1
|
Zhu HY, Xiang WL, Cai T, Zhang M, Wang HY. PemK's Arg24 is a crucial residue for PemIK toxin-antitoxin system to induce the persistence of Weissella cibaria against ciprofloxacin stress. Front Microbiol 2024; 15:1402319. [PMID: 38808277 PMCID: PMC11130411 DOI: 10.3389/fmicb.2024.1402319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
The toxin-antitoxin (TA) system plays a key role in bacteria escaping antibiotic stress with persistence, however, the mechanisms by which persistence is controlled remain poorly understood. Weissella cibaria, a novel probiotic, can enters a persistent state upon encountering ciprofloxacin stress. Conversely, it resumes from the persistence when ciprofloxacin stress is relieved or removed. Here, it was found that PemIK TA system played a role in transitioning between these two states. And the PemIK was consisted of PemK, an endonuclease toxic to mRNA, and antitoxin PemI which neutralized its toxicity. The PemK specifically cleaved the U↓AUU in mRNA encoding enzymes involved in glycolysis, TCA cycle and respiratory chain pathways. This cleavage event subsequently disrupted the crucial cellular processes such as hydrogen transfer, electron transfer, NADH and FADH2 synthesis, ultimately leading to a decrease in ATP levels and an increase in membrane depolarization and persister frequency. Notably, Arg24 was a critical active residue for PemK, its mutation significantly reduced the mRNA cleavage activity and the adverse effects on metabolism. These insights provided a clue to comprehensively understand the mechanism by which PemIK induced the persistence of W. cibaria to escape ciprofloxacin stress, thereby highlighting another novel aspect PemIK respond for antibiotic stress.
Collapse
Affiliation(s)
- Hao-Yu Zhu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Wen-Liang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu, China
| | - Ting Cai
- School of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu, China
| | - Min Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Han-Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
2
|
Kim DH, Kang SM, Baek SM, Yoon HJ, Jang DM, Kim H, Lee S, Lee BJ. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2319-2333. [PMID: 35141752 PMCID: PMC8887465 DOI: 10.1093/nar/gkab1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a notorious and globally distributed pathogenic bacterium. New strategies to develop novel antibiotics based on intrinsic bacterial toxin–antitoxin (TA) systems have been recently reported. Because TA systems are present only in bacteria and not in humans, these distinctive systems are attractive targets for developing antibiotics with new modes of action. S. aureus PemIK is a type II TA system, comprising the toxin protein PemK and the labile antitoxin protein PemI. Here, we determined the crystal structures of both PemK and the PemIK complex, in which PemK is neutralized by PemI. Our biochemical approaches, including fluorescence quenching and polarization assays, identified Glu20, Arg25, Thr48, Thr49, and Arg84 of PemK as being important for RNase function. Our study indicates that the active site and RNA-binding residues of PemK are covered by PemI, leading to unique conformational changes in PemK accompanied by repositioning of the loop between β1 and β2. These changes can interfere with RNA binding by PemK. Overall, PemK adopts particular open and closed forms for precise neutralization by PemI. This structural and functional information on PemIK will contribute to the discovery and development of novel antibiotics in the form of peptides or small molecules inhibiting direct binding between PemI and PemK.
Collapse
Affiliation(s)
| | | | - Sung-Min Baek
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Man Jang
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Sang Jae Lee
- Correspondence may also be addressed to Sang Jae Lee. Tel: +82 54 279 1490;
| | - Bong-Jin Lee
- To whom correspondence should be addressed. Tel: +82 2 880 7869;
| |
Collapse
|
3
|
Zhang W, Wu Q. Applications of phage-derived RNA-based technologies in synthetic biology. Synth Syst Biotechnol 2020; 5:343-360. [PMID: 33083579 PMCID: PMC7564126 DOI: 10.1016/j.synbio.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
As the most abundant biological entities with incredible diversity, bacteriophages (also known as phages) have been recognized as an important source of molecular machines for the development of genetic-engineering tools. At the same time, phages are crucial for establishing and improving basic theories of molecular biology. Studies on phages provide rich sources of essential elements for synthetic circuit design as well as powerful support for the improvement of directed evolution platforms. Therefore, phages play a vital role in the development of new technologies and central scientific concepts. After the RNA world hypothesis was proposed and developed, novel biological functions of RNA continue to be discovered. RNA and its related elements are widely used in many fields such as metabolic engineering and medical diagnosis, and their versatility led to a major role of RNA in synthetic biology. Further development of RNA-based technologies will advance synthetic biological tools as well as provide verification of the RNA world hypothesis. Most synthetic biology efforts are based on reconstructing existing biological systems, understanding fundamental biological processes, and developing new technologies. RNA-based technologies derived from phages will offer abundant sources for synthetic biological components. Moreover, phages as well as RNA have high impact on biological evolution, which is pivotal for understanding the origin of life, building artificial life-forms, and precisely reprogramming biological systems. This review discusses phage-derived RNA-based technologies terms of phage components, the phage lifecycle, and interactions between phages and bacteria. The significance of RNA-based technology derived from phages for synthetic biology and for understanding the earliest stages of biological evolution will be highlighted.
Collapse
Affiliation(s)
- Wenhui Zhang
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- Corresponding author. MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Mets T, Lippus M, Schryer D, Liiv A, Kasari V, Paier A, Maiväli Ü, Remme J, Tenson T, Kaldalu N. Toxins MazF and MqsR cleave Escherichia coli rRNA precursors at multiple sites. RNA Biol 2016; 14:124-135. [PMID: 27858580 DOI: 10.1080/15476286.2016.1259784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endoribonuclease toxins of the E. coli toxin-antitoxin systems arrest bacterial growth and protein synthesis by targeting cellular mRNAs. As an exception, E. coli MazF was reported to cleave also 16S rRNA at a single site and separate an anti-Shine-Dalgarno sequence-containing RNA fragment from the ribosome. We noticed extensive rRNA fragmentation in response to induction of the toxins MazF and MqsR, which suggested that these toxins can cleave rRNA at multiple sites. We adapted differential RNA-sequencing to map the toxin-cleaved 5'- and 3'-ends. Our results show that the MazF and MqsR cleavage sites are located within structured rRNA regions and, therefore, are not accessible in assembled ribosomes. Most of the rRNA fragments are located in the aberrant ribosomal subunits that accumulate in response to toxin induction and contain unprocessed rRNA precursors. We did not detect MazF- or MqsR-cleaved rRNA in stationary phase bacteria and in assembled ribosomes. Thus, we conclude that MazF and MqsR cleave rRNA precursors before the ribosomes are assembled and potentially facilitate the decay of surplus rRNA transcripts during stress.
