1
|
Villamayor-Belinchón L, Sharma P, Gordiyenko Y, Llácer J, Hussain T. Structural basis of AUC codon discrimination during translation initiation in yeast. Nucleic Acids Res 2024; 52:11317-11335. [PMID: 39193907 PMCID: PMC11472065 DOI: 10.1093/nar/gkae737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024] Open
Abstract
In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known. We have captured multiple yeast 48S PICs with a near-cognate AUC codon at the P-site, revealing that the AUC codon induces instability in the codon-anticodon at the P-site, leading to a disordered N-terminal tail of eIF1A. Following eIF1 dissociation, the N-terminal domain of eIF5 fails to occupy the vacant eIF1 position, and eIF2β becomes flexible. Consequently, 48S with an AUC codon is less favourable for initiation. Furthermore, we observe hitherto unreported metastable states of the eIF2-GTP-Met-tRNAMet ternary complex, where the eIF2β helix-turn-helix domain may facilitate eIF5 association by preventing eIF1 rebinding to 48S PIC. Finally, a swivelled head conformation of 48S PIC appears crucial for discriminating incorrect and selection of the correct codon-anticodon pair during translation initiation.
Collapse
Affiliation(s)
| | - Prafful Sharma
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | | | - Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
2
|
Basu I, Gorai B, Chandran T, Maiti PK, Hussain T. Selection of start codon during mRNA scanning in eukaryotic translation initiation. Commun Biol 2022; 5:587. [PMID: 35705698 PMCID: PMC9200866 DOI: 10.1038/s42003-022-03534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Accurate and high-speed scanning and subsequent selection of the correct start codon are important events in protein synthesis. Eukaryotic mRNAs have long 5′ UTRs that are inspected for the presence of a start codon by the ribosomal 48S pre-initiation complex (PIC). However, the conformational state of the 48S PIC required for inspecting every codon is not clearly understood. Here, atomistic molecular dynamics (MD) simulations and energy calculations suggest that the scanning conformation of 48S PIC may reject all but 4 (GUG, CUG, UUG and ACG) of the 63 non-AUG codons, and initiation factor eIF1 is crucial for this discrimination. We provide insights into the possible role of initiation factors eIF1, eIF1A, eIF2α and eIF2β in scanning. Overall, the study highlights how the scanning conformation of ribosomal 48S PIC acts as a coarse selectivity checkpoint for start codon selection and scans long 5′ UTRs in eukaryotic mRNAs with accuracy and high speed. Molecular simulations of start codon selection by the eukaryotic ribosome during mRNA scanning provide further insight into high speed of scanning and how initiation factors contribute toward codon-anticodon-ribosome network stability.
Collapse
Affiliation(s)
- Ipsita Basu
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Biswajit Gorai
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.,Department of Chemical Engineering, University of New Hampshire, Durham, NH-03824, USA
| | - Thyageshwar Chandran
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, 560012, India.,Department of Biotechnology, National Institute of Technology-Warangal, Telangana, 506004, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
3
|
Yi SH, Petrychenko V, Schliep JE, Goyal A, Linden A, Chari A, Urlaub H, Stark H, Rodnina MV, Adio S, Fischer N. Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Nucleic Acids Res 2022; 50:5282-5298. [PMID: 35489072 PMCID: PMC9122606 DOI: 10.1093/nar/gkac283] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023] Open
Abstract
Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2–GTP–Met-tRNAiMet and eIF3. The ‘open’ 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The ‘closed’ form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.
Collapse
Affiliation(s)
- Sung-Hui Yi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Valentyn Petrychenko
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jan Erik Schliep
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ashwin Chari
- Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sarah Adio
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University of Göttingen, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
4
|
Abstract
SignificanceThe presence of RNA chemical modifications has long been known, but their precise molecular consequences remain unknown. 2'-O-methylation is an abundant modification that exists in RNA in all domains of life. Ribosomal RNA (rRNA) represents a functionally important RNA that is heavily modified by 2'-O-methylations. Although abundant at functionally important regions of the rRNA, the contribution of 2'-O-methylations to ribosome activities is unknown. By establishing a method to disturb rRNA 2'-O-methylation patterns, we show that rRNA 2'-O-methylations affect the function and fidelity of the ribosome and change the balance between different ribosome conformational states. Our work links 2'-O-methylation to ribosome dynamics and defines a set of critical rRNA 2'-O-methylations required for ribosome biogenesis and others that are dispensable.
Collapse
|
5
|
Functional characterization of 5' UTR cis-acting sequence elements that modulate translational efficiency in Plasmodium falciparum and humans. Malar J 2022; 21:15. [PMID: 34991611 PMCID: PMC8739713 DOI: 10.1186/s12936-021-04024-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background The eukaryotic parasite Plasmodium falciparum causes millions of malarial infections annually while drug resistance to common anti-malarials is further confounding eradication efforts. Translation is an attractive therapeutic target that will benefit from a deeper mechanistic understanding. As the rate limiting step of translation, initiation is a primary driver of translational efficiency. It is a complex process regulated by both cis and trans acting factors, providing numerous potential targets. Relative to model organisms and humans, P. falciparum mRNAs feature unusual 5′ untranslated regions suggesting cis-acting sequence complexity in this parasite may act to tune levels of protein synthesis through their effects on translational efficiency. Methods Here, in vitro translation is deployed to compare the role of cis-acting regulatory sequences in P. falciparum and humans. Using parasite mRNAs with high or low translational efficiency, the presence, position, and termination status of upstream “AUG”s, in addition to the base composition of the 5′ untranslated regions, were characterized. Results The density of upstream “AUG”s differed significantly among the most and least efficiently translated genes in P. falciparum, as did the average “GC” content of the 5′ untranslated regions. Using exemplars from highly translated and poorly translated mRNAs, multiple putative upstream elements were interrogated for impact on translational efficiency. Upstream “AUG”s were found to repress translation to varying degrees, depending on their position and context, while combinations of upstream “AUG”s had non-additive effects. The base composition of the 5′ untranslated regions also impacted translation, but to a lesser degree. Surprisingly, the effects of cis-acting sequences were remarkably conserved between P. falciparum and humans. Conclusions While translational regulation is inherently complex, this work contributes toward a more comprehensive understanding of parasite and human translational regulation by examining the impact of discrete cis-acting features, acting alone or in context. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04024-2.
