1
|
Li Y, Qu J, Sun Y, Chang C. Troponin T1 Promotes the Proliferation of Ovarian Cancer by Regulating Cell Cycle and Apoptosis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3405. [PMID: 36811103 PMCID: PMC9938930 DOI: 10.30498/ijb.2022.344921.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023]
Abstract
Background Troponin T1 (TNNT1) is implicated in human carcinogenesis. However, the role of TNNT1 in ovarian cancer (OC) remains unclear. Objectives To investigate the effect of TNNT1 on the progression of ovarian cancer. Materials and Methods The level of TNNT1 was evaluated in OC patients based on The Cancer Genome Atlas (TCGA). Knockdown or overexpression of TNNT1 using siRNA targeting TNNT1 or plasmid carrying TNNT1 was performed in the ovarian cancer SKOV3 cell, respectively. RT-qPCR was performed to detect mRNA expression. Western blotting was used to examine protein expression. Cell Counting Kit-8, colony formation, cell cycle, and transwell assays were performed to analyze the role of TNNT1 on the proliferation and migration of ovarian cancer. Besides, xenograft model was carried out to evaluate the in vivo effect of TNNT1 on OC progression. Results Based on available bioinformatics data in TCGA, we found that TNNT1 was overexpressed in ovarian cancer samples comparing to normal samples. Knocking down TNNT1 repressed the migration as well as the proliferation of SKOV3 cells, while overexpression of TNNT1 exhibited opposite effect. In addition, down-regulation of TNNT1 hampered the xenografted tumor growth of SKOV3 cells. Up-regulation of TNNT1 in SKOV3 cells induced the expression of Cyclin E1 and Cyclin D1, promoted cell cycle progression, and also suppressed the activity of Cas-3/Cas-7. Conclusions In conclusion, TNNT1 overexpression promotes SKOV3 cell growth and tumorigenesis by inhibiting cell apoptosis and accelerating cell-cycle progression. TNNT1 might be a potent biomarker for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuling Li
- Department of Gynecology, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Jinfeng Qu
- Department of Gynecology, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Yaping Sun
- Department of Gynecology, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Chunxiao Chang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
2
|
Early Divergence of the C-Terminal Variable Region of Troponin T Via a Pair of Mutually Exclusive Alternatively Spliced Exons Followed by a Selective Fixation in Vertebrate Heart. J Mol Evol 2022; 90:452-467. [PMID: 36171395 PMCID: PMC10080876 DOI: 10.1007/s00239-022-10075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Troponin T (TnT) is the thin filament anchoring subunit of troponin complex and plays an organizer role in the Ca2+-regulation of striated muscle contraction. From an ancestral gene emerged ~ 700 million years ago in Bilateria, three homologous genes have evolved in vertebrates to encode muscle type-specific isoforms of TnT. Alternative splicing variants of TnT are present in vertebrate and invertebrate muscles to add functional diversity. While the C-terminal region of TnT is largely conserved, it contains an alternatively spliced segment emerged early in C. elegans, which has evolved into a pair of mutually exclusive exons in arthropods (10A and 10B of Drosophila TpnT gene) and vertebrates (16 and 17 of fast skeletal muscle Tnnt3 gene). The C-terminal alternatively spliced segment of TnT interfaces with the other two subunits of troponin with functional significance. The vertebrate cardiac TnT gene that emerged from duplication of the fast TnT gene has eliminated this alternative splicing by the fixation of an exon 17-like constitutive exon, indicating a functional value in slower and rhythmic contractions. The vertebrate slow skeletal muscle TnT gene that emerged from duplication of the cardiac TnT gene has the exon 17-like structure conserved, indicating its further function in sustained and fatigue resistant contractions. This functionality-based evolution is consistent with the finding that exon 10B-encoded segment of Drosophila TnT homologous to the exon 17-encoded segment of vertebrate fast TnT is selectively expressed in insect heart and leg muscles. The evolution of the C-terminal variable region of TnT demonstrates a submolecular mechanism in modifying striated muscle contractility and for the treatment of muscle and heart diseases.
