medicine Xianyang China
| | - Zhenyuan Hu
- Department of Neurosurgerythe Affiliated Hospital of Shaanxi University of Chinese Medicine Xianyang China
| | - Maode Wang
- Department of NeurosurgeryFirst Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| |
Collapse
|
40
|
Derf A, Sharma A, Bharate SB, Chaudhuri B. Aegeline, a natural product from the plant Aegle marmelos, mimics the yeast SNARE protein Sec22p in suppressing α-synuclein and Bax toxicity in yeast. Bioorg Med Chem Lett 2018; 29:454-460. [PMID: 30579794 DOI: 10.1016/j.bmcl.2018.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Herein, we have identified yeast Sec22p (ySec22p), a SNARE protein essential for endoplasmic reticulum to Golgi trafficking, as a suppressor of Bax-induced yeast apoptosis and corroborated published observations that ySec22p suppresses α-synuclein's toxicity in yeast. It has been suggested that compounds which enhance expression, in neurons, of human homologues of ySec22p (Sec22Bp/Sec22p/Sec22A) would prevent synucleinopathies, such as Parkinson's disease. With the aim of finding a small molecule that would mimic ySec22p, a library of natural products consisting of 394-compounds was screened using yeast cells that express either human α-synuclein or human Bax. The antioxidant aegeline, an alkaloid-amide occurring in the leaves of the plant Aegle marmelos Correa, was the only molecule that overcame apoptosis induced by both α-synuclein and Bax in yeast. Besides, aegeline also prevented growth block in cells expressing the more toxic A53T α-synuclein mutant. Restoration of cell growth occurred through inhibition of increased ROS levels, mitochondrial membrane potential loss and nuclear DNA fragmentation, characteristics of apoptosis manifested in α-synuclein or Bax-expressing cells. These results highlight the importance of yeast systems to identify rapidly molecules that may prevent the onset of apoptosis that occurs in Parkinson's disease.
Collapse
Affiliation(s)
- Asma Derf
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ankita Sharma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| |
Collapse
|
41
|
Gupta A, Puri A, Singh P, Sonam S, Pandey R, Sharma D. The yeast stress inducible Ssa Hsp70 reduces α-synuclein toxicity by promoting its degradation through autophagy. PLoS Genet 2018; 14:e1007751. [PMID: 30376576 PMCID: PMC6226208 DOI: 10.1371/journal.pgen.1007751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/09/2018] [Accepted: 10/09/2018] [Indexed: 01/14/2023] Open
Abstract
The mechanism underlying the role of Hsp70s in toxicity associated with intracellular accumulation of toxic protein inclusions is under intense investigation. In current study, we examined the roles of all different isoforms of yeast cytosolic Ssa Hsp70 on α-synuclein mediated cellular toxicity. The study showed that yeast cells expressing stress-inducible Ssa3 or Ssa4 as sole Ssa Hsp70 isoforms, reduced α-synuclein toxicity better than those expressing a constitutive counterpart. The protective effect of stress-inducible Ssa Hsp70s was not α-syn specific, but more general to other inclusion forming proteins such as polyQ. We show that the protective effect is not by induction of a general stress response in Ssa3 cells rather by promoting α-synuclein degradation through autophagy. The present study revealed that effect of Hsp70s was isoform dependent, and that autophagy protects Ssa3 cells from the deleterious effects of toxic protein inclusions.
Collapse
Affiliation(s)
- Arpit Gupta
- G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Anuradhika Puri
- G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Prashant Singh
- G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Surabhi Sonam
- G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Richa Pandey
- G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Deepak Sharma
- G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
42
|
Chen Y, Shao Q, Yuan YH, Chen NH. Prion-like propagation of α-synuclein in the gut-brain axis. Brain Res Bull 2018; 140:341-346. [PMID: 29894766 DOI: 10.1016/j.brainresbull.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD) is a progressive degenerative disease of the nervous system, which is characterized by movement disorders, such as static tremor, rigidity, and bradykinesia in advanced patients. Gastrointestinal (GI) dysfunction, such as gastric dysmotility, constipation, and anorectic dysfunction, is common non-motor symptom in the early stage of PD. The progression of PD includes the degenerative loss of dopaminergic (DA) neurons and aggregation of α-synuclein in the substantia nigra (SN). Interestingly, both of them are also present in the enteric nervous system (ENS) of PD patients. In this review, we describe the relationship between non-motor symptoms particularly GI dysfunction and the pathogenesis of PD, aiming to show the powerful evidences about the prion-like propagation of α-synuclein and support the hypothesis of gut-brain axis in PD. We then summarize the mechanism of the gut-brain axis and confirm α-synuclein as a potential target for drug design or new clinical treatment.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qianhang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
43
|
Di Gregorio SE, Duennwald ML. Yeast as a model to study protein misfolding in aged cells. FEMS Yeast Res 2018; 18:4996350. [DOI: 10.1093/femsyr/foy054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sonja E Di Gregorio
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Martin L Duennwald
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
44
|
(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Sci Rep 2018; 8:6965. [PMID: 29725038 PMCID: PMC5934470 DOI: 10.1038/s41598-018-25118-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/11/2018] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease associated with the misfolding and aggregation of alpha-synuclein (aSyn). The molecular underpinnings of PD are still obscure, but nutrition may play an important role in the prevention, onset, and disease progression. Dietary (poly)phenols revert and prevent age-related cognitive decline and neurodegeneration in model systems. However, only limited attempts were made to evaluate the impact of digestion on the bioactivities of (poly)phenols and determine their mechanisms of action. This constitutes a challenge for the development of (poly)phenol-based nutritional therapies. Here, we subjected (poly)phenols from Arbutus unedo to in vitro digestion and tested the products in cell models of PD based on the cytotoxicity of aSyn. The (poly)phenol-digested metabolites from A. unedo leaves (LPDMs) effectively counteracted aSyn and H2O2 toxicity in yeast and human cells, improving viability by reducing aSyn aggregation and inducing its clearance. In addition, LPDMs modulated pathways associated with aSyn toxicity, such as oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial impairment, and SIR2 expression. Overall, LPDMs reduced aSyn toxicity, enhanced the efficiency of ER-associated protein degradation by the proteasome and autophagy, and reduced oxidative stress. In total, our study opens novel avenues for the exploitation of (poly)phenols in nutrition and health.