Collapse
|
6
|
Linsalata AE, He F, Malik AM, Glineburg MR, Green KM, Natla S, Flores BN, Krans A, Archbold HC, Fedak SJ, Barmada SJ, Todd PK. DDX3X and specific initiation factors modulate FMR1 repeat-associated non-AUG-initiated translation. EMBO Rep 2019; 20:e47498. [PMID: 31347257 PMCID: PMC6726903 DOI: 10.15252/embr.201847498] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
A CGG trinucleotide repeat expansion in the 5' UTR of FMR1 causes the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). This repeat supports a non-canonical mode of protein synthesis known as repeat-associated, non-AUG (RAN) translation. The mechanism underlying RAN translation at CGG repeats remains unclear. To identify modifiers of RAN translation and potential therapeutic targets, we performed a candidate-based screen of eukaryotic initiation factors and RNA helicases in cell-based assays and a Drosophila melanogaster model of FXTAS. We identified multiple modifiers of toxicity and RAN translation from an expanded CGG repeat in the context of the FMR1 5'UTR. These include the DEAD-box RNA helicase belle/DDX3X, the helicase accessory factors EIF4B/4H, and the start codon selectivity factors EIF1 and EIF5. Disrupting belle/DDX3X selectively inhibited FMR1 RAN translation in Drosophila in vivo and cultured human cells, and mitigated repeat-induced toxicity in Drosophila and primary rodent neurons. These findings implicate RNA secondary structure and start codon fidelity as critical elements mediating FMR1 RAN translation and identify potential targets for treating repeat-associated neurodegeneration.
Collapse
Affiliation(s)
- Alexander E Linsalata
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Fang He
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Department of Biological and Health SciencesTexas A&M University, KingsvilleKingsvilleTXUSA
| | - Ahmed M Malik
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMIUSA
| | | | - Katelyn M Green
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Sam Natla
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Brittany N Flores
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Amy Krans
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | | | | | - Sami J Barmada
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Peter K Todd
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Ann Arbor VA Medical CenterAnn ArborMIUSA
| |
Collapse
|
7
|
Abstract
The eukaryotic translation pathway has been studied for more than four decades, but the molecular mechanisms that regulate each stage of the pathway are not completely defined. This is in part because we have very little understanding of the kinetic framework for the assembly and disassembly of pathway intermediates. Steps of the pathway are thought to occur in the subsecond to second time frame, but most assays to monitor these events require minutes to hours to complete. Understanding translational control in sufficient detail will therefore require the development of assays that can precisely monitor the kinetics of the translation pathway in real time. Here, we describe the translation pathway from the perspective of its kinetic parameters, discuss advances that are helping us move toward the goal of a rigorous kinetic understanding, and highlight some of the challenges that remain.
Collapse
|
8
|
Llácer JL, Hussain T, Saini AK, Nanda JS, Kaur S, Gordiyenko Y, Kumar R, Hinnebusch AG, Lorsch JR, Ramakrishnan V. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. eLife 2018; 7:e39273. [PMID: 30475211 PMCID: PMC6298780 DOI: 10.7554/elife.39273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic translation initiation, AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codonsin vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.
Collapse
Affiliation(s)
- Jose Luis Llácer
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Instituto de Biomedicina de Valencia (IBV-CSIC)ValenciaSpain
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Adesh K Saini
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Jagpreet Singh Nanda
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Sukhvir Kaur
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | | | - Rakesh Kumar
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and DevelopmentEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - V Ramakrishnan
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
9
|
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep 2018; 19:embr.201845947. [PMID: 30224410 DOI: 10.15252/embr.201845947] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Recent work has brought to light many different mechanisms of translation initiation that function in cells in parallel to canonical cap-dependent initiation. This has important implications for cancer. Canonical cap-dependent translation initiation is inhibited by many stresses such as hypoxia, nutrient limitation, proteotoxic stress, or genotoxic stress. Since cancer cells are often exposed to these stresses, they rely on alternate modes of translation initiation for protein synthesis and cell growth. Cancer mutations are now being identified in components of the translation machinery and in cis-regulatory elements of mRNAs, which both control translation of cancer-relevant genes. In this review, we provide an overview on the various modes of non-canonical translation initiation, such as leaky scanning, translation re-initiation, ribosome shunting, IRES-dependent translation, and m6A-dependent translation, and then discuss the influence of stress on these different modes of translation. Finally, we present examples of how these modes of translation are dysregulated in cancer cells, allowing them to grow, to proliferate, and to survive, thereby highlighting the importance of translational control in cancer.
Collapse
Affiliation(s)
- Ashwin Sriram
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany .,Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Martin-Marcos P, Zhou F, Karunasiri C, Zhang F, Dong J, Nanda J, Kulkarni SD, Sen ND, Tamame M, Zeschnigk M, Lorsch JR, Hinnebusch AG. eIF1A residues implicated in cancer stabilize translation preinitiation complexes and favor suboptimal initiation sites in yeast. eLife 2017; 6:31250. [PMID: 29206102 PMCID: PMC5756025 DOI: 10.7554/elife.31250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
The translation pre-initiation complex (PIC) scans the mRNA for an AUG codon in favorable context, and AUG recognition stabilizes a closed PIC conformation. The unstructured N-terminal tail (NTT) of yeast eIF1A deploys five basic residues to contact tRNAi, mRNA, or 18S rRNA exclusively in the closed state. Interestingly, EIF1AX mutations altering the human eIF1A NTT are associated with uveal melanoma (UM). We found that substituting all five basic residues, and seven UM-associated substitutions, in yeast eIF1A suppresses initiation at near-cognate UUG codons and AUGs in poor context. Ribosome profiling of NTT substitution R13P reveals heightened discrimination against unfavorable AUG context genome-wide. Both R13P and K16D substitutions destabilize the closed complex at UUG codons in reconstituted PICs. Thus, electrostatic interactions involving the eIF1A NTT stabilize the closed conformation and promote utilization of suboptimal start codons. We predict UM-associated mutations alter human gene expression by increasing discrimination against poor initiation sites.
Collapse
Affiliation(s)
- Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States.,Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Charm Karunasiri
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jagpreet Nanda
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Shardul D Kulkarni
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Neelam Dabas Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Michael Zeschnigk
- Institute of Human Genetics, University Duisburg-Essen, Essen, Germany.,Eye Cancer Research Group, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
11
|
Yourik P, Aitken CE, Zhou F, Gupta N, Hinnebusch AG, Lorsch JR. Yeast eIF4A enhances recruitment of mRNAs regardless of their structural complexity. eLife 2017; 6:31476. [PMID: 29192585 PMCID: PMC5726853 DOI: 10.7554/elife.31476] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
eIF4A is a DEAD-box RNA-dependent ATPase thought to unwind RNA secondary structure in the 5'-untranslated regions (UTRs) of mRNAs to promote their recruitment to the eukaryotic translation pre-initiation complex (PIC). We show that eIF4A's ATPase activity is markedly stimulated in the presence of the PIC, independently of eIF4E•eIF4G, but dependent on subunits i and g of the heteromeric eIF3 complex. Surprisingly, eIF4A accelerated the rate of recruitment of all mRNAs tested, regardless of their degree of structural complexity. Structures in the 5'-UTR and 3' of the start codon synergistically inhibit mRNA recruitment in a manner relieved by eIF4A, indicating that the factor does not act solely to melt hairpins in 5'-UTRs. Our findings that eIF4A functionally interacts with the PIC and plays important roles beyond unwinding 5'-UTR structure is consistent with a recent proposal that eIF4A modulates the conformation of the 40S ribosomal subunit to promote mRNA recruitment.