Collapse
|
3
|
Rasmussen M, Jin JP. Troponin Variants as Markers of Skeletal Muscle Health and Diseases. Front Physiol 2021; 12:747214. [PMID: 34733179 PMCID: PMC8559874 DOI: 10.3389/fphys.2021.747214] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ca2 +-regulated contractility is a key determinant of the quality of muscles. The sarcomeric myofilament proteins are essential players in the contraction of striated muscles. The troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated during development and aging, and in adaptation to exercise or disuse. TnT also evolved with various alternative splice forms as an added capacity of muscle functional diversity. Mutations of troponin subunits cause myopathies. Owing to their physiological and pathological importance, troponin variants can be used as specific markers to define muscle quality. In this focused review, we will explore the use of troponin variants as markers for the fiber contents, developmental and differentiation states, contractile functions, and physiological or pathophysiological adaptations of skeletal muscle. As protein structure defines function, profile of troponin variants illustrates how changes at the myofilament level confer functional qualities at the fiber level. Moreover, understanding of the role of troponin modifications and mutants in determining muscle contractility in age-related decline of muscle function and in myopathies informs an approach to improve human health.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil 2020; 41:313-327. [PMID: 31131433 PMCID: PMC6879809 DOI: 10.1007/s10974-019-09517-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Ravel-Chapuis A, Al-Rewashdy A, Bélanger G, Jasmin BJ. Pharmacological and physiological activation of AMPK improves the spliceopathy in DM1 mouse muscles. Hum Mol Genet 2019; 27:3361-3376. [PMID: 29982462 DOI: 10.1093/hmg/ddy245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a triplet repeat expansion in the 3' untranslated region of dystrophia myotonica protein kinase mRNAs. Mutant mRNAs accumulate in the nucleus of affected cells and misregulate RNA-binding proteins, thereby promoting characteristic missplicing events. However, little is known about the signaling pathways that may be affected in DM1. Here, we investigated the status of activated protein kinase (AMPK) signaling in DM1 skeletal muscle and found that the AMPK pathway is markedly repressed in a DM1 mouse model (human skeletal actin-long repeat, HSALR) and patient-derived DM1 myoblasts. Chronic pharmacological activation of AMPK signaling in DM1 mice with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has multiple beneficial effects on the DM1 phenotype. Indeed, a 6-week AICAR treatment of DM1 mice promoted expression of a slower, more oxidative phenotype, improved muscle histology and corrected several events associated with RNA toxicity. Importantly, AICAR also had a dose-dependent positive effect on the spliceopathy in patient-derived DM1 myoblasts. In separate experiments, we also show that chronic treatment of DM1 mice with resveratrol as well as voluntary wheel running also rescued missplicing events in muscle. Collectively, our findings demonstrate the therapeutic potential of chronic AMPK stimulation both physiologically and pharmacologically for DM1 patients.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ali Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Yin T, König S. Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. Genet Sel Evol 2019; 51:4. [PMID: 30727969 PMCID: PMC6366057 DOI: 10.1186/s12711-018-0444-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022] Open
Abstract
