1
|
Tjo H, Jiang V, Joseph JA, Conway JM. Maltodextrin transport in the extremely thermophilic, lignocellulose degrading bacterium Anaerocellum bescii (f. Caldicellulosiruptor bescii). J Bacteriol 2025; 207:e0040124. [PMID: 40304524 PMCID: PMC12096829 DOI: 10.1128/jb.00401-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Sugar transport into microbial cells is a critical, yet understudied step in the conversion of lignocellulosic biomass to metabolic products. Anaerocellum bescii (formerly Caldicellulosiruptor bescii) is an extremely thermophilic, anaerobic bacterium that readily degrades the cellulose and hemicellulose components of lignocellulosic biomass into a diversity of oligosaccharide substrates. Despite significant understanding of how this microorganism degrades lignocellulose, the mechanisms underlying its highly efficient transport of the released oligosaccharides into the cell are comparatively underexplored. Here, we identify and characterize the ATP-binding cassette (ABC) transporters in A. bescii governing maltodextrin transport. Utilizing past transcriptomic studies on Anaerocellum and Caldicellulosiruptor species, we identify two maltodextrin transporters in A. bescii and express and purify their substrate-binding proteins (Athe_2310 and Athe_2574) for characterization. Using differential scanning calorimetry and isothermal titration calorimetry, we show that Athe_2310 strongly interacts with shorter maltodextrins, such as maltose and trehalose, with dissociation constants in the micromolar range, while Athe_2574 binds longer maltodextrins, with dissociation constants in the sub-micromolar range. Using a sequence-structure-function comparison approach combined with molecular modeling, we provide context for the specificity of each of these substrate-binding proteins. We propose that A. bescii utilizes orthogonal ABC transporters to uptake malto-oligosaccharides of different lengths to maximize transport efficiency. IMPORTANCE Here, we reveal the biophysical and structural basis for oligosaccharide transport by two maltodextrin ATP-binding cassette (ABC) transporters in Anaerocellum bescii. This is the first biophysical characterization of carbohydrate uptake in this organism and establishes a workflow for characterizing other oligosaccharide transporters in A. bescii and similar biomass-degrading thermophiles of interest for lignocellulosic bioprocessing. By deciphering the mechanisms underlying high-affinity sugar uptake in A. bescii, we shed light on an underexplored step between extracellular lignocellulose degradation and intracellular conversion of sugars to metabolic products. This understanding will expand opportunities for harnessing sugar transport in thermophiles to reshape lignocellulose bioprocessing as part of a renewable bioeconomy.
Collapse
Affiliation(s)
- Hansen Tjo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Virginia Jiang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Jerelle A. Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
| | - Jonathan M. Conway
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Allert MJ, Kumar S, Wang Y, Beese LS, Hellinga HW. Accurate Identification of Periplasmic Urea-binding Proteins by Structure- and Genome Context-assisted Functional Analysis. J Mol Biol 2024; 436:168780. [PMID: 39241982 DOI: 10.1016/j.jmb.2024.168780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
ABC transporters are ancient and ubiquitous nutrient transport systems in bacteria and play a central role in defining lifestyles. Periplasmic solute-binding proteins (SBPs) are components that deliver ligands to their translocation machinery. SBPs have diversified to bind a wide range of ligands with high specificity and affinity. However, accurate assignment of cognate ligands remains a challenging problem in SBPs. Urea metabolism plays an important role in the nitrogen cycle; anthropogenic sources account for more than half of global nitrogen fertilizer. We report identification of urea-binding proteins within a large SBP sequence family that encodes diverse functions. By combining genetic linkage between SBPs, ABC transporter components, enzymes or transcription factors, we accurately identified cognate ligands, as we verified experimentally by biophysical characterization of ligand binding and crystallographic determination of the urea complex of a thermostable urea-binding homolog. Using three-dimensional structure information, these functional assignments were extrapolated to other members in the sequence family lacking genetic linkage information, which revealed that only a fraction bind urea. Using the same combined approaches, we also inferred that other family members bind various short-chain amides, aliphatic amino acids (leucine, isoleucine, valine), γ-aminobutyrate, and as yet unknown ligands. Comparative structural analysis revealed structural adaptations that encode diversification in these SBPs. Systematic assignment of ligands to SBP sequence families is key to understanding bacterial lifestyles, and also provides a rich source of biosensors for clinical and environmental analysis, such as the thermostable urea-binding protein identified here.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Shivesh Kumar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, MO 63110, USA.
| | - You Wang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Gesteira TF, Marforio TD, Mueller JW, Calvaresi M, Coulson-Thomas VJ. Structural Determinants of Substrate Recognition and Catalysis by Heparan Sulfate Sulfotransferases. ACS Catal 2021; 11:10974-10987. [PMID: 37799563 PMCID: PMC10550706 DOI: 10.1021/acscatal.1c03088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heparan sulfate (HS) and heparin contain imprinted "sulfation codes", which dictate their diverse physiological and pathological functions. A group of orchestrated biosynthetic enzymes cooperate in polymerizing and modifying HS chains. The biotechnological development of enzymes that can recreate this sulfation pattern on synthetic heparin is challenging, primarily due to the paucity of quantitative data for sulfotransferase enzymes. Herein, we identified critical structural characteristics that determine substrate specificity and shed light on the catalytic mechanism of sugar sulfation of two HS sulfotransferases, 2-O-sulfotransferase (HS2ST) and 6-O-sulfotransferase (HS6ST). Two sets of molecular clamps in HS2ST recognize appropriate substrates; these clamps flank the acceptor binding site on opposite sides. The hexuronic epimers, and not their puckers, have a critical influence on HS2ST selectivity. In contrast, HS6ST recognizes a broader range of substrates. This promiscuity is granted by a conserved tryptophan residue, W210, that positions the acceptor within the active site for catalysis by means of strong electrostatic interactions. Lysines K131 and K132 act in concert with a second tryptophan, W153, shedding water molecules from within the active site, thus providing HS6ST with a binding preference toward 2-O-sulfated substrates. QM/MM calculations provided valuable mechanistic insights into the catalytic process, identifying that the sulfation of both HS2ST and HS6ST follows a SN2-like mechanism. When they are taken together, our findings reveal the molecular basis of how these enzymes recognize different substrates and catalyze sugar sulfation, enabling the generation of enzymes that could create specific heparin epitopes.