Collapse
Affiliation(s)
- Paul Yourik
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Colin Echeverría Aitken
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Neha Gupta
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
12
|
López-Alonso JP, Fabbretti A, Kaminishi T, Iturrioz I, Brandi L, Gil-Carton D, Gualerzi CO, Fucini P, Connell SR. Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways. Nucleic Acids Res 2017; 45:2179-2187. [PMID: 27986852 PMCID: PMC5389724 DOI: 10.1093/nar/gkw1251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022] Open
Abstract
In bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy. The results obtained reveal the occurrence of changes in both the ribosome conformation and initiator tRNA position that may play a critical role in controlling translational fidelity. Furthermore, the structure highlights similarities with the early steps of initiation in eukaryotes suggesting that shared structural features guide initiation in all kingdoms of life.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Attilio Fabbretti
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy
| | - Tatsuya Kaminishi
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Idoia Iturrioz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Letizia Brandi
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy
| | - David Gil-Carton
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | | | - Paola Fucini
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Sean R Connell
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
13
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
14
|
Jaafar ZA, Oguro A, Nakamura Y, Kieft JS. Translation initiation by the hepatitis C virus IRES requires eIF1A and ribosomal complex remodeling. eLife 2016; 5. [PMID: 28009256 PMCID: PMC5238962 DOI: 10.7554/elife.21198] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022] Open
Abstract
Internal ribosome entry sites (IRESs) are important RNA-based translation initiation signals, critical for infection by many pathogenic viruses. The hepatitis C virus (HCV) IRES is the prototype for the type 3 IRESs and is also invaluable for exploring principles of eukaryotic translation initiation, in general. Current mechanistic models for the type 3 IRESs are useful but they also present paradoxes, including how they can function both with and without eukaryotic initiation factor (eIF) 2. We discovered that eIF1A is necessary for efficient activity where it stabilizes tRNA binding and inspects the codon-anticodon interaction, especially important in the IRES' eIF2-independent mode. These data support a model in which the IRES binds preassembled translation preinitiation complexes and remodels them to generate eukaryotic initiation complexes with bacterial-like features. This model explains previous data, reconciles eIF2-dependent and -independent pathways, and illustrates how RNA structure-based control can respond to changing cellular conditions.
Collapse
Affiliation(s)
- Zane A Jaafar
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Akihiro Oguro
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States.,RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, United States
| |
Collapse
|
15
|
Ochnik AM, Peterson MS, Avdulov SV, Oh AS, Bitterman PB, Yee D. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells. Neoplasia 2016; 18:100-10. [PMID: 26936396 PMCID: PMC5005264 DOI: 10.1016/j.neo.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/26/2015] [Accepted: 01/04/2016] [Indexed: 01/27/2023] Open
Abstract
Background Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. Materials and Methods To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)+ (MCF-7L) and ERα- (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. Results AIB1 positively regulated IGF-I-induced mRNA translation in both ERα+ and ERα- cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα+ and ERα- knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. Conclusion The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation.
Collapse
Affiliation(s)
- Aleksandra M Ochnik
- Masonic Cancer Center, Departments of Medicine and Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Mark S Peterson
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, MN, USA.
| | - Svetlana V Avdulov
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, MN, USA.
| | - Annabell S Oh
- Masonic Cancer Center, Departments of Medicine and Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Peter B Bitterman
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, MN, USA.
| | - Douglas Yee
- Masonic Cancer Center, Departments of Medicine and Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Sharifulin DE, Bartuli YS, Meschaninova MI, Ven'yaminova AG, Graifer DM, Karpova GG. Exploring accessibility of structural elements of the mammalian 40S ribosomal mRNA entry channel at various steps of translation initiation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1328-38. [DOI: 10.1016/j.bbapap.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 02/05/2023]
|
17
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
18
|
Lind C, Åqvist J. Principles of start codon recognition in eukaryotic translation initiation. Nucleic Acids Res 2016; 44:8425-32. [PMID: 27280974 PMCID: PMC5041461 DOI: 10.1093/nar/gkw534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022] Open
Abstract
Selection of the correct start codon during initiation of translation on the ribosome is a key event in protein synthesis. In eukaryotic initiation, several factors have to function in concert to ensure that the initiator tRNA finds the cognate AUG start codon during mRNA scanning. The two initiation factors eIF1 and eIF1A are known to provide important functions for the initiation process and codon selection. Here, we have used molecular dynamics free energy calculations to evaluate the energetics of initiator tRNA binding to different near-cognate codons on the yeast 40S ribosomal subunit, in the presence and absence of these two initiation factors. The results show that eIF1 and eIF1A together cause a relatively uniform and high discrimination against near-cognate codons. This works such that eIF1 boosts the discrimination against a first position near-cognate G-U mismatch, and also against a second position A-A base pair, while eIF1A mainly acts on third codon position. The computer simulations further reveal the structural basis of the increased discriminatory effect caused by binding of eIF1 and eIF1A to the 40S ribosomal subunit.
