1
|
Venkataraman S, Savithri HS, Murthy MRN. Recent advances in the structure and assembly of non-enveloped spherical viruses. Virology 2025; 606:110454. [PMID: 40081202 DOI: 10.1016/j.virol.2025.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/15/2025]
Abstract
Non-enveloped spherical viruses (NSVs) are characterized by their highly symmetrical capsids that serve to protect and encapsulate the genomes. The stability and functionality of the capsids determine their ability for survival and proliferation in harsh environments. Over four decades of structural studies using X-ray crystallography and NMR have provided static, high-resolution snapshots of several viruses. Recently, advances in cryo-electron microscopy, together with AI-based structure predictions and traditional methods, have aided in elucidating not only the structural details of complex NSVs but also the mechanistic processes underlying their assembly. The knowledge thus generated has been instrumental in critical understanding of the conformational changes and interactions associated with the coat proteins, the genome, and the auxiliary factors that regulate the capsid dynamics. This review seeks to summarize current literature regarding the structure and assembly of the NSVs and discusses how the data has facilitated a deeper understanding of their biology and phylogeny.
Collapse
Affiliation(s)
| | | | - M R N Murthy
- Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
2
|
Arul SS, Balakrishnan B, Handanahal SS, Venkataraman S. Viral nanoparticles: Current advances in design and development. Biochimie 2024; 219:33-50. [PMID: 37573018 DOI: 10.1016/j.biochi.2023.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Viral nanoparticles (VNPs) are self-assembling, adaptable delivery systems for vaccines and other therapeutic agents used in a variety of biomedical applications. The potential of viruses to invade and infect various hosts and cells renders them suitable as potential nanocarriers, possessing distinct functional characteristics, immunogenic properties, and improved biocompatibility and biodegradability. VNPs are frequently produced through precise genetic or chemical engineering, which involves adding diverse sequences or functional payloads to the capsid protein (CP). Several spherical and helical plant viruses, bacteriophages, and animal viruses are currently being used as VNPs, or non-infectious virus-like particles (VLPs). In addition to their broad use in cancer therapy, vaccine technology, diagnostics, and molecular imaging, VNPs have made important strides in the realms of tissue engineering, biosensing, and antimicrobial prophylaxis. They are also being used in energy storage cells due to their binding and piezoelectric properties. The large-scale production of VNPs for research, preclinical testing, and clinical use is fraught with difficulties, such as those relating to cost-effectiveness, scalability, and purity. Consequently, many plants- and microorganism-based platforms are being developed, and newer viruses are being explored. The goal of the current review is to provide an overview of these advances.
Collapse
|
3
|
Gómez-González J, Bouzada D, Pérez-Márquez LA, Sciortino G, Maréchal JD, Vázquez López M, Vázquez ME. Stereoselective Self-Assembly of DNA Binding Helicates Directed by the Viral β-Annulus Trimeric Peptide Motif. Bioconjug Chem 2021; 32:1564-1569. [PMID: 34320309 PMCID: PMC8485332 DOI: 10.1021/acs.bioconjchem.1c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Combining
coordination chemistry and peptide engineering offers
extraordinary opportunities for developing novel molecular (supra)structures.
Here, we demonstrate that the β-annulus motif is capable of
directing the stereoselective assembly of designed peptides containing
2,2′-bipyridine ligands into parallel three-stranded chiral
peptide helicates, and that these helicates selectively bind with
high affinity to three-way DNA junctions.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lidia A Pérez-Márquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Nath BK, Das S, Roby JA, Sarker S, Luque D, Raidal SR, Forwood JK. Structural Perspectives of Beak and Feather Disease Virus and Porcine Circovirus Proteins. Viral Immunol 2020; 34:49-59. [PMID: 33275868 DOI: 10.1089/vim.2020.0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circoviruses represent a rapidly expanding group of viruses that infect both vertebrate and invertebrate hosts. Members are responsible for diseases of veterinary and economic importance, including postweaning multisystemic wasting syndrome in pigs, and beak and feather disease (BFD) in birds. These viruses are associated with lymphoid depletion and immunosuppressive conditions in infected animals leading to systemic illness. Circoviruses are small nonenveloped DNA viruses containing a single-stranded circular genome, encoding two major proteins: the capsid-associated protein (Cap), comprising the entirety of the viral capsid, and the replication-associated protein (Rep). Cap is the only protein component of the virion and plays crucial roles throughout the virus replication cycle, including viral attachment, cell entry, genome uncoating, and packaging of newly formed viral particles. Rep mediates recognition of replication origin motifs in the viral genome sequence and is responsible for endonuclease activity enabling nicking of the circular DNA and initiation of rolling-circle replication (RCR). Porcine circovirus 2 (PCV2) was the first circovirus capsid structure to be solved at atomic resolution using X-ray crystallography. The structure revealed an assembly comprising 60 monomeric subunits to form virus-like particles. Each Cap monomer harbors a canonical viral jelly roll domain composed of two, four-stranded antiparallel β-sheets. Crystal structures of two distinct macromolecular assemblies from BFD virus Cap were also resolved at high resolution. In these structures, the exposure of the N-terminal arginine-rich motif, responsible for DNA binding and nuclear localization is reversed. Additional structural investigations have also elucidated a PCV2 type-specific neutralizing epitope, and interaction between the PCV2 capsid and polymers such as heparin. In this review, we provide a snapshot of the structural and functional aspects of circovirus proteins.