Collapse
Affiliation(s)
- Toomas Mets
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Markus Lippus
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - David Schryer
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Aivar Liiv
- b Institute of Molecular and Cell Biology, University of Tartu , Tartu , Estonia
| | - Villu Kasari
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Anton Paier
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Ülo Maiväli
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Jaanus Remme
- b Institute of Molecular and Cell Biology, University of Tartu , Tartu , Estonia
| | - Tanel Tenson
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Niilo Kaldalu
- a Institute of Technology, University of Tartu , Tartu , Estonia
| |
Collapse
|
5
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
6
|
Schifano JM, Cruz JW, Vvedenskaya IO, Edifor R, Ouyang M, Husson RN, Nickels BE, Woychik NA. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res 2016; 44:1256-70. [PMID: 26740583 PMCID: PMC4756823 DOI: 10.1093/nar/gkv1370] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023] Open
Abstract
Toxin-antitoxin (TA) systems play key roles in bacterial persistence, biofilm formation and stress responses. The MazF toxin from the Escherichia coli mazEF TA system is a sequence- and single-strand-specific endoribonuclease, and many studies have led to the proposal that MazF family members exclusively target mRNA. However, recent data indicate some MazF toxins can cleave specific sites within rRNA in concert with mRNA. In this report, we identified the repertoire of RNAs cleaved by Mycobacterium tuberculosis toxin MazF-mt9 using an RNA-seq-based approach. This analysis revealed that two tRNAs were the principal targets of MazF-mt9, and each was cleaved at a single site in either the tRNA(Pro14) D-loop or within the tRNA(Lys43) anticodon. This highly selective target discrimination occurs through recognition of not only sequence but also structural determinants. Thus, MazF-mt9 represents the only MazF family member known to target tRNA and to require RNA structure for recognition and cleavage. Interestingly, the tRNase activity of MazF-mt9 mirrors basic features of eukaryotic tRNases that also generate stable tRNA-derived fragments that can inhibit translation in response to stress. Our data also suggest a role for tRNA distinct from its canonical adapter function in translation, as cleavage of tRNAs by MazF-mt9 downregulates bacterial growth.
Collapse
Affiliation(s)
- Jason M Schifano
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Irina O Vvedenskaya
- Waksman Institute, Rutgers University, Piscataway, NJ, USA Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Regina Edifor
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Ming Ouyang
- Department of Computer Science, University of Massachusetts Boston, Boston, MA, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Bryce E Nickels
- Waksman Institute, Rutgers University, Piscataway, NJ, USA Department of Genetics, Rutgers University, Piscataway, NJ, USA Member, Rutgers Cancer Institute of New Jersey, NJ, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA Member, Rutgers Cancer Institute of New Jersey, NJ, USA
| |
Collapse
|
7
|
Coupling between the basic replicon and the Kis-Kid maintenance system of plasmid R1: modulation by Kis antitoxin levels and involvement in control of plasmid replication. Toxins (Basel) 2015; 7:478-92. [PMID: 25664511 PMCID: PMC4344636 DOI: 10.3390/toxins7020478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/29/2015] [Indexed: 01/14/2023] Open
Abstract
kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication.
Collapse
|
8
|
Loris R, Garcia-Pino A. Disorder- and Dynamics-Based Regulatory Mechanisms in Toxin–Antitoxin Modules. Chem Rev 2014; 114:6933-47. [DOI: 10.1021/cr400656f] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Remy Loris
- Molecular
Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Abel Garcia-Pino
- Molecular
Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
9
|
An RNA-seq method for defining endoribonuclease cleavage specificity identifies dual rRNA substrates for toxin MazF-mt3. Nat Commun 2014; 5:3538. [PMID: 24709835 PMCID: PMC4090939 DOI: 10.1038/ncomms4538] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/03/2014] [Indexed: 11/10/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widespread in prokaryotes. Among these, the mazEF TA system encodes an endoribonucleolytic toxin, MazF, that inhibits growth by sequence-specific cleavage of single-stranded RNA. Defining the physiological targets of a MazF toxin first requires the identification of its cleavage specificity, yet the current toolkit is antiquated and limited. We describe a rapid genome-scale approach, MORE (Mapping by Overexpression of an RNase in Escherichia coli) RNA-seq, for defining the cleavage specificity of endoribonucleolytic toxins. Application of MORE RNA-seq to MazF-mt3 from Mycobacterium tuberculosis reveals two critical ribosomal targets — the essential, evolutionarily conserved helix/loop 70 of 23S rRNA and the anti-Shine-Dalgarno (aSD) sequence of 16S rRNA. Our findings support an emerging model where both rRNA and mRNA are principal targets of MazF toxins and suggest that, as in E. coli, removal of the aSD sequence by a MazF toxin modifies ribosomes to selectively translate leaderless mRNAs in M. tuberculosis.
Collapse
|
10
|
Larson AS, Hergenrother PJ. Light activation of Staphylococcus aureus toxin YoeBSa1 reveals guanosine-specific endoribonuclease activity. Biochemistry 2013; 53:188-201. [PMID: 24279911 DOI: 10.1021/bi4008098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Staphylococcus aureus chromosome harbors two homologues of the YefM-YoeB toxin-antitoxin (TA) system. The toxins YoeBSa1 and YoeBSa2 possess ribosome-dependent ribonuclease (RNase) activity in Escherichia coli. This activity is similar to that of the E. coli toxin YoeBEc, an enzyme that, in addition to ribosome-dependent RNase activity, possesses ribosome-independent RNase activity in vitro. To investigate whether YoeBSa1 is also a ribosome-independent RNase, we expressed YoeBSa1 using a novel strategy and characterized its in vitro RNase activity, sequence specificity, and kinetics. Y88 of YoeBSa1 was critical for in vitro activity and cell culture toxicity. This residue was mutated to o-nitrobenzyl tyrosine (ONBY) via unnatural amino acid mutagenesis. YoeBSa1-Y88ONBY could be expressed in the absence of the antitoxin YefMSa1 in E. coli. Photocaged YoeBSa1-Y88ONBY displayed UV light-dependent RNase activity toward free mRNA in vitro. The in vitro ribosome-independent RNase activity of YoeBSa1-Y88ONBY, YoeBSa1-Y88F, and YoeBSa1-Y88TAG was significantly reduced or abolished. In contrast to YoeBEc, which cleaves RNA at both adenosine and guanosine with a preference for adenosine, YoeBSa1 cleaved mRNA specifically at guanosine. Using this information, a fluorometric assay was developed and used to determine the kinetic parameters for ribosome-independent RNA cleavage by YoeBSa1.