Collapse
Affiliation(s)
- Christoffer Lind
- Department of Cell and Molecular biology, Uppsala University, Biomedical Center, Box 596, SE-75124 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular biology, Uppsala University, Biomedical Center, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
19
|
Terenin IM, Akulich KA, Andreev DE, Polyanskaya SA, Shatsky IN, Dmitriev SE. Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis. Nucleic Acids Res 2016; 44:1882-93. [PMID: 26717981 PMCID: PMC4770231 DOI: 10.1093/nar/gkv1514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 02/05/2023] Open
Abstract
During eukaryotic translation initiation, 43S ribosomal complex scans mRNA leader unless an AUG codon in an appropriate context is found. Establishing the stable codon-anticodon base-pairing traps the ribosome on the initiator codon and triggers structural rearrangements, which lead to Pi release from the eIF2-bound GTP. It is generally accepted that AUG recognition by the scanning 43S complex sets the final point in the process of start codon selection, while latter stages do not contribute to this process. Here we use translation reconstitution approach and kinetic toe-printing assay to show that after the 48S complex is formed on an AUG codon, in case GTP hydrolysis is impaired, the ribosomal subunit is capable to resume scanning and slides downstream to the next AUG. In contrast to leaky scanning, this sliding is not limited to AUGs in poor nucleotide contexts and occurs after a relatively long pause at the recognized AUG. Thus, recognition of an AUG per se does not inevitably lead to this codon being selected for initiation of protein synthesis. Instead, it is eIF5-induced GTP hydrolysis and Pi release that irreversibly trap the 48S complex, and this complex is further stabilized by eIF5B and 60S joining.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Kseniya A Akulich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Sofya A Polyanskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
20
|
Llácer JL, Hussain T, Marler L, Aitken CE, Thakur A, Lorsch JR, Hinnebusch AG, Ramakrishnan V. Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex. Mol Cell 2015. [PMID: 26212456 PMCID: PMC4534855 DOI: 10.1016/j.molcel.2015.06.033] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Translation initiation in eukaryotes begins with the formation of a pre-initiation complex (PIC) containing the 40S ribosomal subunit, eIF1, eIF1A, eIF3, ternary complex (eIF2-GTP-Met-tRNAi), and eIF5. The PIC, in an open conformation, attaches to the 5′ end of the mRNA and scans to locate the start codon, whereupon it closes to arrest scanning. We present single particle cryo-electron microscopy (cryo-EM) reconstructions of 48S PICs from yeast in these open and closed states, at 6.0 Å and 4.9 Å, respectively. These reconstructions show eIF2β as well as a configuration of eIF3 that appears to encircle the 40S, occupying part of the subunit interface. Comparison of the complexes reveals a large conformational change in the 40S head from an open mRNA latch conformation to a closed one that constricts the mRNA entry channel and narrows the P site to enclose tRNAi, thus elucidating key events in start codon recognition. Structures of eukaryotic translation initiation complexes in open and closed states In the open complex the 40S head moves upward to open the mRNA entry channel latch Transition to closed state locks initiator tRNA in the P site base-paired with AUG The structures show how eIF3 contacts eIF2 and eIF1 on the 40S subunit interface
Collapse
Affiliation(s)
- Jose L Llácer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Laura Marler
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin Echeverría Aitken
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anil Thakur
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
21
|
Fraser CS. Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Biochimie 2015; 114:58-71. [PMID: 25742741 DOI: 10.1016/j.biochi.2015.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Hussain T, Llácer JL, Fernández IS, Munoz A, Martin-Marcos P, Savva CG, Lorsch JR, Hinnebusch AG, Ramakrishnan V. Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell 2014; 159:597-607. [PMID: 25417110 PMCID: PMC4217140 DOI: 10.1016/j.cell.2014.10.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/15/2014] [Accepted: 10/01/2014] [Indexed: 11/03/2022]
Abstract
During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2?, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon.
Collapse
Affiliation(s)
| | - Jose L Llácer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Antonio Munoz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jon R Lorsch
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
23
|
Sokabe M, Fraser CS. Human eukaryotic initiation factor 2 (eIF2)-GTP-Met-tRNAi ternary complex and eIF3 stabilize the 43 S preinitiation complex. J Biol Chem 2014; 289:31827-31836. [PMID: 25246524 DOI: 10.1074/jbc.m114.602870] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of a stable 43 S preinitiation complex (PIC) must occur to enable successful mRNA recruitment. However, the contributions of eIF1, eIF1A, eIF3, and the eIF2-GTP-Met-tRNAi ternary complex (TC) in stabilizing the 43 S PIC are poorly defined. We have reconstituted the human 43 S PIC and used fluorescence anisotropy to systematically measure the affinity of eIF1, eIF1A, and eIF3j in the presence of different combinations of 43 S PIC components. Our data reveal a complicated network of interactions that result in high affinity binding of all 43 S PIC components with the 40 S subunit. Human eIF1 and eIF1A bind cooperatively to the 40 S subunit, revealing an evolutionarily conserved interaction. Negative cooperativity is observed between the binding of eIF3j and the binding of eIF1, eIF1A, and TC with the 40 S subunit. To overcome this, eIF3 dramatically increases the affinity of eIF1 and eIF3j for the 40 S subunit. Recruitment of TC also increases the affinity of eIF1 for the 40 S subunit, but this interaction has an important indirect role in increasing the affinity of eIF1A for the 40 S subunit. Together, our data provide a more complete thermodynamic framework of the human 43 S PIC and reveal important interactions between its components to maintain its stability.
Collapse
Affiliation(s)
- Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616.
| |
Collapse
|
24
|
Saini AK, Nanda JS, Martin-Marcos P, Dong J, Zhang F, Bhardwaj M, Lorsch JR, Hinnebusch AG. Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex. Nucleic Acids Res 2014; 42:9623-40. [PMID: 25114053 PMCID: PMC4150770 DOI: 10.1093/nar/gku653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
eIF5 is the GTPase activating protein (GAP) for the eIF2 · GTP · Met-tRNAi (Met) ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2 · GDP · Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui(-) mutations in numerous factors. We conclude that both of eIF5's functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo.
Collapse
Affiliation(s)
- Adesh K Saini
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jagpreet S Nanda
- Shoolini University of Biotechnology and Management Sciences, Department of Biotechnology, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Monika Bhardwaj
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jon R Lorsch
- Shoolini University of Biotechnology and Management Sciences, Department of Biotechnology, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
25
|
Ghosh A, Jindal S, Bentley AA, Hinnebusch AG, Komar AA. Rps5-Rps16 communication is essential for efficient translation initiation in yeast S. cerevisiae. Nucleic Acids Res 2014; 42:8537-55. [PMID: 24948608 PMCID: PMC4117775 DOI: 10.1093/nar/gku550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conserved ribosomal proteins frequently harbor additional segments in eukaryotes not found in bacteria, which could facilitate eukaryotic-specific reactions in the initiation phase of protein synthesis. Here we provide evidence showing that truncation of the N-terminal domain (NTD) of yeast Rps5 (absent in bacterial ortholog S7) impairs translation initiation, cell growth and induction of GCN4 mRNA translation in a manner suggesting incomplete assembly of 48S preinitiation complexes (PICs) at upstream AUG codons in GCN4 mRNA. Rps5 mutations evoke accumulation of factors on native 40S subunits normally released on conversion of 48S PICs to 80S initiation complexes (ICs) and this abnormality and related phenotypes are mitigated by the SUI5 variant of eIF5. Remarkably, similar effects are observed by substitution of Lys45 in the Rps5-NTD, involved in contact with Rps16, and by eliminating the last two residues of the C-terminal tail (CTT) of Rps16, believed to contact initiator tRNA base-paired to AUG in the P site. We propose that Rps5-NTD-Rps16-NTD interaction modulates Rps16-CTT association with Met-tRNAi (Met) to promote a functional 48S PIC.