Collapse
Affiliation(s)
- Babu Kanti Nath
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Justin A Roby
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Daniel Luque
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
5
|
Edwardson TGW, Hilvert D. Virus-Inspired Function in Engineered Protein Cages. J Am Chem Soc 2019; 141:9432-9443. [PMID: 31117660 DOI: 10.1021/jacs.9b03705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and functional diversity of proteins combined with their genetic programmability has made them indispensable modern materials. Well-defined, hollow protein capsules have proven to be particularly useful due to their ability to compartmentalize macromolecules and chemical processes. To this end, viral capsids are common scaffolds and have been successfully repurposed to produce a suite of practical protein-based nanotechnologies. Recently, the recapitulation of viromimetic function in protein cages of nonviral origin has emerged as a strategy to both complement physical studies of natural viruses and produce useful scaffolds for diverse applications. In this perspective, we review recent progress toward generation of virus-like behavior in nonviral protein cages through rational engineering and directed evolution. These artificial systems can aid our understanding of the emergence of viruses from existing cellular components, as well as provide alternative approaches to tackle current problems, and open up new opportunities, in medicine and biotechnology.
Collapse
Affiliation(s)
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
6
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
7
|
Matsuura K. Synthetic approaches to construct viral capsid-like spherical nanomaterials. Chem Commun (Camb) 2018; 54:8944-8959. [DOI: 10.1039/c8cc03844a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article describes recent progress in synthetic strategies to construct viral capsid-like spherical nanomaterials using the self-assembly of peptides and/or proteins.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- Tottori University
- Tottori 680-8552
- Japan
| |
Collapse
|
8
|
Abstract
Virus-like particle (VLP) technologies are based on virus-inspired artificial structures and the intrinsic ability of viral proteins to self-assemble at controlled conditions. Therefore, the basic knowledge about the mechanisms of viral particle formation is highly important for designing of industrial applications. As an alternative to genetic and chemical processes, different physical methods are frequently used for VLP construction, including well characterized protein complexes for introduction of foreign molecules in VLP structures.This chapter shortly discusses the mechanisms how the viruses form their perfectly ordered structures as well as the principles and most interesting application examples, how to exploit the structural and assembly/disassembly properties of viral structures for creation of new nanomaterials.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
| |
Collapse
|
9
|
Machado MR, González HC, Pantano S. MD Simulations of Viruslike Particles with Supra CG Solvation Affordable to Desktop Computers. J Chem Theory Comput 2017; 13:5106-5116. [DOI: 10.1021/acs.jctc.7b00659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matı́as R. Machado
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| | - Humberto C. González
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| |
Collapse
|
10
|
Serra‐Soriano M, Antonio Navarro J, Pallás V. Dissecting the multifunctional role of the N-terminal domain of the Melon necrotic spot virus coat protein in RNA packaging, viral movement and interference with antiviral plant defence. MOLECULAR PLANT PATHOLOGY 2017; 18:837-849. [PMID: 27301648 PMCID: PMC6638237 DOI: 10.1111/mpp.12448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/07/2023]
Abstract
The coat protein (CP) of Melon necrotic spot virus (MNSV) is structurally composed of three major domains. The middle S-domain builds a robust protein shell around the viral genome, whereas the C-terminal protruding domain, or P-domain, is involved in the attachment of virions to the transmission vector. Here, we have shown that the N-terminal domain, or R-domain, and the arm region, which connects the R-domain and S-domain, are involved in different key steps of the viral cycle, such as cell-to-cell movement and the suppression of RNA silencing and pathogenesis through their RNA-binding capabilities. Deletion mutants revealed that the CP RNA-binding ability was abolished only after complete, but not partial, deletion of the R-domain and the arm region. However, a comparison of the apparent dissociation constants for the CP RNA-binding reaction of several partial deletion mutants showed that the arm region played a more relevant role than the R-domain in in vitro RNA binding. Similar results were obtained in in vivo assays, although, in this case, full-length CPs were required to encapsidate full-length genomes. We also found that the R-domain carboxyl portion and the arm region were essential for efficient cell-to-cell movement, for enhancement of Potato virus X pathogenicity, for suppression of systemic RNA silencing and for binding of small RNAs. Therefore, unlike other carmovirus CPs, the R-domain and the arm region of MNSV CP have acquired, in addition to other essential functions such as genome binding and encapsidation functions, the ability to suppress RNA silencing by preventing systemic small RNA transport.