Background Body weight (BW) at different ages are of increasing importance in dairy cattle breeding schemes, because of their strong correlation with energy efficiency traits, and their impact on cow health, longevity and farm economy. In total, 15,921 dairy cattle from 56 large-scale test-herds with BW records were genotyped for 45,613 single nucleotide polymorphisms (SNPs). This dataset was used for genome-wide association studies (GWAS), in order to localize potential candidate genes for direct and maternal genetic effects on BW recorded at birth (BW0), at 2 to 3 months of age (BW23), and at 13 to 14 months of age (BW1314). Results The first 20 principal components (PC) of the genomic relationship matrix (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{G}}$$\end{document}G) grouped the genotyped cattle into three clusters. In the statistical models used for GWAS, correction for population structure was done by including polygenic effects with various genetic similarity matrices, such as the pedigree-based relationship matrix (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{A}}$$\end{document}A), the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{G}}$$\end{document}G-matrix, the reduced \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{G}}$$\end{document}G-matrix LOCO (i.e. exclusion of the chromosome on which the candidate SNP is located), and LOCO plus chromosome-wide PC. Inflation factors for direct genetic effects using \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{A}}$$\end{document}A and LOCO were larger than 1.17. For \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{G}}$$\end{document}G and LOCO plus chromosome-wide PC, inflation factors were very close to 1.0. According to Bonferroni correction, ten, two and seven significant SNPs were detected for the direct genetic effect on BW0, BW23, and BW1314, respectively. Seventy-six candidate genes contributed to direct genetic effects on BW with four involved in growth and developmental processes: FGF6, FGF23, TNNT3, and OMD. For maternal genetic effects on BW0, only three significant SNPs (according to Bonferroni correction), and four potential candidate genes, were identified. The most significant SNP on chromosome 19 explained only 0.14% of the maternal de-regressed proof variance for BW0. Conclusions For correction of population structure in GWAS, we suggest a statistical model that considers LOCO plus chromosome-wide PC. Regarding direct genetic effects, several SNPs had a significant effect on BW at different ages, and only two SNPs on chromosome 5 had a significant effect on all three BW traits. Thus, different potential candidate genes regulate BW at different ages. Maternal genetic effects followed an infinitesimal model. Electronic supplementary material The online version of this article (10.1186/s12711-018-0444-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstr. 21b, 35390, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstr. 21b, 35390, Giessen, Germany.
| |
Collapse
|
7
|
Ravel-Chapuis A, Bélanger G, Côté J, Michel RN, Jasmin BJ. Misregulation of calcium-handling proteins promotes hyperactivation of calcineurin-NFAT signaling in skeletal muscle of DM1 mice. Hum Mol Genet 2017; 26:2192-2206. [PMID: 28369518 DOI: 10.1093/hmg/ddx109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/16/2017] [Indexed: 12/26/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is caused by an expansion of CUG repeats in DMPK mRNAs. This mutation affects alternative splicing through misregulation of RNA-binding proteins. Amongst pre-mRNAs that are mis-spliced, several code for proteins involved in calcium homeostasis suggesting that calcium-handling and signaling are perturbed in DM1. Here, we analyzed expression of such proteins in DM1 mouse muscle. We found that the levels of several sarcoplasmic reticulum proteins (SERCA1, sarcolipin and calsequestrin) are altered, likely contributing to an imbalance in calcium homeostasis. We also observed that calcineurin (CnA) signaling is hyperactivated in DM1 muscle. Indeed, CnA expression and phosphatase activity are both markedly increased in DM1 muscle. Coherent with this, we found that activators of the CnA pathway (MLP, FHL1) are also elevated. Consequently, NFATc1 expression is increased in DM1 muscle and becomes relocalized to myonuclei, together with an up-regulation of its transcriptional targets (RCAN1.4 and myoglobin). Accordingly, DM1 