Collapse
Affiliation(s)
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna 40126, Italy
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, U.K
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna 40126, Italy
| | | |
Collapse
|
4
|
Chandravanshi M, Kant Tripathi S, Prasad Kanaujia S. An updated classification and mechanistic insights into ligand binding of the substrate-binding proteins. FEBS Lett 2021; 595:2395-2409. [PMID: 34379808 DOI: 10.1002/1873-3468.14174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
Substrate-binding proteins (SBPs) mediate ligand translocation and have been classified into seven clusters (A-G). Although the substrate specificities of these clusters are known to some extent, their ligand-binding mechanism(s) remain(s) incompletely understood. In this study, the list of SBPs belonging to different clusters was updated (764 SBPs) compared to the previously reported study (504 SBPs). Furthermore, a new cluster referred to as cluster H was identified. Results reveal that SBPs follow different ligand-binding mechanisms. Intriguingly, the majority of the SBPs follow the "one domain movement" rather than the well-known "Venus Fly-trap" mechanism. Moreover, SBPs of a few clusters display subdomain conformational movement rather than the complete movement of the N- and C-terminal domains.
Collapse
Affiliation(s)
- Monika Chandravanshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Sisir Kant Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
5
|
Keller JP, Marvin JS, Lacin H, Lemon WC, Shea J, Kim S, Lee RT, Koyama M, Keller PJ, Looger LL. In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep 2021; 35:109284. [PMID: 34161775 DOI: 10.1016/j.celrep.2021.109284] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/06/2020] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Glucose is arguably the most important molecule in metabolism, and its dysregulation underlies diabetes. We describe a family of single-wavelength genetically encoded glucose sensors with a high signal-to-noise ratio, fast kinetics, and affinities varying over four orders of magnitude (1 μM to 10 mM). The sensors allow mechanistic characterization of glucose transporters expressed in cultured cells with high spatial and temporal resolution. Imaging of neuron/glia co-cultures revealed ∼3-fold faster glucose changes in astrocytes. In larval Drosophila central nervous system explants, intracellular neuronal glucose fluxes suggested a rostro-caudal transport pathway in the ventral nerve cord neuropil. In zebrafish, expected glucose-related physiological sequelae of insulin and epinephrine treatments were directly visualized. Additionally, spontaneous muscle twitches induced glucose uptake in muscle, and sensory and pharmacological perturbations produced large changes in the brain. These sensors will enable rapid, high-resolution imaging of glucose influx, efflux, and metabolism in behaving animals.
Collapse
Affiliation(s)
- Jacob P Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jamien Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Soomin Kim
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA
| | - Richard T Lee
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA; The Cardiovascular Division, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
6
|
Kumar D, Desa A, Chougle S, Bhatkalkar SG, Sachar S, Selvaa Kumar C, Ali A. Evaluation of the antiglycating potential of thymoquinone and its interaction with BSA. J Biomol Struct Dyn 2021; 40:8455-8463. [PMID: 33908315 DOI: 10.1080/07391102.2021.1912642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thymoquinone (TQ) is a bioactive component of medicinal plant, Nigella sativa. It has been identified as promising anti-inflammatory and anti-analgesic properties. In the present study, the TQ has been investigated for physiological interaction as well as binding properties with serum albumin and their thermodynamic parameters at different temperatures. Glycation process was checked with the measurement of fructosamine content, carbonyl content and total advanced glycated end products. The aggregation of amyloid β-structure was measured with Thioflavin-T and the secondary structure of BSA was observed by circular dichroism (CD) in glycated and thermal treated samples. The results indicate that the TQ showed binding interaction (both static and dynamic) with BSA (Kb= 18.31 × 107 M-1 at 293 K) and suppression of glycated products. The glycation-induced and thermal aggregation were prevented and the secondary structure of BSA was maintained. Therefore, these findings suggest that TQ may be used for a therapeutic drug for antiglycation as well as anti-aggregation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Amisha Desa
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Sana Chougle
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | | | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - C Selvaa Kumar
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
7
|
Liu Y, Shang L, Zhan Y, Lin M, Liu Z, Yan Y. Genome-Wide Analysis of Sugar Transporters Identifies the gtsA Gene for Glucose Transportation in Pseudomonas stutzeri A1501. Microorganisms 2020; 8:microorganisms8040592. [PMID: 32325908 PMCID: PMC7232493 DOI: 10.3390/microorganisms8040592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas stutzeri A1501 possesses an extraordinary number of transporters which confer this rhizosphere bacterium with the sophisticated ability to metabolize various carbon sources. However, sugars are not a preferred carbon source for P. stutzeri A1501. The P. stutzeri A1501 genome has been sequenced, allowing for the homology-based in silico identification of genes potentially encoding sugar-transport systems by using established microbial sugar transporters as a template sequence. Genomic analysis revealed that there were 10 sugar transporters in P. stutzeri A1501, most of which belong to the ATP-binding cassette (ABC) family (5/10); the others belong to the phosphotransferase system (PTS), major intrinsic protein (MIP) family, major facilitator superfamily (MFS) and the sodium solute superfamily (SSS). These systems might serve for the import of glucose, galactose, fructose and other types of sugar. Growth analysis showed that the only effective medium was glucose and its corresponding metabolic system was relatively complete. Notably, the loci of glucose metabolism regulatory systems HexR, GltR/GtrS, and GntR were adjacent to the transporters ABCMalEFGK, ABCGtsABCD, and ABCMtlEFGK, respectively. Only the ABCGtsABCD expression was significantly upregulated under both glucose-sufficient and -limited conditions. The predicted structure and mutant phenotype data of the key protein GtsA provided biochemical evidence that P. stutzeri A1501 predominantly utilized the ABCGtsABCD transporter for glucose uptake. We speculate that gene absence and gene diversity in P. stutzeri A1501 was caused by sugar-deficient environmental factors and hope that this report can provide guidance for further analysis of similar bacterial lifestyles.
Collapse
Affiliation(s)
- Yaqun Liu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570100, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
| | - Liguo Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
| | - Yuhua Zhan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
| | - Zhu Liu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570100, China;
- Correspondence: (Z.L.); (Y.Y.)
| | - Yongliang Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
- Correspondence: (Z.L.); (Y.Y.)
| |
Collapse
|
8
|
Díaz-García CM, Lahmann C, Martínez-François JR, Li B, Koveal D, Nathwani N, Rahman M, Keller JP, Marvin JS, Looger LL, Yellen G. Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. J Neurosci Res 2019; 97:946-960. [PMID: 31106909 PMCID: PMC6565483 DOI: 10.1002/jnr.24433] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023]
Abstract
Glucose is an essential source of energy for the brain. Recently, the development of genetically encoded fluorescent biosensors has allowed real time visualization of glucose dynamics from individual neurons and astrocytes. A major difficulty for this approach, even for ratiometric sensors, is the lack of a practical method to convert such measurements into actual concentrations in ex vivo brain tissue or in vivo. Fluorescence lifetime imaging provides a strategy to overcome this. In a previous study, we reported the lifetime glucose sensor iGlucoSnFR-TS (then called SweetieTS) for monitoring changes in neuronal glucose levels in response to stimulation. This genetically encoded sensor was generated by combining the Thermus thermophilus glucose-binding protein with a circularly permuted variant of the monomeric fluorescent protein T-Sapphire. Here, we provide more details on iGlucoSnFR-TS design and characterization, as well as pH and temperature sensitivities. For accurate estimation of glucose concentrations, the sensor must be calibrated at the same temperature as the experiments. We find that when the extracellular glucose concentration is in the range 2-10 mM, the intracellular glucose concentration in hippocampal neurons from acute brain slices is ~20% of the nominal external glucose concentration (~0.4-2 mM). We also measured the cytosolic neuronal glucose concentration in vivo, finding a range of ~0.7-2.5 mM in cortical neurons from awake mice.