Collapse
Affiliation(s)
- Amy S Larson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
11
|
Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol Cell 2013; 52:447-58. [PMID: 24120662 DOI: 10.1016/j.molcel.2013.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/30/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
MazF is an mRNA interferase, which, upon activation during stress conditions, cleaves mRNAs in a sequence-specific manner, resulting in cellular growth arrest. During normal growth conditions, the MazF toxin is inactivated through binding to its cognate antitoxin, MazE. How MazF specifically recognizes its mRNA target and carries out cleavage and how the formation of the MazE-MazF complex inactivates MazF remain unclear. We present crystal structures of MazF in complex with mRNA substrate and antitoxin MazE in Bacillus subtilis. The structure of MazF in complex with uncleavable UUdUACAUAA RNA substrate defines the molecular basis underlying the sequence-specific recognition of UACAU and the role of residues involved in the cleavage through site-specific mutational studies. The structure of the heterohexameric (MazF)2-(MazE)2-(MazF)2 complex in Bacillus subtilis, supplemented by mutational data, demonstrates that the positioning of the C-terminal helical segment of MazE within the RNA-binding channel of the MazF dimer prevents mRNA binding and cleavage by MazF.
Collapse
|
12
|
Cleavage of the antitoxin of the parD toxin–antitoxin system is determined by the ClpAP protease and is modulated by the relative ratio of the toxin and the antitoxin. Plasmid 2013; 70:78-85. [DOI: 10.1016/j.plasmid.2013.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/21/2022]
|
13
|
Park JH, Yoshizumi S, Yamaguchi Y, Wu KP, Inouye M. ACA-specific RNA sequence recognition is acquired via the loop 2 region of MazF mRNA interferase. Proteins 2013; 81:874-83. [PMID: 23280569 DOI: 10.1002/prot.24246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/25/2012] [Accepted: 12/11/2012] [Indexed: 11/09/2022]
Abstract
MazF is an mRNA interferase that cleaves mRNAs at a specific RNA sequence. MazF from E. coli (MazF-ec) cleaves RNA at A^CA. To date, a large number of MazF homologs that cleave RNA at specific three- to seven-base sequences have been identified from bacteria to archaea. MazF-ec forms a dimer, in which the interface between the two subunits is known to be the RNA substrate-binding site. Here, we investigated the role of the two loops in MazF-ec, which are closely associated with the interface of the MazF-ec dimer. We examined whether exchanging the loop regions of MazF-ec with those from other MazF homologs, such as MazF from Myxococcus xanthus (MazF-mx) and MazF from Mycobacterium tuberculosis (MazF-mt3), affects RNA cleavage specificity. We found that exchanging loop 2 of MazF-ec with loop 2 regions from either MazF-mx or MazF-mt3 created a new cleavage sequence at (A/U)(A/U)AA^C in addition to the original cleavage site, A^CA, whereas exchanging loop 1 did not alter cleavage specificity. Intriguingly, exchange of loop 2 with 8 or 12 consecutive Gly residues also resulted in a new RNA cleavage site at (A/U)(A/U)AA^C. The present study suggests a method for expanding the RNA cleavage repertoire of mRNA interferases, which is crucial for potential use in the regulation of specific gene expression and for biotechnological applications.
Collapse
Affiliation(s)
- Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon-gun, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Tantos A, Szabo B, Lang A, Varga Z, Tsylonok M, Bokor M, Verebelyi T, Kamasa P, Tompa K, Perczel A, Buday L, Lee SH, Choo Y, Han KH, Tompa P. Multiple fuzzy interactions in the moonlighting function of thymosin-β4. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e26204. [PMID: 28516021 PMCID: PMC5424802 DOI: 10.4161/idp.26204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
Thymosine β4 (Tß4) is a 43 amino acid long intrinsically disordered protein (IDP), which was initially identified as an actin-binding and sequestering molecule. Later it was described to have multiple other functions, such as regulation of endothelial cell differentiation, blood vessel formation, wound repair, cardiac cell migration, and survival.1 The various functions of Tβ4 are mediated by interactions with distinct and structurally unrelated partners, such as PINCH, ILK, and stabilin-2, besides the originally identified G-actin. Although the cellular readout of these interactions and the formation of these complexes have been thoroughly described, no attempt was made to study these interactions in detail, and to elucidate the thermodynamic, kinetic, and structural underpinning of this range of moonlighting functions. Because Tβ4 is mostly disordered, and its 4 described partners are structurally unrelated (the CTD of stabilin-2 is actually fully disordered), it occurred to us that this system might be ideal to characterize the structural adaptability and ensuing moonlighting functions of IDPs. Unexpectedly, we found that Tβ4 engages in multiple weak, transient, and fuzzy interactions, i.e., it is capable of mediating distinct yet specific interactions without adapting stable folded structures.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Beata Szabo
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Andras Lang
- Eötvös Loránd University; Institute of Chemistry; Budapest, Hungary
| | - Zoltan Varga
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Maksym Tsylonok
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| | - Monika Bokor
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Tamas Verebelyi
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Pawel Kamasa
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Kalman Tompa
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Andras Perczel
- Eötvös Loránd University; Institute of Chemistry; Budapest, Hungary
| | - Laszlo Buday
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Si Hyung Lee
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
| | - Yejin Choo
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
| | - Kyou-Hoon Han
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
- Department of Bioinformatics; University of Science and Technology; Daejeon, Republic of Korea
| | - Peter Tompa
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| |
Collapse
|
15
|
Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Proc Natl Acad Sci U S A 2012; 110:E241-9. [PMID: 23267117 DOI: 10.1073/pnas.1216039110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin-antitoxin systems. In type III toxin-antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN(Pa)) and Bacillus thuringiensis (ToxIN(Bt)) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an "addictive" plasmid maintenance phenotype. We demonstrate that ToxI(Pa) can inhibit ToxN(Pa) in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI(Pa) RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN(Bt) complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.
Collapse
|
16
|
Smith AB, López-Villarejo J, Diago-Navarro E, Mitchenall LA, Barendregt A, Heck AJ, Lemonnier M, Maxwell A, Díaz-Orejas R. A common origin for the bacterial toxin-antitoxin systems parD and ccd, suggested by analyses of toxin/target and toxin/antitoxin interactions. PLoS One 2012; 7:e46499. [PMID: 23029540 PMCID: PMC3460896 DOI: 10.1371/journal.pone.0046499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.
