1
|
Manenica M, Bertoša B. Molecular basis of protein-DNA interactions between Halalkalibacterium halodurans MntR and its DNA operator sequence. Int J Biol Macromol 2025; 311:142937. [PMID: 40216114 DOI: 10.1016/j.ijbiomac.2025.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 05/03/2025]
Abstract
Transition metals such as iron, zinc and manganese are essential for bacterial survival. A pivotal role in regulation of manganese homeostasis in bacterium Halalkalibacterium halodurans has MntR protein (HhMntR). In this work, molecular dynamics simulations of holoprotein (with Mn2+) and apoprotein (without Mn2+) HhMntR in complex with DNA mntA operator were conducted and enabled understanding of interaction between HhMntR and DNA on molecular level. Molecular mechanism through which affinity of HhMntR towards DNA is increased upon Mn2+ binding was revealed. Holoprotein binds DNA through stable and consistent noncovalent interactions, while apoprotein shows highly dynamic behavior, attaching to and detaching from the DNA backbone and inner grooves on a nanosecond time scale. The same observations are seen even during the simulations that started with protein and DNA separated from the complex. Additionally, key amino acids involved in the formation of the HhMntR-DNA complex were identified, leading to the proposal of a molecular framework that allows HhMntR to perform its biological function as a transcription factor. Overall, observed behaviors promote the lateral movement of HhMntR along the DNA sequence, enabling the protein to remain close to the DNA while it seeks out specific base pairs for strong binding upon activation by Mn2+.
Collapse
Affiliation(s)
- Martina Manenica
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Shi H, Fu Y, Kodyte V, Andreas A, Sachla AJ, Miller K, Shrestha R, Helmann JD, Glasfeld A, Ahuja S. Structural basis for transcription activation through cooperative recruitment of MntR. Nat Commun 2025; 16:2204. [PMID: 40044701 PMCID: PMC11882963 DOI: 10.1038/s41467-025-57412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Bacillus subtilis MntR is a dual regulatory protein that responds to heightened Mn2+ availability in the cell by both repressing the expression of uptake transporters and activating the expression of efflux proteins. Recent work indicates that, in its role as an activator, MntR binds several sites upstream of the genes encoding Mn2+ exporters, leading to a cooperative response to manganese. Here, we use cryo-EM to explore the molecular basis of gene activation by MntR and report a structure of four MntR dimers bound to four 18-base pair sites across an 84-base pair regulatory region of the mneP promoter. Our structures, along with solution studies including mass photometry and in vivo transcription assays, reveal that MntR dimers employ polar and non-polar contacts to bind cooperatively to an array of low-affinity DNA-binding sites. These results reveal the molecular basis for cooperativity in the activation of manganese efflux.
Collapse
Affiliation(s)
- Haoyuan Shi
- Department of Chemistry, Reed College, Portland, Oregon, USA
| | - Yu Fu
- Department of Chemistry, Reed College, Portland, Oregon, USA
| | - Vilmante Kodyte
- Department of Chemistry, Reed College, Portland, Oregon, USA
| | - Amelie Andreas
- Department of Chemistry, Reed College, Portland, Oregon, USA
| | - Ankita J Sachla
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | | | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Arthur Glasfeld
- Department of Chemistry, Reed College, Portland, Oregon, USA
| | - Shivani Ahuja
- Department of Chemistry, Reed College, Portland, Oregon, USA.
| |
Collapse
|
3
|
Shi H, Fu Y, Kodyte V, Andreas A, Sachla AJ, Miller K, Shrestha R, Helmann JD, Glasfeld A, Ahuja S. Structural basis for transcription activation through cooperative recruitment of MntR. RESEARCH SQUARE 2024:rs.3.rs-4657015. [PMID: 39070638 PMCID: PMC11275975 DOI: 10.21203/rs.3.rs-4657015/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The manganese transport regulator (MntR) from B. subtilis is a dual regulatory protein that responds to heightened Mn2+ availability in the cell by both repressing the expression of uptake transporters and activating the expression of efflux proteins. Recent work indicates that, in its role as an activator, MntR binds several sites upstream of the genes encoding Mn2+ exporters, leading to a cooperative response to manganese. Here, we use cryo-EM to explore the molecular basis of gene activation by MntR and report a structure of four MntR dimers bound to four 18-base pair sites across an 84-base pair regulatory region of the mneP promoter. Our structures, along with solution studies including mass photometry and in vivo transcription assays, reveal that MntR dimers employ polar and non-polar contacts to bind cooperatively to an array of low-affinity DNA-binding sites. These results reveal the molecular basis for cooperativity in the activation of manganese efflux.
