1
|
Zheng C, Zhang C, He Y, Lin S, Zhu Z, Wang H, Chen G. Cbfβ: A key regulator in skeletal stem cell differentiation, bone development, and disease. FASEB J 2025; 39:e70399. [PMID: 39996474 DOI: 10.1096/fj.202500030r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
The skeletal system comprises closely related yet functionally distinct bone and cartilage tissues, regulated by a complex network of transcriptional factors and signaling molecules. Among these, core-binding factor subunit beta (Cbfβ) emerges as a critical co-transcriptional factor that stabilizes Runx proteins, playing indispensable roles in skeletal development and homeostasis. Emerging evidence from genetic mouse models has highlighted the essential role of Cbfβ in directing the lineage commitment of mesenchymal stem cells (MSCs) and their differentiation into osteoblasts and chondrocytes. Notably, Cbfβ deficiency is strongly associated with severe skeletal dysplasia, affecting both endochondral and intramembranous ossification during embryonic and postnatal development. In this review, we synthesize recent advancements in understanding the structural and molecular functions of Cbfβ, with a particular focus on its interactions with key signaling pathways, including BMP/TGF-β, Wnt/β-catenin, Hippo/YAP, and IHH/PTHrP. These pathways converge on the Cbfβ/RUNX2 complex, which orchestrates a gene expression program essential for osteogenesis, bone formation, and cartilage development. The integration of these signaling networks ensures the precise regulation of skeletal development, remodeling, and repair. Furthermore, the successful local delivery of Cbfβ to address bone abnormalities underscores its potential as a novel therapeutic target for skeletal disorders such as cleidocranial dysplasia, osteoarthritis, and bone metastases. By elucidating the molecular mechanisms underlying Cbfβ function and its interactions with key signaling pathways, these insights not only advance our understanding of skeletal biology but also offer promising avenues for clinical intervention, ultimately improving outcomes for patients with skeletal disorders.
Collapse
Affiliation(s)
- Chenggong Zheng
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenyang Zhang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yiliang He
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenya Zhu
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Haidong Wang
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Tahirov TH, Bushweller J. Structure and Biophysics of CBFβ/RUNX and Its Translocation Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:21-31. [PMID: 28299648 DOI: 10.1007/978-981-10-3233-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
3
|
Corradini BR, Iamashita P, Tampellini E, Farfel JM, Grinberg LT, Moreira-Filho CA. Complex network-driven view of genomic mechanisms underlying Parkinson's disease: analyses in dorsal motor vagal nucleus, locus coeruleus, and substantia nigra. BIOMED RESEARCH INTERNATIONAL 2014; 2014:543673. [PMID: 25525598 PMCID: PMC4261556 DOI: 10.1155/2014/543673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/15/2014] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD)—classically characterized by severe loss of dopaminergic neurons in the substantia nigra pars compacta—has a caudal-rostral progression, beginning in the dorsal motor vagal nucleus and, in a less extent, in the olfactory system, progressing to the midbrain and eventually to the basal forebrain and the neocortex. About 90% of the cases are idiopathic. To study the molecular mechanisms involved in idiopathic PD we conducted a comparative study of transcriptional interaction networks in the dorsal motor vagal nucleus (VA), locus coeruleus (LC), and substantia nigra (SN) of idiopathic PD in Braak stages 4-5 (PD) and disease-free controls (CT) using postmortem samples. Gene coexpression networks (GCNs) for each brain region (patients and controls) were obtained to identify highly connected relevant genes (hubs) and densely interconnected gene sets (modules). GCN analyses showed differences in topology and module composition between CT and PD networks for each anatomic region. In CT networks, VA, LC, and SN hub modules are predominantly associated with neuroprotection and homeostasis in the ageing brain, whereas in the patient's group, for the three brain regions, hub modules are mostly related to stress response and neuron survival/degeneration mechanisms.