Collapse
Affiliation(s)
- Andrew B. Smith
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Juan López-Villarejo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Elizabeth Diago-Navarro
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Lesley A. Mitchenall
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Albert J. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Marc Lemonnier
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Anthony Maxwell
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Ramón Díaz-Orejas
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Abstract
Almost all bacteria and many archaea contain genes whose expression inhibits cell growth and may lead to cell death when overproduced, reminiscent of apoptotic genes in higher systems. The cellular targets of these toxins are quite diverse and include DNA replication, mRNA stability, protein synthesis, cell-wall biosynthesis, and ATP synthesis. These toxins are co-expressed and neutralized with their cognate antitoxins from a TA (toxin-antitoxin) operon in normally growing cells. Antitoxins are more labile than toxins and are readily degraded under stress conditions, allowing the toxins to exert their toxic effect. Presence of at least 33 TA systems in Escherichia coli and more than 60 TA systems in Mycobacterium tuberculosis suggests that the TA systems are involved not only in normal bacterial physiology but also in pathogenicity of bacteria. The elucidation of their cellular function and regulation is thus crucial for our understanding of bacterial physiology under various stress conditions.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
18
|
López-Villarejo J, Diago-Navarro E, Hernández-Arriaga AM, Díaz-Orejas R. Kis antitoxin couples plasmid R1 replication and parD (kis,kid) maintenance modules. Plasmid 2012; 67:118-27. [PMID: 22244926 DOI: 10.1016/j.plasmid.2011.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022]
Abstract
The coupling between the replication and parD (kis, kid) maintenance modules of R1 has been revisited here by the isolation of a significant collection of conditional replication mutants in the pKN1562 mini-R1 plasmid, and in its derivative, pJLV01, specifically affected in the RNase activity of the Kid toxin. This new analysis aims to identify key factors in this coupling. For this purpose we have quantified and characterized the restriction introduced by parD to isolate conditional replication mutants of this plasmid, a signature of the modular coupling. This restriction depends on the RNase activity of the Kid toxin and it is relieved by either over-expression of the Kis antitoxin or by preventing its degradation by Lon and ClpAP proteases. Based on these data and on the correlation between copy numbers and parD transcriptional levels obtained in the different mutants, it is proposed that a reduction of Kis antitoxin levels in response to inefficient plasmid replication is the key factor for coupling plasmid replication and parD modules.
Collapse
Affiliation(s)
- Juan López-Villarejo
- Centro de Investigaciones Biológicas-CSIC, Dept. de Microbiología Molecular y Biología de la Infección, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FHT. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:1-61. [PMID: 21241883 DOI: 10.1016/j.pnmrs.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Cyril Dominguez
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Blower TR, Salmond GPC, Luisi BF. Balancing at survival's edge: the structure and adaptive benefits of prokaryotic toxin–antitoxin partners. Curr Opin Struct Biol 2011; 21:109-18. [DOI: 10.1016/j.sbi.2010.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/31/2010] [Indexed: 01/21/2023]
|
21
|
Elsässer B, Fels G. Nucleotide docking: prediction of reactant state complexes for ribonuclease enzymes. J Mol Model 2010; 17:1953-62. [PMID: 21120556 DOI: 10.1007/s00894-010-0900-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/10/2010] [Indexed: 12/29/2022]
Abstract
Ribonuclease enzymes (RNases) play key roles in the maturation and metabolism of all RNA molecules. Computational simulations of the processes involved can help to elucidate the underlying enzymatic mechanism and is often employed in a synergistic approach together with biochemical experiments. Theoretical calculations require atomistic details regarding the starting geometries of the molecules involved, which, in the absence of crystallographic data, can only be achieved from computational docking studies. Fortunately, docking algorithms have improved tremendously in recent years, so that reliable structures of enzyme-ligand complexes can now be successfully obtained from computation. However, most docking programs are not particularly optimized for nucleotide docking. In order to assist our studies on the cleavage of RNA by the two most important ribonuclease enzymes, RNase A and RNase H, we evaluated four docking tools-MOE2009, Glide 5.5, QXP-Flo+0802, and Autodock 4.0-for their ability to simulate complexes between these enzymes and RNA oligomers. To validate our results, we analyzed the docking results with respect to the known key interactions between the protein and the nucleotide. In addition, we compared the predicted complexes with X-ray structures of the mutated enzyme as well as with structures obtained from previous calculations. In this manner, we were able to prepare the desired reaction state complex so that it could be used as the starting structure for further DFT/B3LYP QM/MM reaction mechanism studies.
Collapse
Affiliation(s)
- Brigitta Elsässer
- Department of Chemistry, University of Paderborn, Warburgerstr. 100, 33098 Paderborn, Germany.
| | | |
Collapse
|
22
|
Arbing MA, Handelman SK, Kuzin AP, Verdon G, Wang C, Su M, Rothenbacher FP, Abashidze M, Liu M, Hurley JM, Xiao R, Acton T, Inouye M, Montelione GT, Woychik NA, Hunt JF. Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Structure 2010; 18:996-1010. [PMID: 20696400 DOI: 10.1016/j.str.2010.04.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/22/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
Abstract
Bacterial toxin-antitoxin (TA) systems serve a variety of physiological functions including regulation of cell growth and maintenance of foreign genetic elements. Sequence analyses suggest that TA families are linked by complex evolutionary relationships reflecting likely swapping of functional domains between different TA families. Our crystal structures of Phd-Doc from bacteriophage P1, the HigA antitoxin from Escherichia coli CFT073, and YeeU of the YeeUWV systems from E. coli K12 and Shigella flexneri confirm this inference and reveal additional, unanticipated structural relationships. The growth-regulating Doc toxin exhibits structural similarity to secreted virulence factors that are toxic for eukaryotic target cells. The Phd antitoxin possesses the same fold as both the YefM and NE2111 antitoxins that inhibit structurally unrelated toxins. YeeU, which has an antitoxin-like activity that represses toxin expression, is structurally similar to the ribosome-interacting toxins YoeB and RelE. These observations suggest extensive functional exchanges have occurred between TA systems during bacterial evolution.
Collapse
Affiliation(s)
- Mark A Arbing
- Department of Biological Sciences, Columbia University, 702 Fairchild Center, MC2434, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Nieto C, Sadowy E, de la Campa AG, Hryniewicz W, Espinosa M. The relBE2Spn toxin-antitoxin system of Streptococcus pneumoniae: role in antibiotic tolerance and functional conservation in clinical isolates. PLoS One 2010; 5:e11289. [PMID: 20585658 PMCID: PMC2890582 DOI: 10.1371/journal.pone.0011289] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/21/2010] [Indexed: 01/24/2023] Open
Abstract
Type II (proteic) chromosomal toxin-antitoxin systems (TAS) are widespread in Bacteria and Archaea but their precise function is known only for a limited number of them. Out of the many TAS described, the relBE family is one of the most abundant, being present in the three first sequenced strains of Streptococcus pneumoniae (D39, TIGR4 and R6). To address the function of the pneumococcal relBE2Spn TAS in the bacterial physiology, we have compared the response of the R6-relBE2Spn wild type strain with that of an isogenic derivative, Delta relB2Spn under different stress conditions such as carbon and amino acid starvation and antibiotic exposure. Differences on viability between the wild type and mutant strains were found only when treatment directly impaired protein synthesis. As a criterion for the permanence of this locus in a variety of clinical strains, we checked whether the relBE2Spn locus was conserved in around 100 pneumococcal strains, including clinical isolates and strains with known genomes. All strains, although having various types of polymorphisms at the vicinity of the TA region, contained a functional relBE2Spn locus and the type of its structure correlated with the multilocus sequence type. Functionality of this TAS was maintained even in cases where severe rearrangements around the relBE2Spn region were found. We conclude that even though the relBE2Spn TAS is not essential for pneumococcus, it may provide additional advantages to the bacteria for colonization and/or infection.