Collapse
Affiliation(s)
- Haoyuan Shi
- Department of Chemistry, Reed College, Portland, Oregon 97202, USA
- Current address: Department of Chemical Pharmacology & Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Yu Fu
- Department of Chemistry, Reed College, Portland, Oregon 97202, USA
- Current address: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Vilmante Kodyte
- Department of Chemistry, Reed College, Portland, Oregon 97202, USA
| | - Amelie Andreas
- Department of Chemistry, Reed College, Portland, Oregon 97202, USA
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101
| | - Keiki Miller
- Department of Chemistry, Reed College, Portland, Oregon 97202, USA
| | | | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101
| | - Arthur Glasfeld
- Department of Chemistry, Reed College, Portland, Oregon 97202, USA
| | - Shivani Ahuja
- Department of Chemistry, Reed College, Portland, Oregon 97202, USA
| |
Collapse
|
4
|
Shi H, Fu Y, Kodyte V, Andreas A, Sachla AJ, Miller K, Shrestha R, Helmann JD, Glasfeld A, Ahuja S. Structural basis for transcription activation through cooperative recruitment of MntR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601288. [PMID: 38979284 PMCID: PMC11230367 DOI: 10.1101/2024.06.28.601288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The manganese transport regulator (MntR) from B. subtilis is a dual regulatory protein that responds to heightened Mn 2+ availability in the cell by both repressing the expression of uptake transporters and activating the expression of efflux proteins. Recent work indicates that, in its role as an activator, MntR binds several sites upstream of the genes encoding Mn 2+ exporters, leading to a cooperative response to manganese. Here, we use cryo-EM to explore the molecular basis of gene activation by MntR and report a structure of four MntR dimers bound to four 18-base pair sites across an 84-base pair regulatory region of the mneP promoter. Our structures, along with solution studies including mass photometry and in vivo transcription assays, reveal that MntR dimers employ polar and non-polar contacts to bind cooperatively to an array of low-affinity DNA-binding sites. These results reveal the molecular basis for cooperativity in the activation of manganese efflux.
Collapse
|
5
|
Kožić M, Bertoša B. Trajectory maps: molecular dynamics visualization and analysis. NAR Genom Bioinform 2024; 6:lqad114. [PMID: 38226394 PMCID: PMC10789246 DOI: 10.1093/nargab/lqad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Molecular dynamics simulations generate trajectories that depict system's evolution in time and are analyzed visually and quantitatively. Commonly conducted analyses include RMSD, Rgyr, RMSF, and more. However, those methods are all limited by their strictly statistical nature. Here we present trajectory maps, a novel method to analyze and visualize protein simulation courses intuitively and conclusively. By plotting protein's backbone movements during the simulation as a heatmap, trajectory maps provide new tools to directly visualize protein behavior over time, compare multiple simulations, and complement established methods. A user-friendly Python application developed for this purpose is presented, alongside detailed documentation for easy usage and implementation. The method's validation is demonstrated on three case studies. Considering its benefits, trajectory maps are expected to adopt broad application in obtaining and communicating meaningful results of protein molecular dynamics simulations in many associated fields such as biochemistry, structural biology, pharmaceutical research etc.