Collapse
Affiliation(s)
- Beatriz Raposo Corradini
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| | - Edilaine Tampellini
- Brazilian Aging Brain Study Group (BEHEEC), LIM 22, FMUSP, 01246-903 São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil
| | - José Marcelo Farfel
- Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil
- Division of Geriatrics, FMUSP, 01246-903 São Paulo, SP, Brazil
| | - Lea Tenenholz Grinberg
- Brazilian Aging Brain Study Group (BEHEEC), LIM 22, FMUSP, 01246-903 São Paulo, SP, Brazil
- Department of Pathology, FMUSP, 01246-903 São Paulo, SP, Brazil
- Department of Neurology and Pathology, University of California, San Francisco, CA 94143, USA
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| |
Collapse
|
4
|
Lee J, Goodey NM. Catalytic contributions from remote regions of enzyme structure. Chem Rev 2011; 111:7595-624. [PMID: 21923192 DOI: 10.1021/cr100042n] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 413 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
5
|
Multi-Timescale Dynamics Study of FKBP12 Along the Rapamycin–mTOR Binding Coordinate. J Mol Biol 2011; 405:378-94. [DOI: 10.1016/j.jmb.2010.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/12/2010] [Accepted: 10/20/2010] [Indexed: 01/11/2023]
|
6
|
|
7
|
Abstract
The phenomenon of intra-protein communication is fundamental to such processes as allostery and signaling, yet comparatively little is understood about its physical origins despite notable progress in recent years. This review introduces contemporary but distinct frameworks for understanding intra-protein communication by presenting both the ideas behind them and a discussion of their successes and shortcomings. The first framework holds that intra-protein communication is accomplished by the sequential mechanical linkage of residues spanning a gap between distal sites. According to the second framework, proteins are best viewed as ensembles of distinct structural microstates, the dynamical and thermodynamic properties of which contribute to the experimentally observable macroscale properties. Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying intra-protein communication, and the insights into both frameworks it provides are presented through a discussion of numerous examples from the literature. Distinct from mechanical and thermodynamic considerations of intra-protein communication are recently applied graph and network theoretic analyses. These computational methods reduce complex three dimensional protein architectures to simple maps comprised of nodes (residues) connected by edges (inter-residue "interactions"). Analysis of these graphs yields a characterization of the protein's topology and network characteristics. These methods have shown proteins to be "small world" networks with moderately high local residue connectivities existing concurrently with a small but significant number of long range connectivities. However, experimental studies of the tantalizing idea that these putative long range interaction pathways facilitate one or several macroscopic protein characteristics are unfortunately lacking at present. This review concludes by comparing and contrasting the presented frameworks and methodologies for studying intra-protein communication and suggests a manner in which they can be brought to bear simultaneously to further enhance our understanding of this important fundamental phenomenon.
Collapse
Affiliation(s)
- Matthew J Whitley
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
8
|
Roudaia L, Cheney MD, Manuylova E, Chen W, Morrow M, Park S, Lee CT, Kaur P, Williams O, Bushweller JH, Speck NA. CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood 2009; 113:3070-9. [PMID: 19179469 PMCID: PMC2662647 DOI: 10.1182/blood-2008-03-147207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 01/11/2009] [Indexed: 01/29/2023] Open
Abstract
AML1-ETO and TEL-AML1 are chimeric proteins resulting from the t(8;21)(q22;q22) in acute myeloid leukemia, and the t(12;21)(p13;q22) in pre-B-cell leukemia, respectively. The Runt domain of AML1 in both proteins mediates DNA binding and heterodimerization with the core binding factor beta (CBFbeta) subunit. To determine whether CBFbeta is required for AML1-ETO and TEL-AML1 activity, we introduced amino acid substitutions into the Runt domain that disrupt heterodimerization with CBFbeta but not DNA binding. We show that CBFbeta contributes to AML1-ETO's inhibition of granulocyte differentiation, is essential for its ability to enhance the clonogenic potential of primary mouse bone marrow cells, and is indispensable for its cooperativity with the activated receptor tyrosine kinase TEL-PDGFbetaR in generating acute myeloid leukemia in mice. Similarly, CBFbeta is essential for TEL-AML1's ability to promote self-renewal of B cell precursors in vitro. These studies validate the Runt domain/CBFbeta interaction as a therapeutic target in core binding factor leukemias.
Collapse
Affiliation(s)
- Liya Roudaia
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pettigrew DW. Amino acid substitutions in the sugar kinase/hsp70/actin superfamily conserved ATPase core of E. coli glycerol kinase modulate allosteric ligand affinity but do not alter allosteric coupling. Arch Biochem Biophys 2009; 481:151-6. [PMID: 19056335 PMCID: PMC2660850 DOI: 10.1016/j.abb.2008.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/13/2008] [Accepted: 11/16/2008] [Indexed: 11/23/2022]
Abstract
IIA(Glc), the glucose-specific phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system, is an allosteric inhibitor of Escherichia coli glycerol kinase. A linked-functions initial-velocity enzyme kinetics approach is used to define the MgATP-IIA(Glc) heterotropic allosteric interaction. The interaction is measured by the allosteric coupling constants Q and W, which describe the mutual effect of the ligands on binding affinity and the effect of the allosteric ligand on V(max), respectively. Allosteric interactions between these ligands display K-type activation and V-type inhibition. The allosteric coupling constant Q is about 3, showing cooperative coupling such that each ligand increases the affinity for binding of the other. The allosteric coupling constant W is about 0.1, showing that the allosteric inhibition is partial such that binding of IIA(Glc) at saturation does not reduce V(max) to zero. E. coli glycerol kinase is a member of the sugar kinase/heat shock protein 70/actin superfamily, and an element of the superfamily conserved ATPase catalytic core was identified as part of the IIA(Glc) inhibition network because it is required to transplant IIA(Glc) allosteric control into a non-allosteric glycerol kinase [A.C. Pawlyk, D.W. Pettigrew, Proc. Natl. Acad. Sci. USA 99 (2002) 11115-11120]. Two of the amino acids at this locus of E. coli glycerol kinase are replaced with those from the non-allosteric enzyme to enable determination of its contributions to MgATP-IIA(Glc) allosteric coupling. The substitutions reduce the affinity for IIA(Glc) by about 5-fold without changing significantly the allosteric coupling constants Q and W. The insensitivity of the allosteric coupling constants to the substitutions may indicate that the allosteric network is robust or the locus is not an element of that network. These possibilities may arise from differences of E. coli glycerol kinase relative to other superfamily members with respect to oligomeric structure and location of the allosteric site in a single domain far from the catalytic site.