mouse muscles display an increase in oxidative metabolism and fiber hypertrophy. To determine the functional consequences of this CnA hyperactivation, we administered cyclosporine A, an inhibitor of CnA, to DM1 mice. Muscles of treated DM1 mice showed an increase in CUGBP1 levels, and an exacerbation of key alternative splicing events associated with DM1. Finally, inhibition of CnA in cultured human DM1 myoblasts also resulted in a splicing exacerbation of the insulin receptor. Together, these findings show for the first time that calcium-CnA signaling is hyperactivated in DM1 muscle and that such hyperactivation represents a beneficial compensatory adaptation to the disease.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Robin N Michel
- Department of Exercise Science, Faculty of Arts and Science, Concordia University, Montreal, QC, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Black AJ, Ravi S, Jefferson LS, Kimball SR, Schilder RJ. Dietary Fat Quantity and Type Induce Transcriptome-Wide Effects on Alternative Splicing of Pre-mRNA in Rat Skeletal Muscle. J Nutr 2017; 147:1648-1657. [PMID: 28768832 PMCID: PMC5572497 DOI: 10.3945/jn.117.254482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Fat-enriched diets produce metabolic changes in skeletal muscle, which in turn can mediate changes in gene regulation.Objective: We examined the high-fat-diet-induced changes in skeletal muscle gene expression by characterizing variations in pre-mRNA alternative splicing.Methods: Affymetrix Exon Array analysis was performed on the transcriptome of the gastrocnemius/plantaris complex of male obesity-prone Sprague-Dawley rats fed a 10% or 60% fat (lard) diet for 2 or 8 wk. The validation of exon array results was focused on troponin T (Tnnt3). Tnnt3 splice form analyses were extended in studies of rats fed 10% or 30% fat diets across 1- to 8-wk treatment periods and rats fed 10% or 45% fat diets with fat sources from lard or mono- or polyunsaturated fats for 2 wk. Nuclear magnetic resonance (NMR) was used to measure body composition.Results: Consumption of a 60% fat diet for 2 or 8 wk resulted in alternative splicing of 668 and 726 pre-mRNAs, respectively, compared with rats fed a 10% fat diet. Tnnt3 transcripts were alternatively spliced in rats fed a 60% fat diet for either 2 or 8 wk. The high-fat-diet-induced changes in Tnnt3 alternative splicing were observed in rats fed a 30% fat diet across 1- to 8-wk treatment periods. Moreover, this effect depended on fat type, because Tnnt3 alternative splicing occurred in response to 45% fat diets enriched with lard but not in response to diets enriched with mono- or polyunsaturated fatty acids. Fat mass (a proxy for obesity as measured by NMR) did not differ between groups in any study.Conclusions: Rat skeletal muscle responds to overconsumption of dietary fat by modifying gene expression through pre-mRNA alternative splicing. Variations in Tnnt3 alternative splicing occur independently of obesity and are dependent on dietary fat quantity and suggest a role for saturated fatty acids in the high-fat-diet-induced modifications in Tnnt3 alternative splicing.
Collapse
Affiliation(s)
- Adam J Black
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Suhana Ravi
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Leonard S Jefferson
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Scot R Kimball
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Rudolf J Schilder
- Departments of Entomology and Biology, Penn State University, University Park, State College, PA
| |
Collapse
|
9
|
Klein P, Oloko M, Roth F, Montel V, Malerba A, Jarmin S, Gidaro T, Popplewell L, Perie S, Lacau St Guily J, de la Grange P, Antoniou MN, Dickson G, Butler-Browne G, Bastide B, Mouly V, Trollet C. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Res 2016; 44:10929-10945. [PMID: 27507886 PMCID: PMC5159528 DOI: 10.1093/nar/gkw703] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 11/21/2022] Open
Abstract
A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein.