Collapse
Affiliation(s)
| | - Carolina Lahmann
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Binsen Li
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Dorothy Koveal
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jacob P. Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan S. Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Chandravanshi M, Sharma A, Dasgupta P, Mandal SK, Kanaujia SP. Identification and characterization of ABC transporters for carbohydrate uptake in Thermus thermophilus HB8. Gene 2019; 696:135-148. [DOI: 10.1016/j.gene.2019.02.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
|
10
|
Ruvinsky AM, Aloni I, Cappel D, Higgs C, Marshall K, Rotkiewicz P, Repasky M, Feher VA, Feyfant E, Hessler G, Matter H. The Role of Bridging Water and Hydrogen Bonding as Key Determinants of Noncovalent Protein-Carbohydrate Recognition. ChemMedChem 2018; 13:2684-2693. [DOI: 10.1002/cmdc.201800437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ishita Aloni
- Schrödinger, Inc.; 120 West 45th Street New York NY 10036 USA
| | | | - Chris Higgs
- Schrödinger, Inc.; 10201 Wateridge Circle, Suite 220 San Diego CA 92121 USA
| | - Kyle Marshall
- Schrödinger, Inc.; 101 SW Main Street Portland OR 97204 USA
| | - Piotr Rotkiewicz
- Schrödinger, Inc.; 222 Third Street, Suite 2230 Cambridge MA 02142 USA
| | - Matt Repasky
- Schrödinger, Inc.; 101 SW Main Street Portland OR 97204 USA
| | - Victoria A. Feher
- Schrödinger, Inc.; 10201 Wateridge Circle, Suite 220 San Diego CA 92121 USA
| | - Eric Feyfant
- Schrödinger, Inc.; 222 Third Street, Suite 2230 Cambridge MA 02142 USA
| | - Gerhard Hessler
- Sanofi-Aventis (Deutschland) GmbH; Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838; Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Hans Matter
- Sanofi-Aventis (Deutschland) GmbH; Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838; Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|
11
|
Shukla S, Bafna K, Gullett C, Myles DAA, Agarwal PK, Cuneo MJ. Differential Substrate Recognition by Maltose Binding Proteins Influenced by Structure and Dynamics. Biochemistry 2018; 57:5864-5876. [PMID: 30204415 PMCID: PMC6189639 DOI: 10.1021/acs.biochem.8b00783] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genome of the hyperthermophile Thermotoga maritima contains three isoforms of maltose binding protein (MBP) that are high-affinity receptors for di-, tri-, and tetrasaccharides. Two of these proteins (tmMBP1 and tmMBP2) share significant sequence identity, approximately 90%, while the third (tmMBP3) shares less than 40% identity. MBP from Escherichia coli (ecMBP) shares 35% sequence identity with the tmMBPs. This subset of MBP isoforms offers an interesting opportunity to investigate the mechanisms underlying the evolution of substrate specificity and affinity profiles in a genome where redundant MBP genes are present. In this study, the X-ray crystal structures of tmMBP1, tmMBP2, and tmMBP3 are reported in the absence and presence of oligosaccharides. tmMBP1 and tmMBP2 have binding pockets that are larger than that of tmMBP3, enabling them to bind to larger substrates, while tmMBP1 and tmMBP2 also undergo substrate-induced hinge bending motions (∼52°) that are larger than that of tmMBP3 (∼35°). Small-angle X-ray scattering was used to compare protein behavior in solution, and computer simulations provided insights into dynamics of these proteins. Comparing quantitative protein-substrate interactions and dynamical properties of tmMBPs with those of the promiscuous ecMBP and disaccharide selective Thermococcus litoralis MBP provides insights into the features that enable selective binding. Collectively, the results provide insights into how the structure and dynamics of tmMBP homologues enable them to differentiate between a myriad of chemical entities while maintaining their common fold.
Collapse
Affiliation(s)
- Shantanu Shukla
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Khushboo Bafna
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
| | - Caeley Gullett
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dean A. A. Myles
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee
| | - Matthew J. Cuneo
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Deparment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
12
|
Pandey S, Phale PS, Bhaumik P. Structural modulation of a periplasmic sugar-binding protein probes into its evolutionary ancestry. J Struct Biol 2018; 204:498-506. [PMID: 30244006 DOI: 10.1016/j.jsb.2018.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Substrate-binding proteins (SBPs) are periplasmic proteins consisting of two α/β domains joined by a hinge region with specificity towards cognate ligands. Based on three-dimensional fold, sugar-specific SBPs have been classified into cluster B and cluster D-I. The analysis of sequences and structures of sugar-binding pocket of cluster D-I SBPs revealed the presence of extra residues on two loops (L1, L2) and a helix (H1) in few members of this family, that binds specifically to monosaccharides. Presence of conserved histidine in L2 and tryptophan in H1 can be considered as the identity marks for the cluster D-I monosaccharide-binding SBPs. A glucose binding protein (ppGBP) from Pseudomonas putida CSV86 was found to contain a structural fold similar to oligosaccharide-binding cluster D-I SBPs, but functionally binds to only glucose due to constriction of its binding pocket mainly by L2 (375-382). ppGBP with partial deletion of L2 (ppGBPΔL2) was created, crystallized and biochemical characterization was performed. Compared to wild type ppGBP, the ppGBPΔL2 structure showed widening of the glucose-binding pocket with ∼80% lower glucose binding. Our results show that the substrate specificity of SBPs can be altered by modulating the size of the binding pocket. Based on this, we propose a sub classification of cluster D-I SBPs into (i) cluster D-I(a)-monosaccharide-binding SBPs and (ii) cluster D-I(b)-oligosaccharide-binding SBPs. This study also provides the direct structural and functional correlation indicating that divergence of proteins may occur through insertions or deletions of sequences in the already existing SBPs leading to evolution at the functional level.