Collapse
Affiliation(s)
- Concha Nieto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland
| | - Adela G. de la Campa
- Centro Nacional de Microbiología and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
25
|
Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, Lemonnier M, Díaz-Orejas R. parD toxin-antitoxin system of plasmid R1 - basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J 2010; 277:3097-117. [DOI: 10.1111/j.1742-4658.2010.07722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
De Jonge N, Hohlweg W, Garcia-Pino A, Respondek M, Buts L, Haesaerts S, Lah J, Zangger K, Loris R. Structural and thermodynamic characterization of Vibrio fischeri CcdB. J Biol Chem 2010; 285:5606-13. [PMID: 19959472 PMCID: PMC2820787 DOI: 10.1074/jbc.m109.068429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/31/2009] [Indexed: 11/06/2022] Open
Abstract
CcdB(Vfi) from Vibrio fischeri is a member of the CcdB family of toxins that poison covalent gyrase-DNA complexes. In solution CcdB(Vfi) is a dimer that unfolds to the corresponding monomeric components in a two-state fashion. In the unfolded state, the monomer retains a partial secondary structure. This observation correlates well with the crystal and NMR structures of the protein, which show a dimer with a hydrophobic core crossing the dimer interface. In contrast to its F plasmid homologue, CcdB(Vfi) possesses a rigid dimer interface, and the apparent relative rotations of the two subunits are due to structural plasticity of the monomer. CcdB(Vfi) shows a number of non-conservative substitutions compared with the F plasmid protein in both the CcdA and the gyrase binding sites. Although variation in the CcdA interaction site likely determines toxin-antitoxin specificity, substitutions in the gyrase-interacting region may have more profound functional implications.
Collapse
Affiliation(s)
- Natalie De Jonge
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Walter Hohlweg
- the Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and
| | - Abel Garcia-Pino
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Michal Respondek
- the Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and
| | - Lieven Buts
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Sarah Haesaerts
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jurij Lah
- the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana, Slovenia
| | - Klaus Zangger
- the Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and
| | - Remy Loris
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
27
|
Agarwal S, Mishra NK, Bhatnagar S, Bhatnagar R. PemK toxin of Bacillus anthracis is a ribonuclease: an insight into its active site, structure, and function. J Biol Chem 2009; 285:7254-70. [PMID: 20022964 DOI: 10.1074/jbc.m109.073387] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus anthracis genome harbors a toxin-antitoxin (TA) module encoding pemI (antitoxin) and pemK (toxin). This study describes the rPemK as a potent ribonuclease with a preference for pyrimidines (C/U), which is consistent with our previous study that demonstrated it as a translational attenuator. The in silico structural modeling of the PemK in conjunction with the site-directed mutagenesis confirmed the role of His-59 and Glu-78 as an acid-base couple in mediating the ribonuclease activity. The rPemK is shown to form a complex with the rPemI, which is in line with its function as a TA module. This rPemI-rPemK complex becomes catalytically inactive when both the proteins interact in a molar stoichiometry of 1. The rPemI displays vulnerability to proteolysis but attains conformational stability only upon rPemK interaction. The pemI-pemK transcript is shown to be up-regulated upon stress induction with a concomitant increase in the amount of PemK and a decline in the PemI levels, establishing the role of these modules in stress. The artificial perturbation of TA interaction could unleash the toxin, executing bacterial cell death. Toward this end, synthetic peptides are designed to disrupt the TA interaction. The peptides are shown to be effective in abrogating TA interaction in micromolar range in vitro. This approach can be harnessed as a potential antibacterial strategy against anthrax in the future.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Laboratory of Molecular Biology and Genetic Engineering, , School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | |
Collapse
|
28
|
Diago-Navarro E, Kamphuis MB, Boelens R, Barendregt A, Heck AJ, van den Heuvel RH, Díaz-Orejas R. A mutagenic analysis of the RNase mechanism of the bacterial Kid toxin by mass spectrometry. FEBS J 2009; 276:4973-86. [PMID: 19694809 DOI: 10.1111/j.1742-4658.2009.07199.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Kid, the toxin of the parD (kis, kid) maintenance system of plasmid R1, is an endoribonuclease that preferentially cleaves RNA at the 5' of A in the core sequence 5'-UA(A/C)-3'. A model of the Kid toxin interacting with the uncleavable mimetic 5'-AdUACA-3' is available. To evaluate this model, a significant collection of mutants in some of the key residues proposed to be involved in RNA binding (T46, A55, T69 and R85) or RNA cleavage (R73, D75 and H17) were analysed by mass spectrometry in RNA binding and cleavage assays. A pair of substrates, 5'-AUACA-3', and its uncleavable mimetic 5'-AdUACA-3', used to establish the model and structure of the Kid-RNA complex, were used in both the RNA cleavage and binding assays. A second RNA substrate, 5'-UUACU-3' efficiently cleaved by Kid both in vivo and in vitro, was also used in the cleavage assays. Compared with the wild-type protein, mutations in the residues of the catalytic site abolished RNA cleavage without substantially altering RNA binding. Mutations in residues proposed to be involved in RNA binding show reduced binding efficiency and a corresponding decrease in RNA cleavage efficiency. The cleavage profiles of the different mutants were similar with the two substrates used, but RNA cleavage required much lower protein concentrations when the 5'-UUACU-3' substrate was used. Protein synthesis and growth assays are consistent with there being a correlation between the RNase activity of Kid and its inhibitory potential. These results give important support to the available models of Kid RNase and the Kid-RNA complex.
Collapse
Affiliation(s)
- Elizabeth Diago-Navarro
- Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Significant bias against the ACA triplet in the tmRNA sequence of Escherichia coli K-12. J Bacteriol 2009; 191:6157-66. [PMID: 19633073 DOI: 10.1128/jb.00699-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin MazF in Escherichia coli cleaves single-stranded RNAs specifically at ACA sequences. MazF overexpression virtually eliminates all cellular mRNAs to completely block protein synthesis. However, protein synthesis can continue on an mRNA that is devoid of ACA triplets. The finding that ribosomal RNAs remain intact in the face of complete translation arrest suggested a purpose for such preservation. We therefore examined the sequences of all transcribed RNAs to determine if there was any statistically significant bias against ACA. While ACA motifs are absent from tmRNA, 4.5S RNA, and seven of the eight 5S rRNAs, statistical analysis revealed that only for tmRNA was the absence nonrandom. The introduction of single-strand ACAs makes tmRNA highly susceptible to MazF cleavage. Furthermore, analysis of tmRNA sequences from 442 bacteria showed that the discrimination against ACA in tmRNAs was seen mostly in enterobacteria. We propose that the unusual bias against ACA in tmRNA may have coevolved with the acquisition of MazF.