Collapse
Affiliation(s)
- Matej Kožić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
6
|
Knez AM, Manenica M, Jelić Matošević Z, Bertoša B. Allosteric mechanism of MntR transcription factor from alkalophilic bacterium Halalkalibacterium halodurans. J Biomol Struct Dyn 2024:1-15. [PMID: 38345054 DOI: 10.1080/07391102.2024.2314265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/28/2024] [Indexed: 03/11/2025]
Abstract
Bacterium Halalkalibacterium halodurans is an industrially important alkalophilic bacteria. It is recognized as a producer of enzymes such as β-galactosidase, xylanase, amylase and protease which are able to function at higher pH values and thus can be used in textile, food, paper industry and more. This bacterium, as any other bacterium, requires a sensitive mechanism for regulation of homeostasis of manganese ions (Mn2+) in order to survive. The key protein regulating this mechanism in H. halodurans is MntR - a transcriptional factor that binds to DNA and regulates the transcription of genes for proteins involved in manganese homeostasis. Long range all-atom molecular dynamics (MD) simulations, from 500 ns up to 1.25 µs, were used to study different forms of H. halodurans MntR in order to investigate the differences in the protein's structural and dynamical properties upon Mn2+ binding. Simulations revealed an allosteric mechanism which is activated by Mn2+ binding. The results of simulations show that Mn2+ binding alters the non-covalent interaction network of the protein structure which leads to a conformational change that primarily affects the positions of the DNA binding domains and, consequently, the DNA binding affinity of H. halodurans MntR. The key amino acid residues of the proposed mechanism were identified and their role in the proposed mechanism was computationally confirmed by MD simulations of in silico mutants.
Collapse
Affiliation(s)
- Ana Marija Knez
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Martina Manenica
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zoe Jelić Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Wright Z, Seymour M, Paszczak K, Truttmann T, Senn K, Stilp S, Jansen N, Gosz M, Goeden L, Anantharaman V, Aravind L, Waters LS. The small protein MntS evolved from a signal peptide and acquired a novel function regulating manganese homeostasis in Escherichia coli. Mol Microbiol 2024; 121:152-166. [PMID: 38104967 PMCID: PMC10842292 DOI: 10.1111/mmi.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Small proteins (<50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance, are poorly understood. Here, we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene neighborhoods support that MntS evolved from the signal peptide of an ancestral SitA protein, acquiring a life of its own with a distinct function in Mn homeostasis.
Collapse
Affiliation(s)
- Zachary Wright
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Mackenzie Seymour
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Kalista Paszczak
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Taylor Truttmann
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Katherine Senn
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Samuel Stilp
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Nickolas Jansen
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Magdalyn Gosz
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Lindsay Goeden
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Lauren S. Waters
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| |
Collapse
|
8
|
Wright Z, Seymour M, Paszczak K, Truttmann T, Senn K, Stilp S, Jansen N, Gosz M, Goeden L, Anantharaman V, Aravind L, Waters LS. The small protein MntS evolved from a signal peptide and acquired a novel function regulating manganese homeostasis in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543501. [PMID: 37398132 PMCID: PMC10312517 DOI: 10.1101/2023.06.02.543501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Small proteins (< 50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance are poorly understood. Here we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments, but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene-neighborhoods support that MntS evolved from an ancestral SitA, acquiring a life of its own with a distinct function in Mn homeostasis. Significance This study demonstrates that the MntS small protein binds and inhibits the MntP Mn exporter, adding another layer to the complex regulation of Mn homeostasis. MntS also interacts with itself in cells with Mn, which could prevent it from regulating MntP. We propose that MntS and other small proteins might sense environmental signals and shut off their own regulation via binding to ligands (e.g., metals) or other proteins. We also provide evidence that MntS evolved from the signal peptide region of the Mn importer, SitA. Homologous SitA signal peptides can recapitulate MntS activities, showing that they have a second function beyond protein secretion. Overall, we establish that small proteins can emerge and develop novel functionalities from gene remnants.
Collapse
|
9
|
Ha N, Lee EJ. Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium. J Microbiol 2023; 61:289-296. [PMID: 36862278 DOI: 10.1007/s12275-023-00027-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+-dependent riboswitch in its 5' UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcriptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.