Collapse
Affiliation(s)
- Arnab Ghosh
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Amber A Bentley
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
26
|
Martin-Marcos P, Nanda JS, Luna RE, Zhang F, Saini AK, Cherkasova VA, Wagner G, Lorsch JR, Hinnebusch AG. Enhanced eIF1 binding to the 40S ribosome impedes conformational rearrangements of the preinitiation complex and elevates initiation accuracy. RNA (NEW YORK, N.Y.) 2014; 20:150-67. [PMID: 24335188 PMCID: PMC3895268 DOI: 10.1261/rna.042069.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/17/2013] [Indexed: 05/20/2023]
Abstract
In the current model of translation initiation by the scanning mechanism, eIF1 promotes an open conformation of the 40S subunit competent for rapidly loading the eIF2·GTP·Met-tRNAi ternary complex (TC) in a metastable conformation (POUT) capable of sampling triplets entering the P site while blocking accommodation of Met-tRNAi in the PIN state and preventing completion of GTP hydrolysis (Pi release) by the TC. All of these functions should be reversed by eIF1 dissociation from the preinitiation complex (PIC) on AUG recognition. We tested this model by selecting eIF1 Ssu(-) mutations that suppress the elevated UUG initiation and reduced rate of TC loading in vivo conferred by an eIF1 (Sui(-)) substitution that eliminates a direct contact of eIF1 with the 40S subunit. Importantly, several Ssu(-) substitutions increase eIF1 affinity for 40S subunits in vitro, and the strongest-binding variant (D61G), predicted to eliminate ionic repulsion with 18S rRNA, both reduces the rate of eIF1 dissociation and destabilizes the PIN state of TC binding in reconstituted PICs harboring Sui(-) variants of eIF5 or eIF2. These findings establish that eIF1 dissociation from the 40S subunit is required for the PIN mode of TC binding and AUG recognition and that increasing eIF1 affinity for the 40S subunit increases initiation accuracy in vivo. Our results further demonstrate that the GTPase-activating protein eIF5 and β-subunit of eIF2 promote accuracy by controlling eIF1 dissociation and the stability of TC binding to the PIC, beyond their roles in regulating GTP hydrolysis by eIF2.
Collapse
Affiliation(s)
- Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jagpreet S. Nanda
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rafael E. Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adesh K. Saini
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh-173212, India
| | - Vera A. Cherkasova
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jon R. Lorsch
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Corresponding authorsE-mail E-mail
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
27
|
Abstract
In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
28
|
Luna RE, Arthanari H, Hiraishi H, Akabayov B, Tang L, Cox C, Markus MA, Luna LE, Ikeda Y, Watanabe R, Bedoya E, Yu C, Alikhan S, Wagner G, Asano K. The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes. Biochemistry 2013; 52:9510-8. [PMID: 24319994 PMCID: PMC3917153 DOI: 10.1021/bi4009775] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Scanning of the mRNA transcript by the preinitiation complex (PIC) requires a panel of eukaryotic initiation factors, which includes eIF1 and eIF1A, the main transducers of stringent AUG selection. eIF1A plays an important role in start codon recognition; however, its molecular contacts with eIF5 are unknown. Using nuclear magnetic resonance, we unveil eIF1A's binding surface on the carboxyl-terminal domain of eIF5 (eIF5-CTD). We validated this interaction by observing that eIF1A does not bind to an eIF5-CTD mutant, altering the revealed eIF1A interaction site. We also found that the interaction between eIF1A and eIF5-CTD is conserved between humans and yeast. Using glutathione S-transferase pull-down assays of purified proteins, we showed that the N-terminal tail (NTT) of eIF1A mediates the interaction with eIF5-CTD and eIF1. Genetic evidence indicates that overexpressing eIF1 or eIF5 suppresses the slow growth phenotype of eIF1A-NTT mutants. These results suggest that the eIF1A-eIF5-CTD interaction during scanning PICs contributes to the maintenance of eIF1 within the open PIC.
Collapse
Affiliation(s)
- Rafael E. Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Hiroyuki Hiraishi
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Barak Akabayov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Leiming Tang
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Christian Cox
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Michelle A. Markus
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Lunet E. Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Yuka Ikeda
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Ryosuke Watanabe
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Edward Bedoya
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Cathy Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Shums Alikhan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Katsura Asano
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
29
|
Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Hellen CUT, Pestova TV, Frank J. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 2013; 153:1108-19. [PMID: 23706745 DOI: 10.1016/j.cell.2013.04.036] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/06/2013] [Accepted: 04/05/2013] [Indexed: 01/19/2023]
Abstract
Eukaryotic translation initiation begins with assembly of a 43S preinitiation complex. First, methionylated initiator methionine transfer RNA (Met-tRNAi(Met)), eukaryotic initiation factor (eIF) 2, and guanosine triphosphate form a ternary complex (TC). The TC, eIF3, eIF1, and eIF1A cooperatively bind to the 40S subunit, yielding the 43S preinitiation complex, which is ready to attach to messenger RNA (mRNA) and start scanning to the initiation codon. Scanning on structured mRNAs additionally requires DHX29, a DExH-box protein that also binds directly to the 40S subunit. Here, we present a cryo-electron microscopy structure of the mammalian DHX29-bound 43S complex at 11.6 Å resolution. It reveals that eIF2 interacts with the 40S subunit via its α subunit and supports Met-tRNAi(Met) in an unexpected P/I orientation (eP/I). The structural core of eIF3 resides on the back of the 40S subunit, establishing two principal points of contact, whereas DHX29 binds around helix 16. The structure provides insights into eukaryote-specific aspects of translation, including the mechanism of action of DHX29.
Collapse
Affiliation(s)
- Yaser Hashem
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Alekhina OM, Vassilenko KS. Translation initiation in eukaryotes: versatility of the scanning model. BIOCHEMISTRY (MOSCOW) 2013; 77:1465-77. [PMID: 23379522 DOI: 10.1134/s0006297912130056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is generally accepted that the initiation of translation in eukaryotes involves the binding of the 40S ribosomal subunit to the capped 5' end of an mRNA and subsequent scanning of 5' UTR in search of an initiation codon. However, until recently this has remained a mere hypothesis. This review describes the novel experimental evidence in support of this classical model. Data on the participation of various factors in the eukaryotic initiation process are summarized. The sequence of initiation events is described in light of the latest experimental data. The existing physical models of scanning are presented. Special attention is paid to discussion of alternative models of eukaryotic initiation of translation. It is demonstrated that the canonical mechanism of initiation is more versatile than previously thought.
Collapse
Affiliation(s)
- O M Alekhina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
31
|
Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 2013; 340:9-21. [PMID: 23830805 DOI: 10.1016/j.canlet.2013.06.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is a complicated process primarily regulated at the levels of gene transcription and mRNA translation. The latter involves four main steps: initiation, elongation, termination and recycling. Translation regulation is primarily achieved during initiation which is orchestrated by 12 currently known eukaryotic initiation factors (eIFs). Here, we review the current state of eIF research and present a concise summary of the various eIF subunits. As eIFs turned out to be critically implicated in different oncogenic processes the various eIF members and their contribution to onset and progression of cancer are featured.