Collapse
|
30
|
Repanas K, Fuentes G, Cohen SX, Bonvin AMJJ, Perrakis A. Insights into the DNA cleavage mechanism of human LINE-1 retrotransposon endonuclease. Proteins 2009; 74:917-28. [PMID: 18767160 DOI: 10.1002/prot.22201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human LINE-1 endonuclease (L1-EN) contributes in defining the genomic integration sites of the abundant human L1 and Alu retrotransposons. LINEs have been considered as possible vehicles for gene delivery and understanding the mechanism of L1-EN could help engineering them as genetic tools. We tested the in vitro activity of point mutants in three L1-EN residues--Asp145, Arg155, Ile204--that are key for DNA cleavage, and determined their crystal structures. The L1-EN structure remains overall unaffected by the mutations, which change the enzyme activity but leave DNA cleavage sequence specificity mostly unaffected. To better understand the mechanism of L1-EN, we performed molecular dynamics simulations using as model the structures of wild type EN-L1, of two betaB6-betaB5 loop exchange mutants we have described previously to be important for DNA recognition, of the R155A mutant from this study, and of the homologous TRAS1 endonuclease: all confirm a rigid scaffold. The simulations crucially indicate that the betaB6-betaB5 loop shows an anticorrelated motion with the surface loops betaA6-betaA5 and betaB3-alphaB1. The latter loop harbors N118, a residue that alters DNA cleavage specificity in homologous endonucleases, and implies that the plasticity and correlated motion of these loops has a functional importance in DNA recognition and binding. To further explore how these loops are possibly involved in DNA binding, we docked computationally two DNA substrates to our structure, one involving a flipped-out nucleotide downstream the scissile phosphodiester; and one not. The models for both scenarios are feasible and agree with the hypotheses derived from the dynamic simulations. The reduced cleavage activity we have observed for the I204Y mutant above however, favors the flipped out nucleotide model.
Collapse
Affiliation(s)
- Kostas Repanas
- Division of Molecular Cancer Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Lowry JA, Gamsjaeger R, Thong SY, Hung W, Kwan AH, Broitman-Maduro G, Matthews JM, Maduro M, Mackay JP. Structural analysis of MED-1 reveals unexpected diversity in the mechanism of DNA recognition by GATA-type zinc finger domains. J Biol Chem 2008; 284:5827-35. [PMID: 19095651 DOI: 10.1074/jbc.m808712200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MED-1 is a member of a group of divergent GATA-type zinc finger proteins recently identified in several species of Caenorhabditis. The med genes are transcriptional regulators that are involved in the specification of the mesoderm and endoderm precursor cells in nematodes. Unlike other GATA-type zinc fingers that recognize the consensus sequence (A/C/T)GATA(A/G), the MED-1 zinc finger (MED1zf) binds the larger and atypical site GTATACT(T/C)(3). We have examined the basis for this unusual DNA specificity using a range of biochemical and biophysical approaches. Most strikingly, we show that although the core of the MED1zf structure is similar to that of GATA-1, the basic tail C-terminal to the zinc finger unexpectedly adopts an alpha-helical structure upon binding DNA. This additional helix appears to contact the major groove of the DNA, making contacts that explain the extended DNA consensus sequence observed for MED1zf. Our data expand the versatility of DNA recognition by GATA-type zinc fingers and perhaps shed new light on the DNA-binding properties of mammalian GATA factors.
Collapse
Affiliation(s)
- Jason A Lowry
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. J Bacteriol 2008; 191:762-72. [PMID: 19028895 DOI: 10.1128/jb.01331-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YefM-YoeB is among the most prevalent and well-characterized toxin-antitoxin complexes. YoeB toxin is an endoribonuclease whose activity is inhibited by YefM antitoxin. The regions 5' of yefM-yoeB in diverse bacteria possess conserved sequence motifs that mediate transcriptional autorepression. The yefM-yoeB operator site arrangement is exemplified in Escherichia coli: a pair of palindromes with core hexamer motifs and a center-to-center distance of 12 bp overlap the yefM-yoeB promoter. YefM is an autorepressor that initially recognizes a long palindrome containing the core hexamer, followed by binding to a short repeat. YoeB corepressor greatly enhances the YefM-operator interaction. Scanning mutagenesis demonstrated that the short repeat is crucial for correct interaction of YefM-YoeB with the operator site in vivo and in vitro. Moreover, altering the relative positions of the two palindromes on the DNA helix abrogated YefM-YoeB cooperative interactions with the repeats: complex binding to the long repeat was maintained but was perturbed to the short repeat. Although YefM lacks a canonical DNA binding motif, dual conserved arginine residues embedded in a basic patch of the protein are crucial for operator recognition. Deciphering the molecular basis of toxin-antitoxin transcriptional control will provide key insights into toxin-antitoxin activation and function.
Collapse
|
33
|
Diago-Navarro E, Mora L, Buckingham RH, Díaz-Orejas R, Lemonnier M. Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE. Mol Microbiol 2008; 71:66-78. [PMID: 19019162 PMCID: PMC2680264 DOI: 10.1111/j.1365-2958.2008.06510.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel mutations in prfA, the gene for the polypeptide release factor RF1 of Escherichia coli, were isolated using a positive genetic screen based on the parD (kis, kid) toxin–antitoxin system. This original approach allowed the direct selection of mutants with altered translational termination efficiency at UAG codons. The isolated prfA mutants displayed a ∼10-fold decrease in UAG termination efficiency with no significant changes in RF1 stability in vivo. All three mutations, G121S, G301S and R303H, were situated close to the nonsense codon recognition site in RF1:ribosome complexes. The prfA mutants displayed increased sensitivity to the RelE toxin encoded by the relBE system of E. coli, thus providing in vivo support for the functional interaction between RF1 and RelE. The prfA mutants also showed increased sensitivity to the Kid toxin. Since this toxin can cleave RNA in a ribosome-independent manner, this result was not anticipated and provided first evidence for the involvement of RF1 in the pathway of Kid toxicity. The sensitivity of the prfA mutants to RelE and Kid was restored to normal levels upon overproduction of the wild-type RF1 protein. We discuss these results and their utility for the design of novel antibacterial strategies in the light of the recently reported structure of ribosome-bound RF1.