Collapse
Affiliation(s)
- Pierre Klein
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Martine Oloko
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Fanny Roth
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Valérie Montel
- Univ. Lille - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, équipe APMS, F-59000 Lille, France
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Susan Jarmin
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Teresa Gidaro
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Sophie Perie
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, Paris, France
| | - Jean Lacau St Guily
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, Paris, France
| | | | - Michael N Antoniou
- King's College London School of Medicine, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Gillian Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Bruno Bastide
- Univ. Lille - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, équipe APMS, F-59000 Lille, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| |
Collapse
|
10
|
Lohmeier-Vogel EM, Heeley DH. Biochemical Comparison of Tpm1.1 (α) and Tpm2.2 (β) Tropomyosins from Rabbit Skeletal Muscle. Biochemistry 2016; 55:1418-27. [DOI: 10.1021/acs.biochem.5b01140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Elke M. Lohmeier-Vogel
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - David H. Heeley
- Department
of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| |
Collapse
|
11
|
TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene 2016; 582:1-13. [PMID: 26774798 DOI: 10.1016/j.gene.2016.01.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
Abstract
Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure-function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
Collapse
|
12
|
Jin JP. Evolution, Regulation, and Function of N-terminal Variable Region of Troponin T: Modulation of Muscle Contractility and Beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 321:1-28. [DOI: 10.1016/bs.ircmb.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Ravi S, Schilder RJ, Berg AS, Kimball SR. Effects of age and hindlimb immobilization and remobilization on fast troponin T precursor mRNA alternative splicing in rat gastrocnemius muscle. Appl Physiol Nutr Metab 2015; 41:142-9. [PMID: 26799695 DOI: 10.1139/apnm-2015-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fast skeletal muscle troponin T (TNNT3) is an important component of the skeletal muscle contractile machinery. The precursor mRNA (pre-mRNA) encoding TNNT3 is alternatively spliced, and changes in the pattern of TNNT3 splice form expression are associated with alterations in thin-filament calcium sensitivity and force production during muscle contraction and thereby regulate muscle function. Interestingly, during aging, the muscle force/cross-sectional area is reduced, suggesting that loss of mass does not completely account for the impaired muscle function that develops during the aging process. Therefore, in this study, we tested the hypothesis that age and changes in muscle loading are associated with alterations in Tnnt3 alternative splicing in the rat gastrocnemius muscle. We found that the relative abundance of several Tnnt3 splice forms varied significantly with age among 2-, 9-, and 18-month-old rats and that the pattern correlated with changes in body mass rather than muscle mass. Hindlimb immobilization for 7 days resulted in dramatic alterations in splice form relative abundance such that the pattern was similar to that observed in lighter animals. Remobilization for 7 days restored the splicing pattern toward that observed in the nonimmobilized limb, even though muscle mass had not yet begun to recover. In conclusion, the results suggest that Tnnt3 pre-mRNA alternative splicing is modulated rapidly (i.e., within days) in response to changes in the load placed on the muscle. Moreover, the results show that restoration of Tnnt3 alternative splicing to control patterns is initiated prior to an increase in muscle mass.
Collapse
Affiliation(s)
- Suhana Ravi
- a Department of Cellular and Molecular Physiology, H166, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Rudolf J Schilder
- b Departments of Entomology and Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Arthur S Berg
- c Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Scot R Kimball
- a Department of Cellular and Molecular Physiology, H166, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Chen H, Zhang J, Yu B, Li L, Shang Y. Molecular cloning, structural analysis, and tissue expression of the TNNT3 gene in Guizhou black goat. Gene 2015; 573:123-8. [PMID: 26187066 DOI: 10.1016/j.gene.2015.07.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate fast skeletal troponin T (TNNT3) protein is an important regulatory and structural component of thin filaments in skeletal muscle, which improves meat quality traits of livestock and poultry. In this study, the troponin T isoforms from adult goat (skeletal muscle mRNA) were identified. We isolated the full-length coding sequence of the goat TNNT3 gene (GenBank: KM042888), analyzed its structure, and investigated its expression in different tissues from different aged goats (10, 30, 90, 180, and 360 days old). Real-time quantitative reverse transcription-polymerase chain reaction analyses revealed that Guizhou black goat TNNT3 was highly expressed in the biceps femoris muscle, abdominal muscle, and longissimus dorsi muscle (P<0.01), and lowly expressed in the cardiac muscle, masseter muscle, and rumen tissue (P>0.05). Western blotting confirmed that the TNNT3 protein was expressed in the muscle tissues listed above, with the highest level found in the longissimus dorsi muscle, and the lowest level in the masseter muscle. In the 10 to 360day study period the TNNT3 protein expression level was the highest when the goats were 30 days old. A peptide, ASPPPAEVPEVHEEVH that may contribute to improved goat meat tenderness was identified. This study provides an insight into the molecular structure of the vertebrate TNNT3 gene.