Collapse
Affiliation(s)
- Nakyeong Ha
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Jelić Matošević Z, Radman K, Loubser J, Crnolatac I, Piantanida I, Cukrowski I, Ašler IL, Bertoša B. Structural Dynamics of the Bacillus subtilis MntR Transcription Factor Is Locked by Mn 2+ Binding. Int J Mol Sci 2023; 24:ijms24020957. [PMID: 36674477 PMCID: PMC9861239 DOI: 10.3390/ijms24020957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Manganese (II) ions are essential for a variety of bacterial cellular processes. The transcription factor MntR is a metallosensor that regulates Mn2+ ion homeostasis in the bacterium Bacillus subtilis. Its DNA-binding affinity is increased by Mn2+ ion binding, allowing it to act as a transcriptional repressor of manganese import systems. Although experimentally well-researched, the molecular mechanism that regulates this process is still a puzzle. Computational simulations supported by circular dichroism (CD), differential scanning calorimetry (DSC) and native gel electrophoresis (native-PAGE) experiments were employed to study MntR structural and dynamical properties in the presence and absence of Mn2+ ions. The results of molecular dynamics (MD) simulations revealed that Mn2+ ion binding reduces the structural dynamics of the MntR protein and shifts the dynamic equilibrium towards the conformations adequate for DNA binding. Results of CD and DSC measurements support the computational results showing the change in helical content and stability of the MntR protein upon Mn2+ ion binding. Further, MD simulations show that Mn2+ binding induces polarization of the protein electrostatic potential, increasing the positive electrostatic potential of the DNA-binding helices in particular. In order to provide a deeper understanding of the changes in protein structure and dynamics due to Mn2+ binding, a mutant in which Mn2+ binding is mimicked by a cysteine bridge was constructed and also studied computationally and experimentally.
Collapse
Affiliation(s)
- Zoe Jelić Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Katarina Radman
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Jolene Loubser
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Ivo Crnolatac
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Ignacy Cukrowski
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-132
| |
Collapse
|
11
|
Baksh KA, Zamble DB. Allosteric control of metal-responsive transcriptional regulators in bacteria. J Biol Chem 2020; 295:1673-1684. [PMID: 31857375 PMCID: PMC7008368 DOI: 10.1074/jbc.rev119.011444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many transition metals are essential trace nutrients for living organisms, but they are also cytotoxic in high concentrations. Bacteria maintain the delicate balance between metal starvation and toxicity through a complex network of metal homeostasis pathways. These systems are coordinated by the activities of metal-responsive transcription factors-also known as metal-sensor proteins or metalloregulators-that are tuned to sense the bioavailability of specific metals in the cell in order to regulate the expression of genes encoding proteins that contribute to metal homeostasis. Metal binding to a metalloregulator allosterically influences its ability to bind specific DNA sequences through a variety of intricate mechanisms that lie on a continuum between large conformational changes and subtle changes in internal dynamics. This review summarizes recent advances in our understanding of how metal sensor proteins respond to intracellular metal concentrations. In particular, we highlight the allosteric mechanisms used for metal-responsive regulation of several prokaryotic single-component metalloregulators, and we briefly discuss current open questions of how metalloregulators function in bacterial cells. Understanding the regulation and function of metal-responsive transcription factors is a fundamental aspect of metallobiochemistry and is important for gaining insights into bacterial growth and virulence.