Collapse
Affiliation(s)
- Marta Serra‐Soriano
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| | - José Antonio Navarro
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| | - Vicente Pallás
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| |
Collapse
|
11
|
Complete nucleotide sequence of Solanum nodiflorum mottle virus. Arch Virol 2017; 162:1731-1736. [DOI: 10.1007/s00705-017-3273-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
|
12
|
In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus. Virology 2016; 496:106-115. [DOI: 10.1016/j.virol.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022]
|
13
|
Matsuura K, Mizuguchi Y, Kimizuka N. Peptide nanospheres self-assembled from a modified β
-annulus peptide of Sesbania mosaic virus. Biopolymers 2016; 106:470-5. [DOI: 10.1002/bip.22774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering; Tottori University; Tottori Japan
| | - Yusaku Mizuguchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering; Kyushu University; Fukuoka Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering; Kyushu University; Fukuoka Japan
| |
Collapse
|
14
|
Structural studies on chimeric Sesbania mosaic virus coat protein: Revisiting SeMV assembly. Virology 2016; 489:34-43. [DOI: 10.1016/j.virol.2015.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 01/25/2023]
|
15
|
Chen NC, Yoshimura M, Guan HH, Wang TY, Misumi Y, Lin CC, Chuankhayan P, Nakagawa A, Chan SI, Tsukihara T, Chen TY, Chen CJ. Crystal Structures of a Piscine Betanodavirus: Mechanisms of Capsid Assembly and Viral Infection. PLoS Pathog 2015; 11:e1005203. [PMID: 26491970 PMCID: PMC4619592 DOI: 10.1371/journal.ppat.1005203] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022] Open
Abstract
Betanodaviruses cause massive mortality in marine fish species with viral nervous necrosis. The structure of a T = 3 Grouper nervous necrosis virus-like particle (GNNV-LP) is determined by the ab initio method with non-crystallographic symmetry averaging at 3.6 Å resolution. Each capsid protein (CP) shows three major domains: (i) the N-terminal arm, an inter-subunit extension at the inner surface; (ii) the shell domain (S-domain), a jelly-roll structure; and (iii) the protrusion domain (P-domain) formed by three-fold trimeric protrusions. In addition, we have determined structures of the T = 1 subviral particles (SVPs) of (i) the delta-P-domain mutant (residues 35−217) at 3.1 Å resolution; and (ii) the N-ARM deletion mutant (residues 35−338) at 7 Å resolution; and (iii) the structure of the individual P-domain (residues 214−338) at 1.2 Å resolution. The P-domain reveals a novel DxD motif asymmetrically coordinating two Ca2+ ions, and seems to play a prominent role in the calcium-mediated trimerization of the GNNV CPs during the initial capsid assembly process. The flexible N-ARM (N-terminal arginine-rich motif) appears to serve as a molecular switch for T = 1 or T = 3 assembly. Finally, we find that polyethylene glycol, which is incorporated into the P-domain during the crystallization process, enhances GNNV infection. The present structural studies together with the biological assays enhance our understanding of the role of the P-domain of GNNV in the capsid assembly and viral infection by this betanodavirus. Betanodaviruses belong to the family Nodaviridae and cause the mortality of numerous larval-stage fish species. Here we report protein crystal structures of a piscine betanodavirus, the Grouper nervous necrosis virus (GNNV), in four different forms. Highlights are two structural features that contribute to the viral molecular mechanisms of the T = 3 and T = 1 capsid assembly: a calcium-associated protrusion domain and a functional arginine-rich motif. These results also shed insights into the structural basis for evolutionary lineage of the family Nodaviridae.