Collapse
Affiliation(s)
- Haolin Chen
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China
| | - Jinhua Zhang
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China
| | - Bo Yu
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China
| | - Liang Li
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China
| | - Yishun Shang
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China.
| |
Collapse
|
15
|
Coble J, Schilder RJ, Berg A, Drummond MJ, Rasmussen BB, Kimball SR. Influence of ageing and essential amino acids on quantitative patterns of troponin T alternative splicing in human skeletal muscle. Appl Physiol Nutr Metab 2015. [PMID: 26201856 DOI: 10.1139/apnm-2014-0568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is associated with a loss of skeletal muscle performance, a condition referred to as sarcopenia. In part, the age-related reduction in performance is due to a selective loss of muscle fiber mass, but mass-independent effects have also been demonstrated. An important mass-independent determinant of muscle performance is the pattern of expression of isoforms of proteins that participate in muscle contraction (e.g., the troponins). In the present study, we tested the hypothesis that ageing impairs alternative splicing of the pre-mRNA encoding fast skeletal muscle troponin T (TNNT3) in human vastus lateralis muscle. Furthermore, we hypothesized that resistance exercise alone or in combination with consumption of essential amino acids would attenuate age-associated effects on TNNT3 alternative splicing. Our results indicate that ageing negatively affects the pattern of TNNT3 alternative splicing in a manner that correlates quantitatively with age-associated reductions in muscle performance. Interestingly, whereas vastus lateralis TNNT3 alternative splicing was unaffected by a bout of resistance exercise 24 h prior to muscle biopsy, ingestion of a mixture of essential amino acids after resistance exercise resulted in a significant shift in the pattern of TNNT3 splice form expression in both age groups to one predicted to promote greater muscle performance. We conclude that essential amino acid supplementation after resistance exercise may provide a means to reduce impairments in skeletal muscle quality during ageing in humans.
Collapse
Affiliation(s)
- Joel Coble
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Rudolf J Schilder
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Arthur Berg
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Micah J Drummond
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
16
|
Sancisi V, Germinario E, Esposito A, Morini E, Peron S, Moggio M, Tomelleri G, Danieli-Betto D, Tupler R. Altered Tnnt3 characterizes selective weakness of fast fibers in mice overexpressing FSHD region gene 1 (FRG1). Am J Physiol Regul Integr Comp Physiol 2013; 306:R124-37. [PMID: 24305066 DOI: 10.1152/ajpregu.00379.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is characterized by atrophy and weakness of selective muscle groups. FSHD is considered an autosomal dominant disease with incomplete penetrance and unpredictable variability of clinical expression within families. Mice overexpressing FRG1 (FSHD region gene 1), a candidate gene for this disease, develop a progressive myopathy with features of the human disorder. Here, we show that in FRG1-overexpressing mice, fast muscles, which are the most affected by the dystrophic process, display anomalous fast skeletal troponin T (fTnT) isoform, resulting from the aberrant splicing of the Tnnt3 mRNA that precedes the appearance of dystrophic signs. We determine that muscles of FRG1 mice develop less strength due to impaired contractile properties of fast-twitch fibers associated with an anomalous MyHC-actin ratio and a reduced sensitivity to Ca(2+). We demonstrate that the decrease of Ca(2+) sensitivity of fast-twitch fibers depends on the anomalous troponin complex and can be rescued by the substitution with the wild-type proteins. Finally, we find that the presence of aberrant splicing isoforms of TNNT3 characterizes dystrophic muscles in FSHD patients. Collectively, our results suggest that anomalous TNNT3 profile correlates with the muscle impairment in both humans and mice. On the basis of these results, we propose that aberrant fTnT represents a biological marker of muscle phenotype severity and disease progression.