Collapse
Affiliation(s)
- Elizabeth Diago-Navarro
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Serganov A, Patel DJ. Towards deciphering the principles underlying an mRNA recognition code. Curr Opin Struct Biol 2008; 18:120-9. [PMID: 18255277 DOI: 10.1016/j.sbi.2007.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 11/27/2022]
Abstract
Messenger RNAs interact with a number of different molecules that determine the fate of each transcript and contribute to the overall pattern of gene expression. These interactions are governed by specific mRNA signals, which in principle could represent a special mRNA recognition 'code'. Both, small molecules and proteins demonstrate a diversity of mRNA binding modes often dependent on the structural context of the regions surrounding specific target sequences. In this review, we have highlighted recent structural studies that illustrate the diversity of recognition principles used by mRNA binders for timely and specific targeting and processing of the message.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
35
|
Gamsjaeger R, Swanton MK, Kobus FJ, Lehtomaki E, Lowry JA, Kwan AH, Matthews JM, Mackay JP. Structural and biophysical analysis of the DNA binding properties of myelin transcription factor 1. J Biol Chem 2007; 283:5158-67. [PMID: 18073212 DOI: 10.1074/jbc.m703772200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc binding domains, or zinc fingers (ZnFs), form one of the most numerous and most diverse superclasses of protein structural motifs in eukaryotes. Although our understanding of the functions of several classes of these domains is relatively well developed, we know much less about the molecular mechanisms of action of many others. Myelin transcription factor 1 (MyT1) type ZnFs are found in organisms as diverse as nematodes and mammals and are found in a range of sequence contexts. MyT1, one of the early transcription factors expressed in the developing central nervous system, contains seven MyT1 ZnFs that are very highly conserved both within the protein and between species. We have used a range of biophysical techniques, including NMR spectroscopy and data-driven macromolecular docking, to investigate the structural basis for the interaction between MyT1 ZnFs and DNA. Our data indicate that MyT1 ZnFs recognize the major groove of DNA in a way that appears to differ from other known zinc binding domains.
Collapse
Affiliation(s)
- Roland Gamsjaeger
- School of Molecular and Microbial Biosciences, University of Sydney, Building G08, New South Wales, Sydney 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kamphuis MB, Monti MC, van den Heuvel RHH, Santos-Sierra S, Folkers GE, Lemonnier M, Díaz-Orejas R, Heck AJR, Boelens R. Interactions between the toxin Kid of the bacterial parD system and the antitoxins Kis and MazE. Proteins 2007; 67:219-31. [PMID: 17206710 DOI: 10.1002/prot.21254] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proteins Kid and Kis are the toxin and antitoxin, respectively, encoded by the parD operon of Escherichia coli plasmid R1. Kis prevents the inhibition of E. coli cell growth caused by the RNA cleavage activity of Kid. Overproduction of MazE, the chromosome-encoded homologue of Kis, has been demonstrated to neutralize Kid toxicity to a certain extent in the absence of native Kis. Here, we show that a high structural similarity exists between these antitoxins, using NMR spectroscopy. We report about the interactions between Kid and Kis that are responsible for neutralization of Kid toxicity and enhance autoregulation of parD transcription. Native macromolecular mass spectrometry data demonstrate that Kid and Kis form multiple complexes. At Kis:Kid ratios equal to or exceeding 1:1, as found in vivo in a plasmid-containing cell, various complexes are present, ranging from Kid(2)-Kis(2) tetramer up to Kis(2)-Kid(2)-Kis(2)-Kid(2)-Kis(2) decamer. When Kid is in excess of Kis, corresponding to an in vivo situation immediately after loss of the plasmid, the Kid(2)-Kis(2)-Kid(2) heterohexamer is the most abundant species. NMR chemical shift and intensity perturbations in the (1)H (15)N HSQC spectra of Kid and Kis, observed when titrating the partner protein, show that the interaction sites of Kid and Kis resemble those within the previously reported MazF(2)-MazE(2)-MazF(2) complex. Furthermore, we demonstrate that Kid(2)-MazE(2) tetramers can be formed via weak interactions involving a limited part of the Kis-binding residues of Kid. The functional roles of the identified Kid-Kis and Kid-MazE interaction sites and complexes in toxin neutralization and repression of transcription are discussed.
Collapse
Affiliation(s)
- Monique B Kamphuis
- Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wagner S, Klug G. An archaeal protein with homology to the eukaryotic translation initiation factor 5A shows ribonucleolytic activity. J Biol Chem 2007; 282:13966-76. [PMID: 17369252 DOI: 10.1074/jbc.m701166200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify proteins that are involved in RNA degradation and processing in Halobacterium sp. NRC-1, we purified proteins with RNA-degrading activity by classical biochemical techniques. One of these proteins showed strong homology to the eukaryotic initiation factor 5A (eIF-5A) and was accordingly named archaeal initiation factor 5A (aIF-5A). Eukaryotic IF-5A is known to be involved in mRNA turnover and to bind RNA. Hypusination of eIF-5A is required for sequence-specific binding of RNA. This unique post-translational modification is restricted to Eukarya and Archaea. The exact function of eIF-5A in RNA turnover remained obscure. Here we show for the first time that aIF-5A from Halobacterium sp. NRC-1 exhibits RNA cleavage activity, preferentially cleaving adjacent to A nucleotides. Detectable RNA binding could be shown for aIF-5A purified from Halobacterium sp. NRC-1 but not from Escherichia coli, while both proteins possess RNA cleavage activity, indicating that hypusination of aIF-5A is required for RNA binding but not for its RNA cleavage activity. Furthermore, we show that the hypusinated form of eIF-5A also shows RNase activity while the unmodified protein does not. Charged amino acids in the N-terminal domain of aIF-5A as well as in the C-terminal domain, which is highly similar to the cold shock protein A (CspA), an RNA chaperone of E. coli, are important for RNA cleavage activity. Moreover our results reveal that activity of aIF-5A depends on its oligomeric state.
Collapse
Affiliation(s)
- Steffen Wagner
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | |
Collapse
|
38
|
Monti MC, Hernández-Arriaga AM, Kamphuis MB, López-Villarejo J, Heck AJR, Boelens R, Díaz-Orejas R, van den Heuvel RHH. Interactions of Kid-Kis toxin-antitoxin complexes with the parD operator-promoter region of plasmid R1 are piloted by the Kis antitoxin and tuned by the stoichiometry of Kid-Kis oligomers. Nucleic Acids Res 2007; 35:1737-49. [PMID: 17317682 PMCID: PMC1865072 DOI: 10.1093/nar/gkm073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The parD operon of Escherichia coli plasmid R1 encodes a toxin–antitoxin system, which is involved in plasmid stabilization. The toxin Kid inhibits cell growth by RNA degradation and its action is neutralized by the formation of a tight complex with the antitoxin Kis. A fascinating but poorly understood aspect of the kid–kis system is its autoregulation at the transcriptional level. Using macromolecular (tandem) mass spectrometry and DNA binding assays, we here demonstrate that Kis pilots the interaction of the Kid–Kis complex in the parD regulatory region and that two discrete Kis-binding regions are present on parD. The data clearly show that only when the Kis concentration equals or exceeds the Kid concentration a strong cooperative effect exists between strong DNA binding and Kid2–Kis2–Kid2–Kis2 complex formation. We propose a model in which transcriptional repression of the parD operon is tuned by the relative molar ratio of the antitoxin and toxin proteins in solution. When the concentration of the toxin exceeds that of the antitoxin tight Kid2–Kis2–Kid2 complexes are formed, which only neutralize the lethal activity of Kid. Upon increasing the Kis concentration, (Kid2–Kis2)n complexes repress the kid–kis operon.