Collapse
|
32
|
Valásek LS. 'Ribozoomin'--translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci 2013; 13:305-30. [PMID: 22708493 PMCID: PMC3434475 DOI: 10.2174/138920312801619385] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 01/16/2012] [Accepted: 02/16/2012] [Indexed: 02/05/2023]
Abstract
Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into
life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene
regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the
study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA
translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular
details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss
recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of
how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our
current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation.
Collapse
Affiliation(s)
- Leos Shivaya Valásek
- Laboratory of Eukaryotic Gene Regulation, Institute of Microbiology AS CR, Prague, Czech Republic.
| |
Collapse
|
33
|
Nanda JS, Saini AK, Muñoz AM, Hinnebusch AG, Lorsch JR. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex. J Biol Chem 2013; 288:5316-29. [PMID: 23293029 PMCID: PMC3581429 DOI: 10.1074/jbc.m112.440693] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/04/2013] [Indexed: 11/06/2022] Open
Abstract
Accurate recognition of the start codon in an mRNA by the eukaryotic translation preinitiation complex (PIC) is essential for proper gene expression. The process is mediated by eukaryotic translation initiation factors (eIFs) in conjunction with the 40 S ribosomal subunit and (initiator) tRNA(i). Here, we provide evidence that the C-terminal tail (CTT) of eIF1A, which we previously implicated in start codon recognition, moves closer to the N-terminal domain of eIF5 when the PIC encounters an AUG codon. Importantly, this movement is coupled to dissociation of eIF1 from the PIC, a critical event in start codon recognition, and is dependent on the scanning enhancer elements in the eIF1A CTT. The data further indicate that eIF1 dissociation must be accompanied by the movement of the eIF1A CTT toward eIF5 in order to trigger release of phosphate from eIF2, which converts the latter to its GDP-bound state. Our results also suggest that release of eIF1 from the PIC and movement of the CTT of eIF1A are triggered by the same event, most likely accommodation of tRNA(i) in the P site of the 40 S subunit driven by base pairing between the start codon in the mRNA and the anticodon in tRNA(i). Finally, we show that the C-terminal domain of eIF5 is responsible for the factor's activity in antagonizing eIF1 binding to the PIC. Together, our data provide a more complete picture of the chain of molecular events that is triggered when the scanning PIC encounters an AUG start codon in the mRNA.
Collapse
Affiliation(s)
- Jagpreet S. Nanda
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Adesh K. Saini
- the Laboratory of Gene Regulation and Development, Eunice K. Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Antonio M. Muñoz
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Alan G. Hinnebusch
- the Laboratory of Gene Regulation and Development, Eunice K. Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Jon R. Lorsch
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| |
Collapse
|
34
|
Voigts-Hoffmann F, Klinge S, Ban N. Structural insights into eukaryotic ribosomes and the initiation of translation. Curr Opin Struct Biol 2012; 22:768-77. [DOI: 10.1016/j.sbi.2012.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/05/2023]
|
35
|
Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a011544. [PMID: 22815232 DOI: 10.1101/cshperspect.a011544] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Translation initiation in eukaryotes is a highly regulated and complex stage of gene expression. It requires the action of at least 12 initiation factors, many of which are known to be the targets of regulatory pathways. Here we review our current understanding of the molecular mechanics of eukaryotic translation initiation, focusing on recent breakthroughs from in vitro and in vivo studies. We also identify important unanswered questions that will require new ideas and techniques to solve.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
36
|
Karásková M, Gunišová S, Herrmannová A, Wagner S, Munzarová V, Valášek LS. Functional characterization of the role of the N-terminal domain of the c/Nip1 subunit of eukaryotic initiation factor 3 (eIF3) in AUG recognition. J Biol Chem 2012; 287:28420-34. [PMID: 22718758 PMCID: PMC3436577 DOI: 10.1074/jbc.m112.386656] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In eukaryotes, for a protein to be synthesized, the 40 S subunit has to first scan the 5′-UTR of the mRNA until it has encountered the AUG start codon. Several initiation factors that ensure high fidelity of AUG recognition were identified previously, including eIF1A, eIF1, eIF2, and eIF5. In addition, eIF3 was proposed to coordinate their functions in this process as well as to promote their initial binding to 40 S subunits. Here we subjected several previously identified segments of the N-terminal domain (NTD) of the eIF3c/Nip1 subunit, which mediates eIF3 binding to eIF1 and eIF5, to semirandom mutagenesis to investigate the molecular mechanism of eIF3 involvement in these reactions. Three major classes of mutant substitutions or internal deletions were isolated that affect either the assembly of preinitiation complexes (PICs), scanning for AUG, or both. We show that eIF5 binds to the extreme c/Nip1-NTD (residues 1–45) and that impairing this interaction predominantly affects the PIC formation. eIF1 interacts with the region (60–137) that immediately follows, and altering this contact deregulates AUG recognition. Together, our data indicate that binding of eIF1 to the c/Nip1-NTD is equally important for its initial recruitment to PICs and for its proper functioning in selecting the translational start site.
Collapse
Affiliation(s)
- Martina Karásková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, the Czech Republic
| | | | | | | | | | | |
Collapse
|
37
|
Aitken CE, Lorsch JR. A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol 2012; 19:568-76. [PMID: 22664984 DOI: 10.1038/nsmb.2303] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Translation initiation in eukaryotes is a complex and highly regulated process requiring the action of at least 12 protein factors. The pathway is distinguished by the formation of a pre-initiation complex that recruits the 5' end of the mRNA and scans along it to locate the start codon. During the past decade, a combination of genetics, biochemistry and structural studies has begun to illuminate key molecular events in this critical phase of gene expression. Here, we outline our current understanding of eukaryotic translation initiation and discuss important outstanding challenges.
Collapse
Affiliation(s)
- Colin Echeverría Aitken
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
38
|
The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep 2012; 1:689-702. [PMID: 22813744 DOI: 10.1016/j.celrep.2012.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/16/2012] [Accepted: 04/19/2012] [Indexed: 11/23/2022] Open
Abstract
Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we identified the binding sites of eIF1 and eIF2β on eIF5-CTD and found that they partially overlapped. Mutating select eIF5 residues in the common interface specifically disrupts interaction with both factors. Genetic and biochemical evidence indicates that these eIF5-CTD mutations impair start codon recognition and impede eIF1 release from the PIC by abrogating eIF5-CTD binding to eIF2β. This study provides mechanistic insight into the role of eIF5-CTD's dynamic interplay with eIF1 and eIF2β in switching PICs from an open to a closed state at start codons.