Collapse
Affiliation(s)
- Valentina Sancisi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
The side chain of glutamine 13 is the acyl-donor amino acid modified by type 2 transglutaminase in subunit T of the native rabbit skeletal muscle troponin complex. Amino Acids 2011; 44:227-34. [PMID: 22086212 DOI: 10.1007/s00726-011-1144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Subunit T of the native muscle troponin complex is a recognised substrate of transglutaminase both in vitro and in situ with formation of isopeptide bonds. Using a proteomic approach, we have now determined the precise site of in vitro labelling of the protein. A preparation of troponin purified from ether powder from mixed rabbit skeletal muscles was employed as transglutaminase substrate. The only isoform TnT2F present in our preparation was recognised as acyl-substrate by human type 2 transglutaminase which specifically modified glutamine 13 in the N-terminal region. During the reaction, the troponin protein complex was polymerized. Results are discussed in relation to the structure of the troponin T subunit, in the light of the role of troponins in skeletal and cardiac muscle diseases, and to the rules governing glutamine side chain selection by tissue transglutaminase.
Collapse
|
18
|
Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys 2010; 505:144-54. [PMID: 20965144 DOI: 10.1016/j.abb.2010.10.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/11/2022]
Abstract
Troponin-mediated Ca²(+)-regulation governs the actin-activated myosin motor function which powers striated (skeletal and cardiac) muscle contraction. This review focuses on the structure-function relationship of troponin T, one of the three protein subunits of the troponin complex. Molecular evolution, gene regulation, alternative RNA splicing, and posttranslational modifications of troponin T isoforms in skeletal and cardiac muscles are summarized with emphases on recent research progresses. The physiological and pathophysiological significances of the structural diversity and regulation of troponin T are discussed for impacts on striated muscle function and adaptation in health and diseases.
Collapse
|
19
|
Vicente-Crespo M, Pascual M, Fernandez-Costa JM, Garcia-Lopez A, Monferrer L, Miranda ME, Zhou L, Artero RD. Drosophila muscleblind is involved in troponin T alternative splicing and apoptosis. PLoS One 2008; 3:e1613. [PMID: 18286170 PMCID: PMC2238819 DOI: 10.1371/journal.pone.0001613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 01/17/2008] [Indexed: 01/01/2023] Open
Abstract
Background Muscleblind-like proteins (MBNL) have been involved in a developmental switch in the use of defined cassette exons. Such transition fails in the CTG repeat expansion disease myotonic dystrophy due, in part, to sequestration of MBNL proteins by CUG repeat RNA. Four protein isoforms (MblA-D) are coded by the unique Drosophila muscleblind gene. Methodology/Principal Findings We used evolutionary, genetic and cell culture approaches to study muscleblind (mbl) function in flies. The evolutionary study showed that the MblC protein isoform was readily conserved from nematods to Drosophila, which suggests that it performs the most ancestral muscleblind functions. Overexpression of MblC in the fly eye precursors led to an externally rough eye morphology. This phenotype was used in a genetic screen to identify five dominant suppressors and 13 dominant enhancers including Drosophila CUG-BP1 homolog aret, exon junction complex components tsunagi and Aly, and pro-apoptotic genes Traf1 and reaper. We further investigated Muscleblind implication in apoptosis and splicing regulation. We found missplicing of troponin T in muscleblind mutant pupae and confirmed Muscleblind ability to regulate mouse fast skeletal muscle Troponin T (TnnT3) minigene splicing in human HEK cells. MblC overexpression in the wing imaginal disc activated apoptosis in a spatially restricted manner. Bioinformatics analysis identified a conserved FKRP motif, weakly resembling a sumoylation target site, in the MblC-specific sequence. Site-directed mutagenesis of the motif revealed no change in activity of mutant MblC on TnnT3 minigene splicing or aberrant binding to CUG repeat RNA, but altered the ability of the protein to form perinuclear aggregates and enhanced cell death-inducing activity of MblC overexpression. Conclusions/Significance Taken together our genetic approach identify cellular processes influenced by Muscleblind function, whereas in vivo and cell culture experiments define Drosophila troponin T as a new Muscleblind target, reveal a potential involvement of MblC in programmed cell death and recognize the FKRP motif as a putative regulator of MblC function and/or subcellular location in the cell.