Collapse
Affiliation(s)
- Nai-Chi Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ting-Yu Wang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yuko Misumi
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sunney I. Chan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United State of America
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Tzong-Yueh Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (TYC); (CJC)
| | - Chun-Jung Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (TYC); (CJC)
| |
Collapse
|
16
|
Sõmera M, Sarmiento C, Truve E. Overview on Sobemoviruses and a Proposal for the Creation of the Family Sobemoviridae. Viruses 2015; 7:3076-115. [PMID: 26083319 PMCID: PMC4488728 DOI: 10.3390/v7062761] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 12/26/2022] Open
Abstract
The genus Sobemovirus, unassigned to any family, consists of viruses with single-stranded plus-oriented single-component RNA genomes and small icosahedral particles. Currently, 14 species within the genus have been recognized by the International Committee on Taxonomy of Viruses (ICTV) but several new species are to be recognized in the near future. Sobemovirus genomes are compact with a conserved structure of open reading frames and with short untranslated regions. Several sobemoviruses are important pathogens. Moreover, over the last decade sobemoviruses have become important model systems to study plant virus evolution. In the current review we give an overview of the structure and expression of sobemovirus genomes, processing and functions of individual proteins, particle structure, pathology and phylogenesis of sobemoviruses as well as of satellite RNAs present together with these viruses. Based on a phylogenetic analysis we propose that a new family Sobemoviridae should be recognized including the genera Sobemovirus and Polemovirus. Finally, we outline the future perspectives and needs for the research focusing on sobemoviruses.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
17
|
Sõmera M, Truve E. Rottboellia yellow mottle virus is a distinct species within the genus Sobemovirus. Arch Virol 2015; 160:857-63. [PMID: 25613163 DOI: 10.1007/s00705-015-2336-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Abstract
Once considered a tentative member of the genus Sobemovirus, rottboellia yellow mottle virus (RoMoV) was excluded from the latest species list of the ICTV after the discovery of imperata yellow mottle virus (IYMV), which resembles RoMoV in host range and geographic origin. Here, sequence analysis of the complete genome of RoMoV suggested that it should be considered a distinct species within the genus Sobemovirus. It has the highest sequence identity (55 %) to ryegrass mottle virus (RGMoV), whereas its sequence identity to IYMV is lower (44 %). In a phylogenetic tree, RoMoV clusters together with RGMoV and artemisia virus A (ArtVA), a dicot-infecting sobemovirus.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia,
| | | |
Collapse
|
18
|
Niu S, Gil-Salas FM, Tewary SK, Samales AK, Johnson J, Swaminathan K, Wong SM. Hibiscus chlorotic ringspot virus coat protein is essential for cell-to-cell and long-distance movement but not for viral RNA replication. PLoS One 2014; 9:e113347. [PMID: 25402344 PMCID: PMC4234673 DOI: 10.1371/journal.pone.0113347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
Hibiscus chlorotic ringspot virus (HCRSV) is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP) functions on virus replication and movement in kenaf (Hibiscus cannabinus L.), two HCRSV mutants, designated as p2590 (A to G) in which the first start codon ATG was replaced with GTG and p2776 (C to G) in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G) were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G) was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G) inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro.
Collapse
Affiliation(s)
- Shengniao Niu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Hainan, China
| | - Francisco M. Gil-Salas
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica, Almería, Spain
| | - Sunil Kumar Tewary
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - John Johnson
- Department of Molecular Biology, The Scripps Research Institute, California, United States of America
| | | | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, Singapore, Singapore
- National University of Singapore Suzhou Research Institute, Suzhou Industrial Park, Jiangsu, China
| |
Collapse
|
19
|
Cocksfoot mottle virus coat protein is dispensable for the systemic infection. Virol J 2014; 11:19. [PMID: 24495467 PMCID: PMC3925361 DOI: 10.1186/1743-422x-11-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Sobemovirus genome consists of polycistronic single-stranded positive-sense RNA. The first ORF encodes P1, a suppressor of RNA silencing required for virus movement. The coat protein (CP) is expressed from the 3' proximal ORF3 via subgenomic RNA. In addition to its structural role, the CP of some sobemoviruses has been reported to be required for systemic movement and to interact with P1. The aim of this study was to analyse the role of Cocksfoot mottle virus (CfMV) CP in the suppression of RNA silencing and virus movement. METHODS Agrobacterium-mediated transient expression method was used for testing CfMV CP capacity to suppress RNA silencing. CP substitution and deletion mutants were generated to examine the role of this protein in CfMV infection, using three host plants (oat, barley and wheat). The viral movement was characterised with CfMV expressing EGFP fused to the C-terminus of CP. RESULTS In the current study we show that CfMV CP is an additional RNA silencing suppressor. Interestingly, we observed that all CP mutant viruses were able to infect the three tested host plants systemically, although usually with reduced accumulation. CfMV expressing EGFP was detected in epidermal and mesophyll cells of inoculated leaves. Although EGFP fluorescence was not detected in upper leaves, some plants displayed CfMV symptoms. Analysis of the upper leaves revealed that the viruses had lost the EGFP sequence and sometimes also most of the CP gene. CONCLUSIONS The present study demonstrates that CfMV CP suppresses RNA silencing but, surprisingly, is dispensable for systemic movement. Thus, CfMV does not move as virion in the tested host plants. The composition of the movement RNP complex remains to be elucidated.