Collapse
|
39
|
Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 2012; 75:434-67, first page of table of contents. [PMID: 21885680 DOI: 10.1128/mmbr.00008-11] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5' end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an "open" conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a "closed" conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the "P" site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded "landing pad" for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site.
Collapse
|
40
|
Functional elements in initiation factors 1, 1A, and 2β discriminate against poor AUG context and non-AUG start codons. Mol Cell Biol 2011; 31:4814-31. [PMID: 21930786 DOI: 10.1128/mcb.05819-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast eIF1 inhibits initiation at non-AUG triplets, but it was unknown whether it also discriminates against AUGs in suboptimal context. As in other eukaryotes, the yeast gene encoding eIF1 (SUI1) contains an AUG in poor context, which could underlie translational autoregulation. Previously, eIF1 mutations were identified that increase initiation at UUG codons (Sui(-) phenotype), and we obtained mutations with the opposite phenotype of suppressing UUG initiation (Ssu(-) phenotype). Remarkably, Sui(-) mutations in eukaryotic translation initiation factor 1 (eIF1), eIF1A, and eIF2β all increase SUI1 expression in a manner diminished by introducing the optimal context at the SUI1 AUG, whereas Ssu(-) mutations in eIF1 and eIF1A decrease SUI1 expression with the native, but not optimal, context present. Therefore, discrimination against weak context depends on specific residues in eIFs 1, 1A, and 2β that also impede selection of non-AUGs, suggesting that context nucleotides and AUG act coordinately to stabilize the preinitiation complex. Although eIF1 autoregulates by discriminating against poor context in yeast and mammals, this mechanism does not prevent eIF1 overproduction in yeast, accounting for the hyperaccuracy phenotype afforded by SUI1 overexpression.
Collapse
|
41
|
Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:277-98. [PMID: 21957010 DOI: 10.1002/wrna.52] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
42
|
Chiu WL, Wagner S, Herrmannová A, Burela L, Zhang F, Saini AK, Valášek L, Hinnebusch AG. The C-terminal region of eukaryotic translation initiation factor 3a (eIF3a) promotes mRNA recruitment, scanning, and, together with eIF3j and the eIF3b RNA recognition motif, selection of AUG start codons. Mol Cell Biol 2010; 30:4415-34. [PMID: 20584985 PMCID: PMC2937525 DOI: 10.1128/mcb.00280-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/26/2010] [Accepted: 06/14/2010] [Indexed: 11/20/2022] Open
Abstract
The C-terminal domain (CTD) of the a/Tif32 subunit of budding yeast eukaryotic translation initiation factor 3 (eIF3) interacts with eIF3 subunits j/Hcr1 and b/Prt1 and can bind helices 16 to 18 of 18S rRNA, suggesting proximity to the mRNA entry channel of the 40S subunit. We have identified substitutions in the conserved Lys-Glu-Arg-Arg (KERR) motif and in residues of the nearby box6 element of the a/Tif32 CTD that impair mRNA recruitment by 43S preinitiation complexes (PICs) and confer phenotypes indicating defects in scanning and start codon recognition. The normally dispensable CTD of j/Hcr1 is required for its binding to a/Tif32 and to mitigate the growth defects of these a/Tif32 mutants, indicating physical and functional interactions between these two domains. The a/Tif32 CTD and the j/Hcr1 N-terminal domain (NTD) also interact with the RNA recognition motif (RRM) in b/Prt1, and mutations in both subunits that disrupt their interactions with the RRM increase leaky scanning of an AUG codon. These results, and our demonstration that the extreme CTD of a/Tif32 binds to Rps2 and Rps3, lead us to propose that the a/Tif32 CTD directly stabilizes 43S subunit-mRNA interaction and that the b/Prt1-RRM-j/Hcr1-a/Tif32-CTD module binds near the mRNA entry channel and regulates the transition between scanning-conducive and initiation-competent conformations of the PIC.
Collapse
Affiliation(s)
- Wen-Ling Chiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, Videnska 1083, Prague 142 20, Czech Republic
| | - Susan Wagner
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, Videnska 1083, Prague 142 20, Czech Republic
| | - Anna Herrmannová
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, Videnska 1083, Prague 142 20, Czech Republic
| | - Laxminarayana Burela
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, Videnska 1083, Prague 142 20, Czech Republic
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, Videnska 1083, Prague 142 20, Czech Republic
| | - Adesh K. Saini
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, Videnska 1083, Prague 142 20, Czech Republic
| | - Leoš Valášek
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, Videnska 1083, Prague 142 20, Czech Republic
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, Videnska 1083, Prague 142 20, Czech Republic
| |
Collapse
|
43
|
Lorsch JR, Dever TE. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation. J Biol Chem 2010; 285:21203-7. [PMID: 20444698 PMCID: PMC2898419 DOI: 10.1074/jbc.r110.119743] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A central step to high fidelity protein synthesis is selection of the proper start codon. Recent structural, biochemical, and genetic analyses have provided molecular insights into the coordinated activities of the initiation factors in start codon selection. A molecular model is emerging in which start codon recognition is linked to dynamic reorganization of factors on the ribosome and structural changes in the ribosome itself.
Collapse
Affiliation(s)
- Jon R. Lorsch
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Thomas E. Dever
- the Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
44
|
Roy B, Vaughn JN, Kim BH, Zhou F, Gilchrist MA, Von Arnim AG. The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. RNA (NEW YORK, N.Y.) 2010; 16:748-61. [PMID: 20179149 PMCID: PMC2844622 DOI: 10.1261/rna.2056010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Upstream open reading frames (uORFs) are protein coding elements in the 5' leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl-tRNA. The conserved h subunit of Arabidopsis eukaryotic initiation factor 3 (eIF3) mitigates the inhibitory effects of certain uORFs. Here, we define more precisely how this occurs, by combining gene expression data from mutated 5' leaders of Arabidopsis AtbZip11 (At4g34590) and yeast GCN4 with a computational model of translation initiation in wild-type and eif3h mutant plants. Of the four phylogenetically conserved uORFs in AtbZip11, three are inhibitory to translation, while one is anti-inhibitory. The mutation in eIF3h has no major effect on uORF start codon recognition. Instead, eIF3h supports efficient reinitiation after uORF translation. Modeling suggested that the permanent loss of reinitiation competence during uORF translation occurs at a faster rate in the mutant than in the wild type. Thus, eIF3h ensures that a fraction of uORF-translating ribosomes retain their competence to resume scanning. Experiments using the yeast GCN4 leader provided no evidence that eIF3h fosters tRNA reaquisition. Together, these results attribute a specific molecular function in translation initiation to an individual eIF3 subunit in a multicellular eukaryote.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
45
|
Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11:113-27. [PMID: 20094052 DOI: 10.1038/nrm2838] [Citation(s) in RCA: 1999] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein synthesis is principally regulated at the initiation stage (rather than during elongation or termination), allowing rapid, reversible and spatial control of gene expression. Progress over recent years in determining the structures and activities of initiation factors, and in mapping their interactions in ribosomal initiation complexes, have advanced our understanding of the complex translation initiation process. These developments have provided a solid foundation for studying the regulation of translation initiation by mechanisms that include the modulation of initiation factor activity (which affects almost all scanning-dependent initiation) and through sequence-specific RNA-binding proteins and microRNAs (which affect individual mRNAs).