Collapse
Affiliation(s)
| | - Maya Pascual
- Department of Genetics, University of Valencia, Valencia, Spain
| | | | | | - Lidón Monferrer
- Department of Genetics, University of Valencia, Valencia, Spain
| | | | - Lei Zhou
- Department of Molecular Genetics and Microbiology Member, University of Florida Shands Cancer Center College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ruben D. Artero
- Department of Genetics, University of Valencia, Valencia, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Gallon CE, Tschirgi ML, Chandra M. Differences in myofilament calcium sensitivity in rat psoas fibers reconstituted with troponin T isoforms containing the alpha- and beta-exons. Arch Biochem Biophys 2006; 456:127-34. [PMID: 16839517 DOI: 10.1016/j.abb.2006.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/19/2006] [Accepted: 06/08/2006] [Indexed: 11/25/2022]
Abstract
The carboxy terminus of fast skeletal muscle troponin T (fsTnT) is highly conserved. However, mutually exclusive splicing of exons 16 and 17 in the fsTnT gene results in the expression of either the alpha- or beta-fsTnT isoform. The alpha-isoform is expressed only in adult fast skeletal muscle, whereas the beta-isoform is expressed in varying quantities throughout muscle development. Reconstitution of detergent-skinned adult rat psoas muscle fibers with rat fast skeletal troponin complexes containing either fsTnT isoform demonstrated that reconstitution with alpha-fsTnT resulted in greater myofilament Ca(2+) sensitivity than reconstitution with beta-fsTnT, without changes to Ca(2+)-activated maximal tension, ATPase activity or tension cost. The observed isoform-specific differences in myofilament Ca(2+) sensitivity may be due to changes in the transition of the thin-filament regulatory unit from the off to the on state, possibly due to altered interactions of the C-terminus of fsTnT with troponins I and/or C.
Collapse
Affiliation(s)
- Clare E Gallon
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
21
|
Gabellini D, D'Antona G, Moggio M, Prelle A, Zecca C, Adami R, Angeletti B, Ciscato P, Pellegrino MA, Bottinelli R, Green MR, Tupler R. Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 2005; 439:973-7. [PMID: 16341202 DOI: 10.1038/nature04422] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 11/11/2005] [Indexed: 11/08/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is not due to a classical mutation within a protein-coding gene. Instead, almost all FSHD patients carry deletions of an integral number of tandem 3.3-kilobase repeat units, termed D4Z4, located on chromosome 4q35 (ref. 3). D4Z4 contains a transcriptional silencer whose deletion leads to inappropriate overexpression in FSHD skeletal muscle of 4q35 genes located upstream of D4Z4 (ref. 4). To identify the gene responsible for FSHD pathogenesis, we generated transgenic mice selectively overexpressing in skeletal muscle the 4q35 genes FRG1, FRG2 or ANT1. We find that FRG1 transgenic mice develop a muscular dystrophy with features characteristic of the human disease; by contrast, FRG2 and ANT1 transgenic mice seem normal. FRG1 is a nuclear protein and several lines of evidence suggest it is involved in pre-messenger RNA splicing. We find that in muscle of FRG1 transgenic mice and FSHD patients, specific pre-mRNAs undergo aberrant alternative splicing. Collectively, our results suggest that FSHD results from inappropriate overexpression of FRG1 in skeletal muscle, which leads to abnormal alternative splicing of specific pre-mRNAs.
Collapse
Affiliation(s)
- Davide Gabellini
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|