Collapse
|
45
|
Hsp90 Co-chaperone p23 contributes to dopaminergic mitochondrial stress via stabilization of PHD2: Implications for Parkinson's disease. Neurotoxicology 2018; 65:166-173. [PMID: 29471019 DOI: 10.1016/j.neuro.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
The heat shock factor 90 (hsp90) complex has long been associated with neuropathological phenotypes linked to Parkinson's disease (PD) and its inhibition is neuroprotective in disease models. Hsp90 is conventionally believed to act by suppressing induction of hsp70. Here, we report a novel hsp70-independent mechanism by which Hsp90 may also contribute to PD-associated neuropathology. We previously reported that inhibition of the enzyme prolyl hydroxylase domain 2 (PHD2) in conjunction with increases in hypoxia-inducible factor 1 alpha (HIF1α) results in protection of vulnerable dopaminergic substantia nigra pars compacta (DAergic SNpc) neurons in in vitro and in vivo models of PD. We discovered an increased interaction between PHD2 and the p23:Hsp90 chaperone complex in response to mitochondrial stress elicited by the mitochondrial neurotoxin 1-methyl-4-phenylpyridine (MPP+) within cultured DAergic cells. Genetic p23 knockdown was found to result in decreases in steady-state PHD2 protein and activity and reduced susceptibility to MPP+ neurotoxicity. Administration of the p23 inhibitor gedunin was also neuroprotective in these cells as well as in human induced pluripotent stem cell (iPSC)-derived neurons. Our data suggests that mitochondrial stress-mediated elevations in PHD2 interaction with the p23-hsp90 complex have detrimental effects on the survival of DAergic neurons, while p23 inhibition is neuroprotective. We propose that neurotoxic effects are tied to enhanced PHD2 stabilization by the hsp90-p23 chaperone complex that is abrogated by p23 inhibition. This demonstrates a novel connection between two independent pathways previously linked to PD, hsp90 and PHD2-HIF1α, which could have important implications for here-to-fore unexplored mechanisms underlying PD neuropathology.
Collapse
|
46
|
Rusin A, Seymour C, Mothersill C. Chronic fatigue and immune deficiency syndrome (CFIDS), cellular metabolism, and ionizing radiation: a review of contemporary scientific literature and suggested directions for future research. Int J Radiat Biol 2018; 94:212-228. [DOI: 10.1080/09553002.2018.1422871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada
| | | |
Collapse
|
47
|
Serum Mortalin Correlated with α-Synuclein as Serum Markers in Parkinson’s Disease: A Pilot Study. Neuromolecular Med 2018; 20:83-89. [DOI: 10.1007/s12017-017-8475-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
48
|
Som Chaudhury S, Das Mukhopadhyay C. Functional amyloids: interrelationship with other amyloids and therapeutic assessment to treat neurodegenerative diseases. Int J Neurosci 2017; 128:449-463. [PMID: 29076790 DOI: 10.1080/00207454.2017.1398153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sutapa Som Chaudhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India
| |
Collapse
|
49
|
Macedo D, Bertolin TE, Oro T, Backes LTH, Brás IC, Santos CN, Tenreiro S, Outeiro TF. Phycocyanin protects against Alpha-Synuclein toxicity in yeast. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
50
|
Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments. Transl Neurodegener 2017; 6:28. [PMID: 29090092 PMCID: PMC5655877 DOI: 10.1186/s40035-017-0099-z] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Gradual degeneration and loss of dopaminergic neurons in the substantia nigra, pars compacta and subsequent reduction of dopamine levels in striatum are associated with motor deficits that characterize Parkinson’s disease (PD). In addition, half of the PD patients also exhibit frontostriatal-mediated executive dysfunction, including deficits in attention, short-term working memory, speed of mental processing, and impulsivity. The most commonly used treatments for PD are only partially or transiently effective and are available or applicable to a minority of patients. Because, these therapies neither restore the lost or degenerated dopaminergic neurons, nor prevent or delay the disease progression, the need for more effective therapeutics is critical. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways involved in PD, particularly within the context of how genetic and environmental factors contribute to the initiation and progression of this disease. The involvement of molecular chaperones, autophagy-lysosomal pathways, and proteasome systems in PD are also highlighted. In addition, emerging therapies, including pharmacological manipulations, surgical procedures, stem cell transplantation, gene therapy, as well as complementary, supportive and rehabilitation therapies to prevent or delay the progression of this complex disease are reviewed.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mt. Pleasant, MI 48859 USA.,Program in Neuroscience, Mt. Pleasant, MI 48859 USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604 USA.,Department of Biology, Saginaw Valley State University, Saginaw, MI 48604 USA
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38105 USA
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mt. Pleasant, MI 48859 USA.,Program in Neuroscience, Mt. Pleasant, MI 48859 USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604 USA
| |
Collapse
|