Collapse
Affiliation(s)
- Suman Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
13
|
Tavagnacco L, Mason PE, Neilson GW, Saboungi ML, Cesàro A, Brady JW. Molecular Dynamics and Neutron Scattering Studies of Mixed Solutions of Caffeine and Pyridine in Water. J Phys Chem B 2018; 122:5308-5315. [PMID: 29092394 DOI: 10.1021/acs.jpcb.7b07798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insight into the molecular interactions of homotactic and heterotactic association of caffeine and pyridine in aqueous solution is given on the basis of both experimental and simulation studies. Caffeine is about 5 times more soluble in a 3 m aqueous pyridine solution than it is in pure water (an increase from ∼0.1 m to 0.5 m). At this elevated concentration the system becomes suitable for neutron scattering study. Caffeine-pyridine interactions were studied by neutron scattering and molecular dynamics simulations, allowing a detailed characterization of the spatial and orientational structure of the solution. It was found that while pyridine-caffeine interactions are not as strong as caffeine-caffeine interactions, the pyridine-caffeine interactions still significantly disrupted caffeine-caffeine stacking. The alteration of the caffeine-caffeine stacking, occasioned by the presence of pyridine molecules in solution and the consequent formation of heterotactic interactions, leads to the experimentally detected increase in caffeine solubility.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States.,Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via Giorgieri 1 , I-34127 Trieste , Italy
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems , 16610 Prague 6 , Czech Republic
| | - George W Neilson
- H. H. Wills Physics Laboratory , University of Bristol , Bristol BS8 1TL , United Kingdom
| | - Marie-Louise Saboungi
- IMPMC-Université Pierre et Marie Curie and CNRS , 4 Place Jussieu , F-75252 Paris , France.,Functional Nano & Soft Materials Laboratory (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Attilio Cesàro
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via Giorgieri 1 , I-34127 Trieste , Italy.,Elettra-Sincrotrone Trieste S.C.p.A ., Strada Statale 14 Km 163.5, Area Science Park , I-34149 Trieste , Italy
| | - John W Brady
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
14
|
Unione L, Ortega G, Mallagaray A, Corzana F, Pérez-Castells J, Canales A, Jiménez-Barbero J, Millet O. Unraveling the Conformational Landscape of Ligand Binding to Glucose/Galactose-Binding Protein by Paramagnetic NMR and MD Simulations. ACS Chem Biol 2016; 11:2149-57. [PMID: 27219646 DOI: 10.1021/acschembio.6b00148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein dynamics related to function can nowadays be structurally well characterized (i.e., instances obtained by high resolution structures), but they are still ill-defined energetically, and the energy landscapes are only accessible computationally. This is the case for glucose-galactose binding protein (GGBP), where the crystal structures of the apo and holo states provide structural information for the domain rearrangement upon ligand binding, while the time scale and the energetic determinants for such concerted dynamics have been so far elusive. Here, we use GGBP as a paradigm to define a functional conformational landscape, both structurally and energetically, by using an innovative combination of paramagnetic NMR experiments and MD simulations. Anisotropic NMR parameters induced by self-alignment of paramagnetic metal ions was used to characterize the ensemble of conformations adopted by the protein in solution while the rate of interconversion between conformations was elucidated by long molecular dynamics simulation on two states of GGBP, the closed-liganded (holo_cl) and open-unloaded (apo_op) states. Our results demonstrate that, in its apo state, the protein coexists between open-like (68%) and closed-like (32%) conformations, with an exchange rate around 25 ns. Despite such conformational heterogeneity, the presence of the ligand is the ultimate driving force to unbalance the equilibrium toward the holo_cl form, in a mechanism largely governed by a conformational selection mechanism.
Collapse
Affiliation(s)
- Luca Unione
- Molecular
Recognition and Host−Pathogen Interactions, CICbioGUNE, Bizkaia
Technology Park, Building 801 A, 48170 Derio, Spain
| | - Gabriel Ortega
- Molecular
Recognition and Host−Pathogen Interactions, CICbioGUNE, Bizkaia
Technology Park, Building 801 A, 48170 Derio, Spain
| | - Alvaro Mallagaray
- Institute
of Chemistry, Center for Structural and Cell Biology in Medicine (CSCM), University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Francisco Corzana
- Departamento
de Química y Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Javier Pérez-Castells
- Facultad
de Farmacia, Dpto. Química y Bioquímica, Universidad San Pablo CEU, Urb. Montepríncipe, ctra., Boadilla km 5,300
Boadilla del Monte, 28668 Madrid, Spain
| | - Angeles Canales
- Department
of Química Orgánica I, Fac. C. C. Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Molecular
Recognition and Host−Pathogen Interactions, CICbioGUNE, Bizkaia
Technology Park, Building 801 A, 48170 Derio, Spain
- Ikerbasque, Basque
Foundation
for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Departament of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia Spain
| | - Oscar Millet
- Molecular
Recognition and Host−Pathogen Interactions, CICbioGUNE, Bizkaia
Technology Park, Building 801 A, 48170 Derio, Spain
| |
Collapse
|
15
|
Pandey S, Modak A, Phale PS, Bhaumik P. High Resolution Structures of Periplasmic Glucose-binding Protein of Pseudomonas putida CSV86 Reveal Structural Basis of Its Substrate Specificity. J Biol Chem 2016; 291:7844-57. [PMID: 26861882 DOI: 10.1074/jbc.m115.697268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 01/31/2023] Open
Abstract
Periplasmic substrate-binding proteins (SBPs) bind to the specific ligand with high affinity and mediate their transport into the cytoplasm via the cognate inner membrane ATP-binding cassette proteins. Because of low sequence identities, understanding the structural basis of substrate recognition by SBPs has remained very challenging. There are several structures available for the ligand-bound sugar SBPs, but very few unliganded structures are reported. No structural data are available for sugar SBPs fromPseudomonassp. to date. This study reports the first high resolution crystal structures of periplasmic glucose-binding protein fromPseudomonas putidaCSV86 (ppGBP) in unliganded form (2.5 Å) and complexed with glucose (1.25 Å) and galactose (1.8 Å). Asymmetric domain closure of ppGBP was observed upon substrate binding. The ppGBP was found to have an affinity of ∼ 0.3 μmfor glucose. The structural analysis showed that the sugars are bound to the protein mainly by hydrogen bonds, and the loss of two strong hydrogen bonds between ppGBP and galactose compared with glucose may be responsible for lowering its affinity toward galactose. The higher stability of ppGBP-glucose complex was also indicated by an 8 °C increase in the melting temperature compared with unliganded form and ppGBP-galactose complex. ppGBP binds to monosaccharide, but the structural features revealed it to have an oligosaccharide-binding protein fold, indicating that during evolution the sugar binding pocket may have undergone structural modulation to accommodate monosaccharide only.