Collapse
Affiliation(s)
- Karina A Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deborah B Zamble
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
12
|
Lee MY, Lee DW, Joo HK, Jeong KH, Lee JY. Structural analysis of the manganese transport regulator MntR from Bacillus halodurans in apo and manganese bound forms. PLoS One 2019; 14:e0224689. [PMID: 31738781 PMCID: PMC6860424 DOI: 10.1371/journal.pone.0224689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 01/05/2023] Open
Abstract
The manganese transport regulator MntR is a metal-ion activated transcriptional repressor of manganese transporter genes to maintain manganese ion homeostasis. MntR, a member of the diphtheria toxin repressor (DtxR) family of metalloregulators, selectively responds to Mn2+ and Cd2+ over Fe2+, Co2+ and Zn2+. The DtxR/MntR family members are well conserved transcriptional repressors that regulate the expression of metal ion uptake genes by sensing the metal ion concentration. MntR functions as a homo-dimer with one metal ion binding site per subunit. Each MntR subunit contains two domains: an N-terminal DNA binding domain, and a C-terminal dimerization domain. However, it lacks the C-terminal SH3-like domain of DtxR/IdeR. The metal ion binding site of MntR is located at the interface of the two domains, whereas the DtxR/IdeR subunit contains two metal ion binding sites, the primary and ancillary sites, separated by 9 Å. In this paper, we reported the crystal structures of the apo and Mn2+-bound forms of MntR from Bacillus halodurans, and analyze the structural basis of the metal ion binding site. The crystal structure of the Mn2+-bound form is almost identical to the apo form of MntR. In the Mn2+-bound structure, one subunit contains a binuclear cluster of manganese ions, the A and C sites, but the other subunit forms a mononuclear complex. Structural data about MntR from B. halodurans supports the previous hypothesizes about manganese-specific activation mechanism of MntR homologues.
Collapse
Affiliation(s)
- Myeong Yeon Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Dong Won Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Kyu Joo
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kang Hwa Jeong
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
14
|
Metallochaperones and metalloregulation in bacteria. Essays Biochem 2017; 61:177-200. [PMID: 28487396 DOI: 10.1042/ebc20160076] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Bacterial transition metal homoeostasis or simply 'metallostasis' describes the process by which cells control the intracellular availability of functionally required metal cofactors, from manganese (Mn) to zinc (Zn), avoiding both metal deprivation and toxicity. Metallostasis is an emerging aspect of the vertebrate host-pathogen interface that is defined by a 'tug-of-war' for biologically essential metals and provides the motivation for much recent work in this area. The host employs a number of strategies to starve the microbial pathogen of essential metals, while for others attempts to limit bacterial infections by leveraging highly competitive metals. Bacteria must be capable of adapting to these efforts to remodel the transition metal landscape and employ highly specialized metal sensing transcriptional regulators, termed metalloregulatory proteins,and metallochaperones, that allocate metals to specific destinations, to mediate this adaptive response. In this essay, we discuss recent progress in our understanding of the structural mechanisms and metal specificity of this adaptive response, focusing on energy-requiring metallochaperones that play roles in the metallocofactor active site assembly in metalloenzymes and metallosensors, which govern the systems-level response to metal limitation and intoxication.
Collapse
|
15
|
Zhang L, Butler CA, Khan HSG, Dashper SG, Seers CA, Veith PD, Zhang JG, Reynolds EC. Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue. PLoS One 2016; 11:e0151407. [PMID: 27007570 PMCID: PMC4805248 DOI: 10.1371/journal.pone.0151407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s) with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II) per monomer with an overall dissociation constant Kd 2.0 x 10(-11) M at pH 7.5. PgMntR also bound two Fe(II) with distinct binding affinities, Kd1 2.5 x 10(-10) M and Kd2 ≤ 6.0 x 10(-8) M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.
Collapse
Affiliation(s)
- Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine A. Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hasnah S. G. Khan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
16
|
Baumgart M, Frunzke J. The manganese-responsive regulator MntR represses transcription of a predicted ZIP family metal ion transporter in Corynebacterium glutamicum. FEMS Microbiol Lett 2014; 362:1-10. [PMID: 25790484 DOI: 10.1093/femsle/fnu001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Manganese is an important trace element required as an enzyme cofactor and for protection against oxidative stress. In this study, we characterized the DtxR-type transcriptional regulator MntR (cg0741) of Corynebacterium glutamicum ATCC 13032 as a manganese-dependent repressor of the predicted ZIP family metal transporter Cg1623. Comparative transcriptome analysis of a ΔmntR strain and the wild type led to the identification of cg1623 as potential target gene of MntR which was about 50-fold upregulated when cells were grown in glucose minimal medium. Using electrophoretic mobility shift assays, a conserved 18 bp inverted repeat (TGTTCAATGCGTTGAACA) was identified as binding motif of MntR in the cg1623 promoter and confirmed by mutational analysis. Promoter fusion of Pcg1623 to eyfp confirmed that the MntR-dependent repression is only abolished in the absence of manganese. However, neither deletion of mntR nor cg1623 resulted in a significant growth phenotype in comparison to the wild type--strongly suggesting the presence of further manganese uptake and efflux systems in C. glutamicum. The control of cg1623 by the DtxR-type regulator MntR represents the first example of a predicted ZIP family protein that is regulated in a manganese-dependent manner in bacteria.