Collapse
|
20
|
Zhang X, Zhao X, Zhang Y, Niu S, Qu F, Zhang Y, Han C, Yu J, Li D. N-terminal basic amino acid residues of Beet black scorch virus capsid protein play a critical role in virion assembly and systemic movement. Virol J 2013; 10:200. [PMID: 23786675 PMCID: PMC3691604 DOI: 10.1186/1743-422x-10-200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/07/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Beet black scorch virus (BBSV) is a small single-stranded, positive-sense RNA plant virus belonging to the genus Necrovirus, family Tombusviridae. Its capsid protein (CP) contains a 13 amino acid long basic region at the N-terminus, rich in arginine and lysine residues, which is thought to interact with viral RNA to initiate virion assembly. RESULTS In the current study, a series of BBSV mutants containing amino acid substitutions as well as deletions within the N-terminal region were generated and examined for their effects on viral RNA replication, virion assembly, and long distance spread in protoplasts and whole host plants of BBSV. The RNA-binding activities of the mutated CPs were also evaluated in vitro. These experiments allowed us to identify two key basic amino acid residues in this region that are responsible for initiating virus assembly through RNA-binding. Proper assembly of BBSV particles is in turn needed for efficient viral systemic movement. CONCLUSIONS We have identified two basic amino acid residues near the N-terminus of the BBSV CP that bind viral RNA with high affinity to initiate virion assembly. We further provide evidence showing that systemic spread of BBSV in infected plants requires intact virions. This study represents the first in-depth investigation of the role of basic amino acid residues within the N-terminus of a necroviral CP.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster OH 44691, USA
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanjing Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaofang Niu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster OH 44691, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Molecular characterization of artemisia virus A, a new sobemovirus isolated from Artemisia annua. Arch Virol 2013; 158:463-6. [DOI: 10.1007/s00705-012-1507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
22
|
Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 2012; 531:65-79. [PMID: 23142681 DOI: 10.1016/j.abb.2012.10.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
23
|
Unzueta U, Ferrer-Miralles N, Cedano J, Zikung X, Pesarrodona M, Saccardo P, García-Fruitós E, Domingo-Espín J, Kumar P, Gupta KC, Mangues R, Villaverde A, Vazquez E. Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials 2012; 33:8714-22. [PMID: 22954515 DOI: 10.1016/j.biomaterials.2012.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 01/11/2023]
Abstract
Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Turnip yellow mosaic virus forms infectious particles without the native beta-annulus structure and flexible coat protein N-terminus. Virology 2012; 422:165-73. [DOI: 10.1016/j.virol.2011.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/20/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022]
|
25
|
de Wispelaere M, Chaturvedi S, Wilkens S, Rao A. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure. Virology 2011; 419:17-23. [DOI: 10.1016/j.virol.2011.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
|
26
|
Roy Chowdhury S, Savithri HS. Interaction of Sesbania mosaic virus movement protein with VPg and P10: implication to specificity of genome recognition. PLoS One 2011; 6:e15609. [PMID: 21246040 PMCID: PMC3016346 DOI: 10.1371/journal.pone.0015609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/17/2010] [Indexed: 11/18/2022] Open
Abstract
Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 5' end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement.
Collapse
|
27
|
Chowdhury SR, Savithri HS. Interaction of Sesbania mosaic virus movement protein with the coat protein--implications for viral spread. FEBS J 2010; 278:257-72. [PMID: 21122074 DOI: 10.1111/j.1742-4658.2010.07943.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sesbania mosaic virus (SeMV) is a single-stranded positive-sense RNA plant virus belonging to the genus Sobemovirus. The movement protein (MP) encoded by SeMV ORF1 showed no significant sequence similarity with MPs of other genera, but showed 32% identity with the MP of Southern bean mosaic virus within the Sobemovirus genus. With a view to understanding the mechanism of cell-to-cell movement in sobemoviruses, the SeMV MP gene was cloned, over-expressed in Escherichia coli and purified. Interaction of the recombinant MP with the native virus (NV) was investigated by ELISA and pull-down assays. It was observed that SeMV MP interacted with NV in a concentration- and pH-dependent manner. Analysis of N- and C-terminal deletion mutants of the MP showed that SeMV MP interacts with the NV through the N-terminal 49 amino acid segment. Yeast two-hybrid assays confirmed the in vitro observations, and suggested that SeMV might belong to the class of viruses that require MP and NV/coat protein for cell-to-cell movement.