Collapse
Affiliation(s)
- Richard J Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | | | |
Collapse
|
46
|
Saini AK, Nanda JS, Lorsch JR, Hinnebusch AG. Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome. Genes Dev 2010; 24:97-110. [PMID: 20048003 DOI: 10.1101/gad.1871910] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
eIF1A is the eukaryotic ortholog of bacterial translation initiation factor IF1, but contains a helical domain and long unstructured N-terminal tail (NTT) and C-terminal tail (CTT) absent in IF1. Here, we identify elements in these accessory regions of eIF1A with dual functions in binding methionyl initiator tRNA (Met-tRNA(i)(Met)) to the ribosome and in selecting AUG codons. A pair of repeats in the eIF1A CTT, dubbed Scanning Enhancer 1 (SE1) and SE2, was found to stimulate recruitment of Met-tRNA(i)(Met) in the ternary complex (TC) with eIF2.GTP and also to block initiation at UUG codons. In contrast, the NTT and segments of the helical domain are required for the elevated UUG initiation occurring in SE mutants, and both regions also impede TC recruitment. Remarkably, mutations in these latter elements, dubbed scanning inhibitors SI1 and SI2, reverse the defects in TC loading and UUG initiation conferred by SE substitutions, showing that the dual functions of SE elements in TC binding and UUG suppression are mechanistically linked. It appears that SE elements enhance TC binding in a conformation conducive to scanning but incompatible with initiation, whereas SI elements destabilize this conformation to enable full accommodation of Met-tRNA(i)(Met) in the P site for AUG selection.
Collapse
Affiliation(s)
- Adesh K Saini
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
47
|
Kolitz SE, Lorsch JR. Eukaryotic initiator tRNA: finely tuned and ready for action. FEBS Lett 2009; 584:396-404. [PMID: 19925799 DOI: 10.1016/j.febslet.2009.11.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 12/17/2022]
Abstract
The initiator tRNA must serve functions distinct from those of other tRNAs, evading binding to elongation factors and instead binding directly to the ribosomal P site with the aid of initiation factors. It plays a key role in decoding the start codon, setting the frame for translation of the mRNA. Sequence elements and modifications of the initiator tRNA distinguish it from the elongator methionyl tRNA and help it to perform its varied tasks. These identity elements appear to finely tune the structure of the initiator tRNA, and growing evidence suggests that the body of the tRNA is involved in transmitting the signal that the start codon has been found to the rest of the pre-initiation complex.
Collapse
Affiliation(s)
- Sarah E Kolitz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
48
|
Hasenöhrl D, Fabbretti A, Londei P, Gualerzi CO, Bläsi U. Translation initiation complex formation in the crenarchaeon Sulfolobus solfataricus. RNA (NEW YORK, N.Y.) 2009; 15:2288-2298. [PMID: 19861425 PMCID: PMC2779686 DOI: 10.1261/rna.1662609] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
The function of initiation factors in and the sequence of events during translation initiation have been intensively studied in Bacteria and Eukaryotes, whereas in Archaea knowledge on these functions/processes is limited. By employing chemical probing, we show that translation initiation factor aIF1 of the model crenarchaeon Sulfolobus solfataricus binds to the same area on the ribosome as the bacterial and eukaryal orthologs. Fluorescence energy transfer assays (FRET) showed that aIF1, like its eukaryotic and bacterial orthologs, has a fidelity function in translation initiation complex formation, and that both aIF1 and aIF1A exert a synergistic effect in stimulating ribosomal association of the Met-tRNAi(Met) binding factor a/eIF2. However, as in Eukaryotes their effect on a/eIF2 binding appears to be indirect. Moreover, FRET was used to analyze for the first time the sequence of events toward translation initiation complex formation in an archaeal model system. These studies suggested that a/eIF2-GTP binds first to the ribosome and then recruits Met-tRNAi(Met), which appears to comply with the operational mode of bacterial IF2, and deviates from the shuttle function of the eukaryotic counterpart eIF2. Thus, despite the resemblance of eIF2 and a/eIF2, recruitment of initiator tRNA to the ribosome is mechanistically different in Pro- and Eukaryotes.
Collapse
Affiliation(s)
- David Hasenöhrl
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
49
|
Fraser CS. The molecular basis of translational control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:1-51. [PMID: 20374738 DOI: 10.1016/s1877-1173(09)90001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our current understanding of eukaryotic protein synthesis has emerged from many years of biochemical, genetic and biophysical approaches. Significant insight into the molecular details of the mechanism has been obtained, although there are clearly many aspects of the process that remain to be resolved. Importantly, our understanding of the mechanism has identified a number of key stages in the pathway that contribute to the regulation of general and gene-specific translation. Not surprisingly, translational control is now widely accepted to play a role in aspects of cell stress, growth, development, synaptic function, aging, and disease. This chapter reviews the mechanism of eukaryotic protein synthesis and its relevance to translational control.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
50
|
Van Der Kelen K, Beyaert R, Inzé D, De Veylder L. Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 2009; 44:143-68. [PMID: 19604130 DOI: 10.1080/10409230902882090] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translational control mechanisms are, besides transcriptional control and mRNA stability, the most determining for final protein levels. A large number of accessory factors that assist the ribosome during initiation, elongation, and termination of translation are required for protein synthesis. Cap-dependent translational control occurs mainly during the initiation step, involving eukaryotic initiation factors (eIFs) and accessory proteins. Initiation is affected by various stimuli that influence the phosphorylation status of both eIF4E and eIF2 and through binding of 4E-binding proteins to eIF4E, which finally inhibits cap- dependent translation. Under conditions where cap-dependent translation is hampered, translation of transcripts containing an internal ribosome entry site can still be supported in a cap-independent manner. An interesting example of translational control is the switch between cap-independent and cap-dependent translation during the eukaryotic cell cycle. At the G1-to-S transition, translation occurs predominantly in a cap-dependent manner, while during the G2-to-M transition, cap-dependent translation is inhibited and transcripts are predominantly translated through a cap-independent mechanism.
Collapse
|