Collapse
Affiliation(s)
- Suman Pandey
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Modak
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prashant S Phale
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prasenjit Bhaumik
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Modak A, Bhaumik P, Phale PS. Periplasmic glucose-binding protein from Pseudomonas putida CSV86--identification of the glucose-binding pocket by homology-model-guided site-specific mutagenesis. FEBS J 2013; 281:365-75. [PMID: 24206004 DOI: 10.1111/febs.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
Glucose transport in Pseudomonas putida CSV86 is mediated via a periplasmic glucose-binding protein (GBP)-dependent putative glucose ABC transporter. Here we describe a homology model and functional characterization of GBP from CSV86 (ppGBP). A whole-cell [(14)C]-glucose uptake study revealed that glucose is transported by the high-affinity intracellular phosphorylative pathway. ppGBP was cloned, over-expressed in Escherichia coli and purified to apparent homogeneity. The purified ppGBPs from both E. coli and CSV86 were found to be specific for glucose. A homology model of ppGBP was constructed that resembles the class II family of periplasmic binding proteins. The model showed highest structural similarity to GBP of Thermus thermophilus (ttGBP, rmsd 0.64 Å). Structural analysis and molecular docking studies predicted W35, W36, E41, K92, K339 and H379 of ppGBP as putative glucose-binding residues. Alanine substitution of these residues resulted in significantly reduced [(14)C]-glucose binding activity. Analysis of the operonic arrangement and structural comparative studies suggested that ppGBP and ttGBP probably originated from a common ancestor. Structural adaptations that inhibit binding of di- or trisaccharides at the glucose-binding pocket of ppGBP were also identified.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | |
Collapse
|
17
|
Bourdès A, Rudder S, East AK, Poole PS. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols. PLoS One 2012; 7:e43578. [PMID: 23028462 PMCID: PMC3454389 DOI: 10.1371/journal.pone.0043578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Förster resonance energy transfer (FRET) biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens). To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors. METHODOLOGY/PRINCIPAL FINDINGS Two new vectors were developed for cloning genes for solute-binding proteins (SBPs) between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2) and red fluorescent protein (mKate2) FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose), D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate). To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP) transport systems. CONCLUSIONS/SIGNIFICANCE FRET based on orange (mOrange2) and red fluorescent protein (mKate2) partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i) cyclic polyols, (ii) L-deoxy sugars, (iii) β-linked disaccharides and (iv) C4-dicarboxylates could be developed to study metabolism in vivo.
Collapse
Affiliation(s)
- Alexandre Bourdès
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Steven Rudder
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alison K. East
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Philip S. Poole
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Han Y, Agarwal V, Dodd D, Kim J, Bae B, Mackie RI, Nair SK, Cann IKO. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J Biol Chem 2012; 287:34946-34960. [PMID: 22918832 DOI: 10.1074/jbc.m112.391532] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemicellulose is the next most abundant plant cell wall component after cellulose. The abundance of hemicellulose such as xylan suggests that their hydrolysis and conversion to biofuels can improve the economics of bioenergy production. In an effort to understand xylan hydrolysis at high temperatures, we sequenced the genome of the thermophilic bacterium Caldanaerobius polysaccharolyticus. Analysis of the partial genome sequence revealed a gene cluster that contained both hydrolytic enzymes and also enzymes key to the pentose-phosphate pathway. The hydrolytic enzymes in the gene cluster were demonstrated to convert products from a large endoxylanase (Xyn10A) predicted to anchor to the surface of the bacterium. We further use structural and calorimetric studies to demonstrate that the end products of Xyn10A hydrolysis of xylan are recognized and bound by XBP1, a putative solute-binding protein, likely for transport into the cell. The XBP1 protein showed preference for xylo-oligosaccharides as follows: xylotriose > xylobiose > xylotetraose. To elucidate the structural basis for the oligosaccharide preference, we solved the co-crystal structure of XBP1 complexed with xylotriose to a 1.8-Å resolution. Analysis of the biochemical data in the context of the co-crystal structure reveals the molecular underpinnings of oligosaccharide length specificity.
Collapse
Affiliation(s)
- Yejun Han
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - Vinayak Agarwal
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801; Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Dylan Dodd
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Jason Kim
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Department of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois 61801
| | - Brian Bae
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Roderick I Mackie
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
| | - Satish K Nair
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801; Department of Biochemistry, University of Illinois, Urbana, Illinois 61801.
| | - Isaac K O Cann
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Department of Microbiology, University of Illinois, Urbana, Illinois 61801; Department of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
19
|
Bulut H, Ma Q, Moniot S, Saenger W, Schneider E, Vahedi-Faridi A. Crystal structures of receptors involved in small molecule transport across membranes. Eur J Cell Biol 2012; 91:318-25. [PMID: 22341528 DOI: 10.1016/j.ejcb.2011.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 10/28/2022] Open
Abstract
This paper briefly reviews contemporary protein crystallography and focuses on six receptor proteins of membrane-intrinsic ATP binding cassette (ABC) transporters. Three of these receptors are specific for carbohydrates and three for amino acids. The receptor GacH of the transporter GacFGH from Streptomyces glaucescens is specific for acarbose and its homologs, and MalE of Salmonella typhimurium is specific for maltose but also forms a complex with acarbose, and the third receptor is the highly specific d-galactose receptor AcbH of the transporter AcbFGH from Actinoplanes sp. Concerning the receptors for amino acids, ArtJ belongs to the ArtJ-(MP)(2) transporter of Geobacillus stearotermophilus and recognizes and binds to positively charged arginine, lysine, and histidine with different sizes of side chains, contrasting the receptors Ngo0372 and Ngo2014 from Neisseria gonorrhaeae that are highly specific for cystine and cysteine, respectively. The differences in the rather unspecific receptors GacH, MalE and ArtJ are compared with the highly specific receptors AcbH, Ngo0372 and Ngo2014.
Collapse
Affiliation(s)
- Haydar Bulut
- Institut für Chemie und Biochemie, Abteilung Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Chen M, Bomble YJ, Himmel ME, Brady JW. Molecular dynamics simulations of the interaction of glucose with imidazole in aqueous solution. Carbohydr Res 2012; 349:73-7. [DOI: 10.1016/j.carres.2011.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/22/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
|
21
|
Crystal structures of the bacterial solute receptor AcbH displaying an exclusive substrate preference for β-D-galactopyranose. J Mol Biol 2010; 406:92-105. [PMID: 21168419 DOI: 10.1016/j.jmb.2010.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
Abstract
Solute receptors (binding proteins) are indispensable components of canonical ATP-binding cassette importers in prokaryotes. Here, we report on the characterization and crystal structures in the closed and open conformations of AcbH, the solute receptor of the putative carbohydrate transporter AcbFG which is encoded in the acarbose (acarviosyl-1,4-maltose) biosynthetic gene cluster from Actinoplanes sp. SE50/110. Binding assays identified AcbH as a high-affinity monosaccharide-binding protein with a dissociation constant (K(d)) for β-d-galactopyranose of 9.8±1.0 nM. Neither galactose-containing di- and trisaccharides, such as lactose and raffinose, nor monosaccharides including d-galacturonic acid, l-arabinose, d-xylose and l-rhamnose competed with [(1)(4)C]galactose for binding to AcbH. Moreover, AcbH does not bind d-glucose, which is a common property of all but one d-galactose-binding proteins characterized to date. Strikingly, determination of the X-ray structure revealed that AcbH is structurally homologous to maltose-binding proteins rather than to glucose-binding proteins. Two helices are inserted in the substrate-binding pocket, which reduces the cavity size and allows the exclusive binding of monosaccharides, specifically β-d-galactopyranose, in the (4)C(1) conformation. Site-directed mutagenesis of three residues from the binding pocket (Arg82, Asp361 and Arg362) that interact with the axially oriented O4-H hydroxyl of the bound galactopyranose and subsequent functional analysis indicated that these residues are crucial for galactose binding. To our knowledge, this is the first report of the tertiary structure of a solute receptor with exclusive affinity for β-d-galactopyranose. The putative role of a galactose import system in the context of acarbose metabolism in Actinoplanes sp. is discussed.