Collapse
Affiliation(s)
- Meike Baumgart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
17
|
Helmann JD. Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis. J Biol Chem 2014; 289:28112-20. [PMID: 25160631 DOI: 10.1074/jbc.r114.587071] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metalloregulatory proteins allow cells to sense metal ions and appropriately adjust the expression of metal uptake, storage, and efflux pathways. Bacillus subtilis provides a model for the coordinate regulation of iron and manganese homeostasis that involves three key regulators: Fur senses iron sufficiency, MntR senses manganese sufficiency, and PerR senses the intracellular Fe/Mn ratio. Here, I review the structural and physiological bases of selective metal perception, the effects of non-cognate metals, and mechanisms that may serve to coordinate iron and manganese homeostasis.
Collapse
Affiliation(s)
- John D Helmann
- From the Department of Microbiology, Cornell University, Ithaca, New York 14853-8101
| |
Collapse
|
18
|
Pröpper K, Meindl K, Sammito M, Dittrich B, Sheldrick GM, Pohl E, Usón I. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1743-57. [PMID: 24914984 PMCID: PMC4051508 DOI: 10.1107/s1399004714007603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/04/2014] [Indexed: 11/11/2022]
Abstract
Protein-DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein-DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein-DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein-DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.
Collapse
Affiliation(s)
- Kevin Pröpper
- University of Göttingen, Germany
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Spain
| | - Kathrin Meindl
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Spain
| | - Massimo Sammito
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Spain
| | | | | | | | - Isabel Usón
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain
| |
Collapse
|
19
|
Lisher JP, Giedroc DP. Manganese acquisition and homeostasis at the host-pathogen interface. Front Cell Infect Microbiol 2013; 3:91. [PMID: 24367765 PMCID: PMC3851752 DOI: 10.3389/fcimb.2013.00091] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022] Open
Abstract
Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP) found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and is found in tissue abscesses at sites of infection by Staphylococcus aureus. In an adaptive response, bacteria have evolved systems to acquire the metals in the face of this competition while effluxing excess or toxic metals to maintain a bioavailability of transition metals that is consistent with a particular inorganic "fingerprint" under the prevailing conditions. This review highlights recent biological, chemical and structural studies focused on manganese (Mn) acquisition and homeostasis and connects this process to oxidative stress resistance and iron (Fe) availability that operates at the human host-pathogen interface.