Collapse
Affiliation(s)
- Maria C. Monti
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Ramiro de Maeztu 9, E-28040 Madrid, Spain and Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ana M. Hernández-Arriaga
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Ramiro de Maeztu 9, E-28040 Madrid, Spain and Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Monique B. Kamphuis
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Ramiro de Maeztu 9, E-28040 Madrid, Spain and Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Juan López-Villarejo
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Ramiro de Maeztu 9, E-28040 Madrid, Spain and Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Ramiro de Maeztu 9, E-28040 Madrid, Spain and Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Ramiro de Maeztu 9, E-28040 Madrid, Spain and Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ramón Díaz-Orejas
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Ramiro de Maeztu 9, E-28040 Madrid, Spain and Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Robert H. H. van den Heuvel
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Department of Biomolecular Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular, Ramiro de Maeztu 9, E-28040 Madrid, Spain and Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- *To whom correspondence should be addressed. +31 302536797+31 302518219 or
| |
Collapse
|
39
|
Lacadena J, Alvarez-García E, Carreras-Sangrà N, Herrero-Galán E, Alegre-Cebollada J, García-Ortega L, Oñaderra M, Gavilanes JG, Martínez del Pozo A. Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol Rev 2007; 31:212-37. [PMID: 17253975 DOI: 10.1111/j.1574-6976.2006.00063.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RNase T1 is the best known representative of a large family of ribonucleolytic proteins secreted by fungi, mostly Aspergillus and Penicillium species. Ribotoxins stand out among them by their cytotoxic character. They exert their toxic action by first entering the cells and then cleaving a single phosphodiester bond located within a universally conserved sequence of the large rRNA gene, known as the sarcin-ricin loop. This cleavage leads to inhibition of protein biosynthesis, followed by cellular death by apoptosis. Although no protein receptor has been found for ribotoxins, they preferentially kill cells showing altered membrane permeability, such as those that are infected with virus or transformed. Many steps of the cytotoxic process have been elucidated at the molecular level by means of a variety of methodological approaches and the construction and purification of different mutant versions of these ribotoxins. Ribotoxins have been used for the construction of immunotoxins, because of their cytotoxicity. Besides this activity, Aspf1, a ribotoxin produced by Aspergillus fumigatus, has been shown to be one of the major allergens involved in allergic aspergillosis-related pathologies. Protein engineering and peptide synthesis have been used in order to understand the basis of these pathogenic mechanisms as well as to produce hypoallergenic proteins with potential diagnostic and immunotherapeutic applications.
Collapse
Affiliation(s)
- Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Moritz EM, Hergenrother PJ. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A 2006; 104:311-6. [PMID: 17190821 PMCID: PMC1765457 DOI: 10.1073/pnas.0601168104] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common hospital pathogens that are resistant to most major classes of antibiotics. The incidence of VRE is increasing rapidly, to the point where over one-quarter of enterococcal infections in intensive care units are now resistant to vancomycin. The exact mechanism by which VRE maintains its plasmid-encoded resistance genes is ill-defined, and novel targets for the treatment of VRE are lacking. In an effort to identify novel protein targets for the treatment of VRE infections, we probed the plasmids obtained from 75 VRE isolates for the presence of toxin-antitoxin (TA) gene systems. Remarkably, genes for one particular TA pair, the mazEF system (originally identified on the Escherichia coli chromosome), were present on plasmids from 75/75 (100%) of the isolates. Furthermore, mazEF was on the same plasmid as vanA in the vast majority of cases (>90%). Plasmid stability tests and RT-PCR raise the possibility that this plasmid-encoded mazEF is indeed functional in enterococci. Given this ubiquity of mazEF in VRE and the deleterious activity of the MazF toxin, disruption of mazEF with pharmacological agents is an attractive strategy for tailored antimicrobial therapy.
Collapse
Affiliation(s)
| | - Paul J. Hergenrother
- Chemistry, and
- Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
van Dijk M, van Dijk ADJ, Hsu V, Boelens R, Bonvin AMJJ. Information-driven protein-DNA docking using HADDOCK: it is a matter of flexibility. Nucleic Acids Res 2006; 34:3317-25. [PMID: 16820531 PMCID: PMC1500871 DOI: 10.1093/nar/gkl412] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Intrinsic flexibility of DNA has hampered the development of efficient protein−DNA docking methods. In this study we extend HADDOCK (High Ambiguity Driven DOCKing) [C. Dominguez, R. Boelens and A. M. J. J. Bonvin (2003) J. Am. Chem. Soc.125, 1731–1737] to explicitly deal with DNA flexibility. HADDOCK uses non-structural experimental data to drive the docking during a rigid-body energy minimization, and semi-flexible and water refinement stages. The latter allow for flexibility of all DNA nucleotides and the residues of the protein at the predicted interface. We evaluated our approach on the monomeric repressor−DNA complexes formed by bacteriophage 434 Cro, the Escherichia coli Lac headpiece and bacteriophage P22 Arc. Starting from unbound proteins and canonical B-DNA we correctly predict the correct spatial disposition of the complexes and the specific conformation of the DNA in the published complexes. This information is subsequently used to generate a library of pre-bent and twisted DNA structures that served as input for a second docking round. The resulting top ranking solutions exhibit high similarity to the published complexes in terms of root mean square deviations, intermolecular contacts and DNA conformation. Our two-stage docking method is thus able to successfully predict protein−DNA complexes from unbound constituents using non-structural experimental data to drive the docking.
Collapse
|
42
|
Abstract
Although plasmid-borne and chromosomal toxin-antitoxin (TA) operons have been known for some time, the recent identification of mRNA as the target of at least two different classes of toxins has led to a dramatic renewal of interest in these systems as mediators of stress responses. Members of the MazF/PemK family, the so-called mRNA interferases, are ribonucleases that inhibit translation by destroying cellular mRNAs under stress conditions, while the founder member of the RelE family promotes cleavage of mRNAs through the ribosome. Detailed structures of these enzymes, often in complex with their inhibitors, have provided vital clues to their mechanisms of action. The primary role and regulation of these systems has been the subject of some controversy. One model suggests they play a beneficial role by wiping the slate clean and preventing wasteful energy consumption by the translational apparatus during adaptation to stress conditions, while another favours the idea that their main function is programmed cell death. The two models might not be mutually exclusive if a side-effect of prolonged exposure to toxic RNase activity without de novo synthesis of the inhibitor were a state of dormancy for which we do not yet understand the key to recovery. In this review, I discuss the recent developments in the rapidly expanding field of what I refer to as bacterial shutdown decay.
Collapse
Affiliation(s)
- Ciarán Condon
- CNRS UPR 9073 (affiliated with Université de Paris 7 - Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|