Collapse
|
22
|
Abbott DW, Higgins MA, Hyrnuik S, Pluvinage B, van Bueren AL, Boraston AB. The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae. Mol Microbiol 2010; 77:183-99. [PMID: 20497336 PMCID: PMC2911477 DOI: 10.1111/j.1365-2958.2010.07199.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The genome of Streptococcus pneumoniae strains, as typified by the TIGR4 strain, contain several genes encoding proteins putatively involved in alpha-glucan degradation, modification and synthesis. The extracellular components comprise an ATP binding cassette-transporter with its solute binding protein, MalX, and the hydrolytic enzyme SpuA. We show that of the commonly occurring exogenous alpha-glucans, S. pneumoniae TIGR4 is only able to grow on glycogen in a MalX- and SpuA-dependent manner. SpuA is able to degrade glycogen into a ladder of alpha-1,4-glucooligosaccharides while the high-affinity interaction (K(a) approximately 10(6) M(-1)) of MalX with maltooligosaccharides plays a key role in promoting the selective uptake of the glycogen degradation products that are produced by SpuA. The X-ray crystallographic analyses of apo- and complexed MalX illuminate the protein's specificity for the degradation products of glycogen and its striking ability to recognize the helical structure of the ligand. Overall, the results of this work provide new structural and functional insight into streptococcal alpha-glucan metabolism while supplying biochemical support for the hypothesis that the substrate of the S. pneumoniaealpha-glucan metabolizing machinery is glycogen, which in a human host is abundant in lung epithelial cells, a common target for invasive S. pneumoniae.
Collapse
Affiliation(s)
- D. Wade Abbott
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Melanie A. Higgins
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Susanne Hyrnuik
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Benjamin Pluvinage
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Alicia Lammerts van Bueren
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Alisdair B. Boraston
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
23
|
Vahedi-Faridi A, Licht A, Bulut H, Scheffel F, Keller S, Wehmeier UF, Saenger W, Schneider E. Crystal structures of the solute receptor GacH of Streptomyces glaucescens in complex with acarbose and an acarbose homolog: comparison with the acarbose-loaded maltose-binding protein of Salmonella typhimurium. J Mol Biol 2010; 397:709-23. [PMID: 20132828 DOI: 10.1016/j.jmb.2010.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
GacH is the solute binding protein (receptor) of the putative oligosaccharide ATP-binding cassette transporter GacFG, encoded in the acarbose biosynthetic gene cluster (gac) from Streptomyces glaucescens GLA.O. In the context of the proposed function of acarbose (acarviosyl-1,4-maltose) as a 'carbophor,' the transporter, in complex with a yet to be identified ATPase subunit, is supposed to mediate the uptake of longer acarbose homologs and acarbose for recycling purposes. Binding assays using isothermal titration calorimetry identified GacH as a maltose/maltodextrin-binding protein with a low affinity for acarbose but with considerable binding activity for its homolog, component 5C (acarviosyl-1,4-maltose-1,4-glucose-1,1-glucose). In contrast, the maltose-binding protein of Salmonella typhimurium (MalE) displays high-affinity acarbose binding. We determined the crystal structures of GacH in complex with acarbose, component 5C, and maltotetraose, as well as in unliganded form. As found for other solute receptors, the polypeptide chain of GacH is folded into two distinct domains (lobes) connected by a hinge, with the interface between the lobes forming the substrate-binding pocket. GacH does not specifically bind the acarviosyl group, but displays specificity for binding of the maltose moiety in the inner part of its binding pocket. The crystal structure of acarbose-loaded MalE showed that two glucose units of acarbose are bound at the same region and position as maltose. A comparative analysis revealed that in GacH, acarbose is buried deeper into the binding pocket than in MalE by exactly one glucose ring shift, resulting in a total of 18 hydrogen-bond interactions versus 21 hydrogen-bond interactions for MalE(acarbose). Since the substrate specificity of ATP-binding cassette import systems is determined by the cognate binding protein, our results provide the first biochemical and structural evidence for the proposed role of GacHFG in acarbose metabolism.
Collapse
Affiliation(s)
- Ardeschir Vahedi-Faridi
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cuneo MJ, Beese LS, Hellinga HW. Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold. J Biol Chem 2009; 284:33217-23. [PMID: 19801540 PMCID: PMC2785164 DOI: 10.1074/jbc.m109.041624] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/10/2009] [Indexed: 11/06/2022] Open
Abstract
Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T. maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of beta(1-->4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.
Collapse
Affiliation(s)
- Matthew J. Cuneo
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Lorena S. Beese
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Homme W. Hellinga
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
25
|
Cuneo MJ, Changela A, Beese LS, Hellinga HW. Structural Adaptations that Modulate Monosaccharide, Disaccharide, and Trisaccharide Specificities in Periplasmic Maltose-Binding Proteins. J Mol Biol 2009; 389:157-66. [DOI: 10.1016/j.jmb.2009.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 11/25/2022]
|
26
|
Matsumoto N, Yamada M, Kurakata Y, Yoshida H, Kamitori S, Nishikawa A, Tonozuka T. Crystal structures of open and closed forms of cyclo/maltodextrin-binding protein. FEBS J 2009; 276:3008-19. [PMID: 19490104 DOI: 10.1111/j.1742-4658.2009.07020.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The crystal structures of Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein (TvuCMBP) complexed with alpha-cyclodextrin (alpha-CD), beta-cyclodextrin (beta-CD) and maltotetraose (G4) have been determined. A common functional conformational change among all solute-binding proteins involves switching from an open form to a closed form, which facilitates transporter binding. Escherichia coli maltodextrin-binding protein (EcoMBP), which is structurally homologous to TvuCMBP, has been determined to adopt the open form when complexed with beta-CD and the closed form when bound to G4. Here, we show that, unlike EcoMBP, TvuCMBP-alpha-CD and TvuCMBP-beta-CD adopt the closed form when complexed, whereas TvuCMBP-G4 adopts the open form. Only two glucose residues are evident in the TvuCMBP-G4 structure, and these bind to the C-domain of TvuCMBP in a manner similar to the way in which maltose binds to the C-domain of EcoMBP. The superposition of TvuCMBP-alpha-CD, TvuCMBP-beta-CD and TvuCMBP-gamma-CD shows that the positions and the orientations of three glucose residues in the cyclodextrin molecules overlay remarkably well. In addition, most of the amino acid residues interacting with these three glucose residues also participate in interactions with the two glucose residues in TvuCMBP-G4, regardless of whether the protein is in the closed or open form. Our results suggest that the mechanisms by which TvuCMBP changes from the open to the closed conformation and maintains the closed form appear to be different from those of EcoMBP, despite the fact that the amino acid residues responsible for the initial binding of the ligands are well conserved between TvuCMBP and EcoMBP.