Collapse
Affiliation(s)
- John P. Lisher
- Graduate Program in Biochemistry, Indiana UniversityBloomington, IN, USA
| | - David P. Giedroc
- Graduate Program in Biochemistry, Indiana UniversityBloomington, IN, USA
- Department of Chemistry, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
20
|
Lisher JP, Higgins KA, Maroney MJ, Giedroc DP. Physical characterization of the manganese-sensing pneumococcal surface antigen repressor from Streptococcus pneumoniae. Biochemistry 2013; 52:7689-701. [PMID: 24067066 DOI: 10.1021/bi401132w] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transition metals, including manganese, are required for the proper virulence and persistence of many pathogenic bacteria. In Streptococcus pneumoniae (Spn), manganese homeostasis is controlled by a high-affinity Mn(II) uptake complex, PsaBCA, and a constitutively expressed efflux transporter, MntE. psaBCA expression is transcriptionally regulated by the DtxR/MntR family metalloregulatory protein pneumococcal surface antigen repressor (PsaR) in Spn. Here, we present a comprehensive analysis of the metal and DNA binding properties of PsaR. PsaR is a homodimer in the absence and presence of metals and binds two manganese or zinc atoms per protomer (four per dimer) in two pairs of structurally distinct sites, termed site 1 and site 2. Site 1 is likely filled with Zn(II) in vivo (K(Zn1) ≥ 10¹³ M⁻¹; K(Mn1) ≈ 10⁸ M⁻¹). The Zn(II)-site 1 complex adopts a pentacoordinate geometry as determined by X-ray absorption spectroscopy containing a single cysteine and appears to be analogous to the Cd(II) site observed in Streptococcus gordonii ScaR. Site 1 is necessary but not sufficient for full positive allosteric activation of DNA operator binding by metals as measured by ΔGc, the allosteric coupling free energy, because site 1 mutants show an intermediate ΔGc. Site 2 is the primary regulatory site and governs specificity for Mn(II) over Zn(II) in PsaR, where ΔGc(Zn,Mn) >> ΔGc(Zn,Zn) despite the fact that Zn(II) binds site 2 with an affinity 40-fold higher than that of Mn(II); i.e., K(Zn2) > K(Mn2). Mutational studies reveal that Asp7 in site 2 is a critical ligand for Mn(II)-dependent allosteric activation of DNA binding. These findings are discussed in the context of other well-studied DtxR/MntR Mn(II)/Fe(II) metallorepressors.
Collapse
Affiliation(s)
- John P Lisher
- Department of Chemistry and ‡Interdisciplinary Graduate Program in Biochemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| | | | | | | |
Collapse
|
21
|
McGuire AM, Cuthbert BJ, Ma Z, Grauer-Gray KD, Brunjes Brophy M, Spear KA, Soonsanga S, Kliegman JI, Griner SL, Helmann JD, Glasfeld A. Roles of the A and C sites in the manganese-specific activation of MntR. Biochemistry 2013; 52:701-13. [PMID: 23298157 DOI: 10.1021/bi301550t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The manganese transport regulator (MntR) represses the expression of genes involved in manganese uptake in Bacillus subtilis. It selectively responds to Mn(2+) and Cd(2+) over other divalent metal cations, including Fe(2+), Co(2+), and Zn(2+). Previous work has shown that MntR forms binuclear complexes with Mn(2+) or Cd(2+) at two binding sites, labeled A and C, that are separated by 4.4 Å. Zinc activates MntR poorly and binds only to the A site, forming a mononuclear complex. The difference in metal binding stoichiometry suggested a mechanism for selectivity in MntR. Larger metal cations are strongly activating because they can form the binuclear complex, while smaller metal ions cannot bind with the geometry needed to fully occupy both metal binding sites. To investigate this hypothesis, structures of MntR in complex with two other noncognate metal ions, Fe(2+) and Co(2+), have been determined. Each metal forms a mononuclear complex with MntR with the metal ion bound in the A site, supporting the conclusions drawn from the Zn(2+) complex. Additionally, we investigated two site-specific mutants of MntR, E11K and H77A, that contain substitutions of metal binding residues in the A site. While metal binding in each mutant is significantly altered relative to that of wild-type MntR, both mutants retain activity and selectivity for Mn(2+) in vitro and in vivo. That observation, coupled with previous studies, suggests that the A and C sites both contribute to the selectivity of MntR.
Collapse
|
22
|
Abstract
The dramatic changes in the environmental conditions that organisms encountered during evolution and adaptation to life in specific niches, have influenced intracellular and extracellular metal ion contents and, as a consequence, the cellular ability to sense and utilize different metal ions. This metal-driven differentiation is reflected in the specific panels of metal-responsive transcriptional regulators found in different organisms, which finely tune the intracellular metal ion content and all metal-dependent processes. In order to understand the processes underlying this complex metal homeostasis network, the study of the molecular processes that determine the protein-metal ion recognition, as well as how this event is transduced into a transcriptional output, is necessary. This chapter describes how metal ion binding to specific proteins influences protein interaction with DNA and how this event can influence the fate of genetic expression, leading to specific transcriptional outputs. The features of representative metal-responsive transcriptional regulators, as well as the molecular basis of metal-protein and protein-DNA interactions, are discussed on the basis of the structural information available. An overview of the recent advances in the understanding of how these proteins choose specific metal ions among the intracellular metal ion pool, as well as how they allosterically respond to their effector binding, is given.