Collapse
Affiliation(s)
- Donald W Pettigrew
- Department of Biochemistry & Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA.
| |
Collapse
|
10
|
Whitley MJ, Zhang J, Lee AL. Hydrophobic core mutations in CI2 globally perturb fast side-chain dynamics similarly without regard to position. Biochemistry 2008; 47:8566-76. [PMID: 18656953 PMCID: PMC2661030 DOI: 10.1021/bi8007966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein dynamics is currently an area of intense research because of its importance as complementary information to the huge quantity of available data relating protein structure and function. Because it is usually the influence of dynamics on function that is studied, the physical determinants of the distribution of flexibility in proteins have not been explored as thoroughly. In the present NMR study, an expanded suite of five (2)H relaxation experiments was used to characterize the picosecond-to-nanosecond side-chain dynamics of chymotrypsin inhibitor 2 (CI2) and five hydrophobic core mutants, some of which are members of the folding nucleus. Because CI2 is a homologue of the serine protease inhibitor eglin c, which has already been extensively characterized in terms of its dynamics, it was possible to compare not only side-chain dynamics but also the responses of these dynamics to analogous mutations. Remarkably, each of the five core mutations in CI2 led to similar and reproducible increases in side-chain flexibility throughout the entire structure. Although the expanded suite of (2)H relaxation experiments does not affect model selection for the vast majority of residues, it did enable the detection of increasing levels of nanosecond-scale motions in CI2's reactive site binding loop as the L68 side chain was progressively shortened by mutation. Collectively, we observed that the CI2 mutants are more dynamically similar to each other than to the more rigid wild-type CI2, from which we propose that wild-type CI2 has been optimized to a specific level of rigidity which may aid in its function as a serine protease inhibitor. We also observed that the pattern of side-chain dynamics of CI2 is quantitatively similar to eglin c, but that this similarity is lost upon mutating both proteins at an equivalent position. Finally, (15)N relaxation was used to characterize the backbone dynamics of wild-type and mutant CI2. Interestingly, mutation at folding nucleus positions led to widespread increases in backbone flexibility, whereas non-folding-nucleus positions led to increases in flexibility in the C-terminal half of the protein only.
Collapse
Affiliation(s)
- Matthew J Whitley
- Department of Biochemistry & Biophysics, School of Medicine, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
11
|
Goodey NM, Benkovic SJ. Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 2008; 4:474-82. [PMID: 18641628 DOI: 10.1038/nchembio.98] [Citation(s) in RCA: 536] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allosteric regulation of protein function is a mechanism by which an event in one place of a protein structure causes an effect at another site, much like the behavior of a telecommunications network in which a collection of transmitters, receivers and transceivers communicate with each other across long distances. For example, ligand binding or an amino acid mutation at an allosteric site can alter enzymatic activity or binding affinity in a distal region such as the active site or a second binding site. The mechanism of this site-to-site communication is of great interest, especially since allosteric effects must be considered in drug design and protein engineering. In this review, conformational mobility as the common route between allosteric regulation and catalysis is discussed. We summarize recent experimental data and the resulting insights into allostery within proteins, and we discuss the nature of future studies and the new applications that may result from increased understanding of this regulatory mechanism.
Collapse
Affiliation(s)
- Nina M Goodey
- Montclair State University, Department of Chemistry and Biochemistry, 1 Normal Avenue, Montclair, New Jersey 07043, USA
| | | |
Collapse
|
12
|
Sullivan JC, Sher D, Eisenstein M, Shigesada K, Reitzel AM, Marlow H, Levanon D, Groner Y, Finnerty JR, Gat U. The evolutionary origin of the Runx/CBFbeta transcription factors--studies of the most basal metazoans. BMC Evol Biol 2008; 8:228. [PMID: 18681949 PMCID: PMC2527000 DOI: 10.1186/1471-2148-8-228] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/05/2008] [Indexed: 11/17/2022] Open
Abstract
Background Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFβ, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. Results In this study, we detect and characterize the hitherto unexplored Runx/CBFβ genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFβ-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFβ dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFβ are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. Conclusion These results reveal that Runx and CBFβ likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFβ-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians.
Collapse
Affiliation(s)
- James C Sullivan
- Department of Biology, Boston University, 5 Cummington St, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|