Collapse
Affiliation(s)
- Naoki Matsumoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Sooriyaarachchi S, Ubhayasekera W, Boos W, Mowbray SL. X-ray structure of glucose/galactose receptor from Salmonella typhimurium in complex with the physiological ligand, (2R)-glyceryl-β-d-galactopyranoside. FEBS J 2009; 276:2116-24. [DOI: 10.1111/j.1742-4658.2009.06945.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Cuneo MJ, Beese LS, Hellinga HW. Ligand-induced conformational changes in a thermophilic ribose-binding protein. BMC STRUCTURAL BIOLOGY 2008; 8:50. [PMID: 19019243 PMCID: PMC2630998 DOI: 10.1186/1472-6807-8-50] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/19/2008] [Indexed: 01/07/2023]
Abstract
BACKGROUND Members of the periplasmic binding protein (PBP) superfamily are involved in transport and signaling processes in both prokaryotes and eukaryotes. Biological responses are typically mediated by ligand-induced conformational changes in which the binding event is coupled to a hinge-bending motion that brings together two domains in a closed form. In all PBP-mediated biological processes, downstream partners recognize the closed form of the protein. This motion has also been exploited in protein engineering experiments to construct biosensors that transduce ligand binding to a variety of physical signals. Understanding the mechanistic details of PBP conformational changes, both global (hinge bending, twisting, shear movements) and local (rotamer changes, backbone motion), therefore is not only important for understanding their biological function but also for protein engineering experiments. RESULTS Here we present biochemical characterization and crystal structure determination of the periplasmic ribose-binding protein (RBP) from the hyperthermophile Thermotoga maritima in its ribose-bound and unliganded state. The T. maritima RBP (tmRBP) has 39% sequence identity and is considerably more resistant to thermal denaturation (app Tm value is 108 degrees C) than the mesophilic Escherichia coli homolog (ecRBP) (app Tm value is 56 degrees C). Polar ligand interactions and ligand-induced global conformational changes are conserved among ecRBP and tmRBP; however local structural rearrangements involving side-chain motions in the ligand-binding site are not conserved. CONCLUSION Although the large-scale ligand-induced changes are mediated through similar regions, and are produced by similar backbone movements in tmRBP and ecRBP, the small-scale ligand-induced structural rearrangements differentiate the mesophile and thermophile. This suggests there are mechanistic differences in the manner by which these two proteins bind their ligands and are an example of how two structurally similar proteins utilize different mechanisms to form a ligand-bound state.
Collapse
Affiliation(s)
- Matthew J Cuneo
- The Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Lorena S Beese
- The Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Homme W Hellinga
- The Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
29
|
Cuneo MJ, Changela A, Miklos AE, Beese LS, Krueger JK, Hellinga HW. Structural analysis of a periplasmic binding protein in the tripartite ATP-independent transporter family reveals a tetrameric assembly that may have a role in ligand transport. J Biol Chem 2008; 283:32812-20. [PMID: 18723845 DOI: 10.1074/jbc.m803595200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several bacterial solute transport mechanisms involve members of the periplasmic binding protein (PBP) superfamily that bind and deliver ligand to integral membrane transport proteins in the ATP-binding cassette, tripartite tricarboxylate transporter, or tripartite ATP-independent (TRAP) families. PBPs involved in ATP-binding cassette transport systems have been well characterized, but only a few PBPs involved in TRAP transport have been studied. We have measured the thermal stability, determined the oligomerization state by small angle x-ray scattering, and solved the x-ray crystal structure to 1.9 A resolution of a TRAP-PBP (open reading frame tm0322) from the hyperthermophilic bacterium Thermotoga maritima (TM0322). The overall fold of TM0322 is similar to other TRAP transport related PBPs, although the structural similarity of backbone atoms (2.5-3.1 A root mean square deviation) is unusually low for PBPs within the same group. Individual monomers within the tetrameric asymmetric unit of TM0322 exhibit high root mean square deviation (0.9 A) to each other as a consequence of conformational heterogeneity in their binding pockets. The gel filtration elution profile and the small angle x-ray scattering analysis indicate that TM0322 assembles as dimers in solution that in turn assemble into a dimer of dimers in the crystallographic asymmetric unit. Tetramerization has been previously observed in another TRAP-PBP (the Rhodobacter sphaeroides alpha-keto acid-binding protein) where quaternary structure formation is postulated to be an important requisite for the transmembrane transport process.
Collapse
Affiliation(s)
- Matthew J Cuneo
- Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
30
|
Cuneo MJ, Tian Y, Allert M, Hellinga HW. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog. BMC STRUCTURAL BIOLOGY 2008; 8:20. [PMID: 18373848 PMCID: PMC2315655 DOI: 10.1186/1472-6807-8-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 03/28/2008] [Indexed: 11/16/2022]
Abstract
Background Comparison of experimentally determined mesophilic and thermophilic homologous protein structures is an important tool for understanding the mechanisms that contribute to thermal stability. Of particular interest are pairs of homologous structures that are structurally very similar, but differ significantly in thermal stability. Results We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 Å resolution. We find that tteRBP is significantly more stable (appTm value ~102°C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) (appTm value ~56°C). The tteRBP has essentially the identical backbone conformation (0.41 Å RMSD of 235/271 Cα positions and 0.65 Å RMSD of 270/271 Cα positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities. Conclusion The near identity of backbone structures of this pair of proteins entails that the significant differences in their thermal stabilities are encoded exclusively by the identity of the amino acid side-chains. Furthermore, the degree of sequence divergence is strongly correlated with structure; with a high degree of conservation in the core progressing to increased diversity in the boundary and surface regions. Different factors that may possibly contribute to thermal stability appear to be differentially encoded in each of these regions of the protein. The tteRBP/ecRBP pair therefore offers an opportunity to dissect contributions to thermal stability by side-chains alone in the absence of large structural differences.