Collapse
|
28
|
Affiliation(s)
- Adam Zlotnick
- Department of Biology, Indiana University Bloomington IN 47405 USA
| | - Bentley A. Fane
- Division of Plant Pathology and Microbiology, Department of Plant Sciences and The BIO5 Institute, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
29
|
Arthur K, Dogra S, Randles JW. Complete nucleotide sequence of Velvet tobacco mottle virus isolate K1. Arch Virol 2010; 155:1893-6. [PMID: 20857308 DOI: 10.1007/s00705-010-0801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Velvet tobacco mottle virus (VTMoV) infects the native Australian plant Nicotiana velutina, which is endemic to central Australia. This virus is included in the genus Sobemovirus based on virion morphology and serological relationships. We report here the full genome sequence of VTMoV, attained using a genome-walking strategy with both degenerate and specific primers. This sequence confirms that VTMoV is a sobemovirus, with the same open reading frame (ORF) organisation as other described sobemoviruses. The VTMoV sequence is closest to those sobemoviruses isolated from monocotyledonous plants, although the narrow host range of VTMoV is limited to dicotyledonous plants.
Collapse
Affiliation(s)
- K Arthur
- The University of Adelaide, Glen Osmond, SA, Australia.
| | | | | |
Collapse
|
30
|
Porterfield JZ, Zlotnick A. A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance. Virology 2010; 407:281-8. [PMID: 20850162 DOI: 10.1016/j.virol.2010.08.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/10/2010] [Accepted: 08/14/2010] [Indexed: 01/10/2023]
Abstract
UV spectra of viruses are complicated by overlapping protein and RNA absorbance and light scattering. We describe and validate methodology for estimating RNA and protein concentration from such spectra. Importantly, we found that encapsidation did not substantially affect RNA absorbance. Combining absorbance data with a known T number, we confirmed that brome mosaic virus packages about 3100 nucleotides/capsid, consistent with its genome. E. coli-expressed hepatitis B virus (HBV) packages host RNA based on capsid charge and volume. We examined HBV capsid protein (Cp183, +15 charge) and a less basic mutant (Cp183-EEE, +12 charge) that mimics a phosphorylated state. Cp183-EEE packaged ~3450 nucleotides per T=4 capsid and Cp183 packaged ~4800 nucleotides, correlating to the size of HBV's RNA pre-genome and mature DNA genome, respectively. The RNA:protein charge ratio (about 1.4 phosphates per positive charge) was consistent with that of other ssRNA viruses. This spectroscopic method is generalizable to any virus-like particle.
Collapse
Affiliation(s)
- J Zachary Porterfield
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
31
|
Reade R, Kakani K, Rochon D. A highly basic KGKKGK sequence in the RNA-binding domain of the Cucumber necrosis virus coat protein is associated with encapsidation of full-length CNV RNA during infection. Virology 2010; 403:181-8. [PMID: 20483445 DOI: 10.1016/j.virol.2010.03.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/03/2010] [Accepted: 03/27/2010] [Indexed: 11/21/2022]
Abstract
The Cucumber necrosis virus particle is a T=3 icosahedron consisting of 180 identical coat protein (CP) subunits. The N-terminal 58 aa residue segment of the CP R domain is believed to bind viral RNA within virions and during assembly. We report results of in vivo experiments that examine the role of the R domain in assembly. Deletion analyses identified 3 conserved 5-10 aa regions as playing critical roles. A highly basic KGKKGK sequence was found to be both necessary and sufficient for encapsidation of the full-length genome and polymorphic virions were produced in mutants lacking the KGKKGK sequence. The amount of full-length RNA present in virions was substantially reduced in R domain mutants where 2 of the 4 lysine residues were substituted with alanine, whereas substitution of 4 lysines by arginine had only a modest effect. The potential role of the R domain in formation of a scaffold for particle assembly is discussed.
Collapse
Affiliation(s)
- Ron Reade
- Pacific Agri-Food Research Centre, Summerland, British Columbia, Canada V0H 1Z0
| | | | | |
Collapse
|
32
|
Vazquez E, Roldán M, Diez-Gil C, Unzueta U, Domingo-Espín J, Cedano J, Conchillo O, Ratera I, Veciana J, Daura X, Ferrer-Miralles N, Villaverde A. Protein nanodisk assembling and intracellular trafficking powered by an arginine-rich (R9) peptide. Nanomedicine (Lond) 2010; 5:259-68. [PMID: 20148637 DOI: 10.2217/nnm.09.98] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Arginine(R)-rich cationic peptides are powerful tools in drug delivery since, alone or when associated with polyplexes, proteins or chemicals, they confer DNA condensation, membrane translocation and blood-brain barrier crossing abilities. The unusual stability and high in vivo performance of their associated drugs suggest a particulate organization or R(n) complexes, which this study aimed to explore. MATERIALS & METHODS We have analyzed the particulate organization and biological performance in DNA delivery of a model, R9-containing green fluorescent protein by dynamic light scattering, transmission electron microscopy, atomic force microscopy, single cell confocal microscopy and flow cytometry. RESULTS A deep nanoscale examination of R9-powered constructs reveals a novel and promising feature of R9, that when fused to a scaffold green fluorescent protein, promote its efficient self-assembling as highly stable, regular disk-shaped nanoparticles of 20 x 3 nm. These constructs are efficiently internalized in mammalian cells and rapidly migrate through the cytoplasm towards the nucleus in a fully bioactive form. Besides, such particulate platforms accommodate, condense and deliver plasmid DNA to the nucleus and promote plasmid-driven transgene expression. CONCLUSION The architectonic properties of arginine-rich peptides at the nanoscale reveal a new category of protein nanoparticles, namely nanodisks, and provide novel strategic concepts and architectonic tools for the tailored construction of new-generation artificial viruses for gene therapy and drug delivery.