Collapse
Affiliation(s)
- Matthew J Cuneo
- The Institute for Biological Structure and Design and the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| | | | | | | |
Collapse
|
31
|
Ge X, Lam H, Modi SJ, LaCourse WR, Rao G, Tolosa L. Comparing the performance of the optical glucose assay based on glucose binding protein with high-performance anion-exchange chromatography with pulsed electrochemical detection: efforts to design a low-cost point-of-care glucose sensor. J Diabetes Sci Technol 2007; 1:864-72. [PMID: 19885158 PMCID: PMC2769676 DOI: 10.1177/193229680700100610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The glucose binding protein (GBP) is one of many soluble binding proteins found in the periplasmic space of gram-negative bacteria. These proteins are responsible for chemotactic responses and active transport of chemical species across the membrane. Upon ligand binding, binding proteins undergo a large conformational change, which is the basis for converting these proteins into optical biosensors. METHODS The GBP biosensor was prepared by attaching a polarity-sensitive fluorescent probe to a single cysteine mutation at a site on the protein that is allosterically responsive to glucose binding. The fluorescence response of the resulting sensor was validated against high-performance anion-exchange chromatography (HPAEC) with pulsed electrochemical detection. Finally, a simple fluorescence reader was built using a lifetime-assisted ratiometric technique. RESULTS The GBP assay has a linear range of quantification of 0.100-2.00 microM and a sensitivity of 0.164 microM(-1) under the specified experimental conditions. The comparison between GBP and HPAEC readings for nine blind samples indicates that there is no statistical difference between the analytical results of the two methods at the 95% confidence level. Although the methods of fluorescence detection are based on different principles, the response of the homemade device to glucose concentrations was comparable to the response of the larger and more expensive tabletop fluorescence spectrophotometer. CONCLUSIONS A glucose binding protein labeled with a polarity-sensitive probe can be used for measuring micromolar amounts of glucose. Using a lifetime-assisted ratiometric technique, a low-cost GBP-based micromolar glucose monitor could be built.
Collapse
Affiliation(s)
- Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Hung Lam
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Swati J. Modi
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - William R. LaCourse
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
32
|
Tian Y, Cuneo MJ, Changela A, Höcker B, Beese LS, Hellinga HW. Structure-based design of robust glucose biosensors using a Thermotoga maritima periplasmic glucose-binding protein. Protein Sci 2007; 16:2240-50. [PMID: 17766373 PMCID: PMC2204141 DOI: 10.1110/ps.072969407] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the design and engineering of a robust, reagentless fluorescent glucose biosensor based on the periplasmic glucose-binding protein obtained from Thermotoga maritima (tmGBP). The gene for this protein was cloned from genomic DNA and overexpressed in Escherichia coli, the identity of its cognate sugar was confirmed, ligand binding was studied, and the structure of its glucose complex was solved to 1.7 Angstrom resolution by X-ray crystallography. TmGBP is specific for glucose and exhibits high thermostability (midpoint of thermal denaturation is 119 +/- 1 degrees C and 144 +/- 2 degrees C in the absence and presence of 1 mM glucose, respectively). A series of fluorescent conjugates was constructed by coupling single, environmentally sensitive fluorophores to unique cysteines introduced by site-specific mutagenesis at positions predicted to be responsive to ligand-induced conformational changes based on the structure. These conjugates were screened to identify engineered tmGBPs that function as reagentless fluorescent glucose biosensors. The Y13C*Cy5 conjugate is bright, gives a large response to glucose over concentration ranges appropriate for in vivo monitoring of blood glucose levels (1-30 mM), and can be immobilized in an orientation-specific manner in microtiter plates to give a reversible response to glucose. The immobilized protein retains its response after long-term storage at room temperature.
Collapse
Affiliation(s)
- Yaji Tian
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
33
|
Messina TC, Talaga DS. Protein free energy landscapes remodeled by ligand binding. Biophys J 2007; 93:579-85. [PMID: 17483166 PMCID: PMC1896242 DOI: 10.1529/biophysj.107.103911] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 03/08/2007] [Indexed: 11/18/2022] Open
Abstract
Glucose/galactose binding protein (GGBP) functions in two different larger systems of proteins used by enteric bacteria for molecular recognition and signaling. Here we report on the thermodynamics of conformational equilibrium distributions of GGBP. Three fluorescence components appear at zero glucose concentration and systematically transition to three components at high glucose concentration. Fluorescence anisotropy correlations, fluorescent lifetimes, thermodynamics, computational structure minimization, and literature work were used to assign the three components as open, closed, and twisted conformations of the protein. The existence of three states at all glucose concentrations indicates that the protein continuously fluctuates about its conformational state space via thermally driven state transitions; glucose biases the populations by reorganizing the free energy profile. These results and their implications are discussed in terms of the two types of specific and nonspecific interactions GGBP has with cytoplasmic membrane proteins.
Collapse
Affiliation(s)
- Troy C Messina
- Department of Chemistry and Chemical Biology, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
34
|
Vercillo NC, Herald KJ, Fox JM, Der BS, Dattelbaum JD. Analysis of ligand binding to a ribose biosensor using site-directed mutagenesis and fluorescence spectroscopy. Protein Sci 2007; 16:362-8. [PMID: 17242374 PMCID: PMC2203328 DOI: 10.1110/ps.062595707] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Computational design of proteins with altered ligand specificity is an emerging method for the creation of new biosensing systems. In this work, we investigated the outcome of site-directed mutagenesis on the Escherichia coli ribose binding protein (RBP), which is frequently used as a design scaffold for computational searches. A ribose biosensor was first constructed whereby an environmentally sensitive fluorescent probe was covalently attached to RBP at position S265C. This protein conjugate displayed a 54% decrease in emission intensity upon the addition of saturating ribose concentrations and exhibited an apparent dissociation constant (K(d) ) of 3.4 microM. Site-directed mutants within the RBP binding pocket were created and examined for ribose binding ability and overall structural stability. Because as many as 12 mutations are needed to alter ligand specificity in RBP, we measured the effect of single and multiple alanine mutations on stability and signal transduction potential of the ribose biosensor. Single alanine mutations had significant impact on both stability and signaling. Mutations of N190A and F214A each produced melting temperatures >8 degrees C below those observed for the wild-type protein. Residue Q235, located in the hinge region of RBP, appeared to be a hot spot for global protein stability as well. Additional single alanine mutations demonstrated as much as 200-fold increase in apparent K(d) but retained overall protein stability. The data collected from this study may be incorporated into design algorithms to help create more stable biosensors and optimize signal transduction properties for a variety of important analytes.
Collapse
Affiliation(s)
- Natalie C Vercillo
- Department of Chemistry, University of Richmond, Gottwald Center for Sciences, Richmond, Virginia 23173, USA
| | | | | | | | | |
Collapse
|