Collapse
Affiliation(s)
- Esther Vazquez
- Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cocksfoot mottle sobemovirus coat protein contains two nuclear localization signals. Virus Genes 2010; 40:423-31. [DOI: 10.1007/s11262-010-0456-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
|
34
|
Nury H, Bocquet N, Le Poupon C, Raynal B, Haouz A, Corringer PJ, Delarue M. Crystal Structure of the Extracellular Domain of a Bacterial Ligand-Gated Ion Channel. J Mol Biol 2010; 395:1114-27. [DOI: 10.1016/j.jmb.2009.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
35
|
Pappachan A, Chinnathambi S, Satheshkumar P, Savithri H, Murthy M. A single point mutation disrupts the capsid assembly in Sesbania Mosaic Virus resulting in a stable isolated dimer. Virology 2009; 392:215-21. [DOI: 10.1016/j.virol.2009.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 05/31/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
36
|
Pappachan A, Subashchandrabose C, Satheshkumar PS, Savithri HS, Murthy MRN. Structure of recombinant capsids formed by the beta-annulus deletion mutant -- rCP (Delta48-59) of Sesbania mosaic virus. Virology 2008; 375:190-6. [PMID: 18295296 DOI: 10.1016/j.virol.2008.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/22/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022]
Abstract
A unique feature of several T=3 icosahedral viruses is the presence of a structure called the beta-annulus formed by extensive hydrogen bonding between protein subunits related by icosahedral three-fold axis of symmetry. This unique structure has been suggested as a molecular switch that determines the T=3 capsid assembly. In order to examine the importance of the beta-annulus, a deletion mutant of Sesbania mosaic virus coat protein in which residues 48-59 involved in the formation of the beta-annulus were deleted retaining the rest of the residues in the amino terminal segment (rCP (Delta48-59)) was constructed. When expressed in Escherichia coli, the mutant protein assembled into virus like particles of sizes close to that of the wild type virus particles. The purified capsids were crystallized and their three dimensional structure was determined at 3.6 A resolution by X-ray crystallography. The mutant capsid structure closely resembled that of the native virus particles. However, surprisingly, the structure revealed that the assembly of the particles has proceeded without the formation of the beta-annulus. Therefore, the beta-annulus is not essential for T=3 capsid assembly as speculated earlier and may be formed as a consequence of the particle assembly. This is the first structural demonstration that the virus particle morphology with and without the beta-annulus could be closely similar.
Collapse
Affiliation(s)
- Anju Pappachan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560 012, India
| | | | | | | | | |
Collapse
|
37
|
Wada Y, Tanaka H, Yamashita E, Kubo C, Ichiki-Uehara T, Nakazono-Nagaoka E, Omura T, Tsukihara T. The structure of melon necrotic spot virus determined at 2.8 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:8-13. [PMID: 18097092 PMCID: PMC2374003 DOI: 10.1107/s1744309107066481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/11/2007] [Indexed: 11/10/2022]
Abstract
The structure of melon necrotic spot virus (MNSV) was determined at 2.8 A resolution. Although MNSV is classified into the genus Carmovirus of the family Tombusviridae, the three-dimensional structure of MNSV showed a higher degree of similarity to tomato bushy stunt virus (TBSV), which belongs to the genus Tombusvirus, than to carnation mottle virus (CMtV), turnip crinkle virus (TCV) or cowpea mottle virus (CPMtV) from the genus Carmovirus. Thus, the classification of the family Tombusviridae at the genus level conflicts with the patterns of similarity among coat-protein structures. MNSV is one of the viruses belonging to the genera Tombusvirus or Carmovirus that are naturally transmitted in the soil by zoospores of fungal vectors. The X-ray structure of MNSV provides us with a representative structure of viruses transmitted by fungi.
Collapse
Affiliation(s)
- Yasunobu Wada
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Chikako Kubo
- National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
- Chiba Prefectural Agriculture Research Center, 808 Daizenno, Midori-ku, Chiba 266-0666, Japan
| | - Tamaki Ichiki-Uehara
- National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Eiko Nakazono-Nagaoka
- National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Toshihiro Omura
- National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Functional analysis of brome mosaic virus coat protein RNA-interacting domains. Arch Virol 2007; 153:231-45. [PMID: 18066637 DOI: 10.1007/s00705-007-1085-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
The coat proteins (CP) of cowpea chlorotic mottle (CCMV) and brome mosaic virus (BMV), two members of the genus Bromovirus, share 70% identity at the amino acid (aa) level and contain four highly conserved regions, identified as putative RNA-interacting domains (RIDs). To assess the contribution of the conserved aa sequence within each RID and the structural features contained therein toward virion assembly and RNA packaging, we engineered a set of fourteen independent mutations (deletions and substitutions) encompassing all four RIDs. The effect of each mutation on viral biology, pathogenesis, and RNA packaging was analyzed in whole-plant infection assays. Among the four RIDs, two mutations engineered into the N-proximal domain (RID I) and two of the four mutations engineered into the C-proximal domain (RID IV) proved to be more debilitating (compared to wild-type) while only selected regions in the central domains (RID II or III) showed a detectable effect. Neutral effects were observed when aa residues that are predicted to affect calcium binding were mutated. To further analyze the importance of N and C terminal interactions leading to virus assembly and RNA packaging, four CP hybrids were constructed by precisely exchanging either the N-terminal 77 or the C-terminal 113/112aa between BMV and CCMV. Despite the fact that the CP composition of the hybrid viruses is distinct from either of the parents, the symptom phenotype in Chenopodium quinoa, migration pattern of CP in Western blots and virion mobility in agarose gels was indistinguishable from the respective parent providing the genetic background. Collectively, the data provide insight for assessing the relative importance of each RID during genome packaging and in molecular processes regulating the overall architecture of the assembled virions.
Collapse
|
39
|
Hui E, Rochon D. Evaluation of the roles of specific regions of the Cucumber necrosis virus coat protein arm in particle accumulation and fungus transmission. J Virol 2006; 80:5968-75. [PMID: 16731935 PMCID: PMC1472614 DOI: 10.1128/jvi.02485-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cucumber necrosis virus (CNV) particle is a T=3 icosahedron composed of 180 identical coat protein (CP) subunits. Each CP subunit includes a 34-amino-acid (aa) arm which connects the RNA binding and shell domains. The arm is comprised of an 18-aa "beta" region and a 16-aa "epsilon" region, with the former contributing to a beta-annular structure involved in particle stability and the latter contributing to quasiequivalence and virion RNA binding. Previous work has shown that specific regions of the CNV capsid play important roles in transmission by zoospores of the fungal vector Olpidium bornovanus and that particle expansion is essential for this process. To assess the importance of the two arm regions in particle accumulation, stability, and virus transmission, five CP arm deletion mutants were constructed. Our findings indicate that beta(-) mutants are capable of producing particles in plants; however, the arm(-) and epsilon(-) mutants are not. In addition, beta(-) particles bind zoospores less efficiently than wild-type CNV and are not fungally transmissible. Beta(-) particles are also less thermally stable and disassemble under swelling conditions. Our finding that beta(-) mutants can accumulate in plants suggests that other features of the virion, such as RNA/CP interactions, may also be important for particle stability.
Collapse
Affiliation(s)
- Elizabeth Hui
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
40
|
Hsu C, Singh P, Ochoa W, Manayani DJ, Manchester M, Schneemann A, Reddy VS. Characterization of polymorphism displayed by the coat protein mutants of tomato bushy stunt virus. Virology 2006; 349:222-9. [PMID: 16603216 DOI: 10.1016/j.virol.2006.02.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 11/29/2022]
Abstract
Expression of full-length and N-terminal deletion mutants of the coat protein (CP) of tomato bushy stunt virus (TBSV) using the recombinant baculovirus system resulted in spontaneously assembled virus-like particles (VLPs). Deletion of the majority of the R-domain sequence of the CP, residues 1-52 (CP-NDelta52) and 1-62 (CP-NDelta62), produced capsids similar to wild-type VLPs. Interestingly, the CP-NDelta62 mutant that retains the last 3 residues of R-domain is capable of forming both the T = 1 and T = 3 particles. However, between the two types of VLPs, formation of the T = 1 capsids appears to be preferred. Another mutant, CP-NDelta72, in which R-domain (residues 1-65) was completely removed but contains most of the beta-annulus and extended arm (betaA) regions exclusively formed T = 1 particles. These results suggest that as few as 3 residues (63-65) of the R-domain, which includes 2 basic amino acids together with the arm (betaA) and beta-annulus regions, may be sufficient for the formation of T = 3 particles. However, anywhere between 4 to 13 residues of the R-domain may be required for proper positioning of betaA and beta-annulus structural elements of the C-type subunits to facilitate an error free assembly of T = 3 capsids.
Collapse
Affiliation(s)
- Catherine Hsu
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|