Collapse
|
23
|
Reyes-Caballero H, Campanello GC, Giedroc DP. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 2011; 156:103-14. [PMID: 21511390 DOI: 10.1016/j.bpc.2011.03.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 01/13/2023]
Abstract
Prokaryotic organisms have evolved the capacity to quickly adapt to a changing and challenging microenvironment in which the availability of both biologically required and non-essential transition metal ions can vary dramatically. In all bacteria, a panel of metalloregulatory proteins controls the expression of genes encoding membrane transporters and metal trafficking proteins that collectively manage metal homeostasis and resistance. These "metal sensors" are specialized allosteric proteins, in which the direct binding of a specific or small number of "cognate" metal ion(s) drives a conformational change in the regulator that allosterically activates or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby converting a poor promoter to a strong one. In this review, we discuss our current understanding of the features that control metal specificity of the allosteric response in these systems, and the role that structure, thermodynamics and conformational dynamics play in mediating allosteric activation or inhibition of DNA binding.
Collapse
|
24
|
Grossoehme NE, Giedroc DP. Energetics of allosteric negative coupling in the zinc sensor S. aureus CzrA. J Am Chem Soc 2010; 131:17860-70. [PMID: 19995076 DOI: 10.1021/ja906131b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The linked equilibria of an allosterically regulated protein are defined by the structures, residue-specific dynamics and global energetics of interconversion among all relevant allosteric states. Here, we use isothermal titration calorimetry (ITC) to probe the global thermodynamics of allosteric negative regulation of the binding of the paradigm ArsR-family zinc sensing repressor Staphylococcus aureus CzrA to the czr DNA operator (CzrO) by Zn(2+). Zn(2+) binds to the two identical binding sites on the free CzrA homodimer in two discernible steps. A larger entropic driving force Delta(-TDeltaS) of -4.7 kcal mol(-1) and a more negative DeltaC(p) characterize the binding of the first Zn(2+) relative to the second. These features suggest a modest structural transition in forming the Zn(1) state followed by a quenching of the internal dynamics on filling the second zinc site, which collectively drive homotropic negative cooperativity of Zn(2+) binding (Delta(DeltaG) = 1.8 kcal mol(-1)). Negative homotropic cooperativity also characterizes Zn(2+) binding to the CzrA*CzrO complex (Delta(DeltaG) = 1.3 kcal mol(-1)), although the underlying energetics are vastly different, with homotropic Delta(DeltaH) and Delta(-TDeltaS) values both small and slightly positive. In short, Zn(2+) binding to the complex fails to induce a large structural or dynamical change in the CzrA bound to the operator. The strong heterotropic negative linkage in this system (DeltaG(c)(t) = 6.3 kcal mol(-1)) therefore derives from the vastly different structures of the apo-CzrA and CzrA*CzrO reference states (DeltaH(c)(t) = 9.4 kcal mol(-1)) in a way that is reinforced by a global rigidification of the allosterically inhibited Zn(2) state off the DNA (TDeltaS(c)(t) = -3.1 kcal mol(-1), i.e., DeltaS(c)(t) > 0). The implications of these findings for other metalloregulatory proteins are discussed.
Collapse
|
25
|
Crystal structure of the manganese transport regulatory protein fromEscherichia coli. Proteins 2009; 77:741-6. [DOI: 10.1002/prot.22541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Stoll KE, Draper WE, Kliegman JI, Golynskiy MV, Brew-Appiah RAT, Phillips RK, Brown HK, Breyer WA, Jakubovics NS, Jenkinson HF, Brennan RG, Cohen SM, Glasfeld A. Characterization and structure of the manganese-responsive transcriptional regulator ScaR. Biochemistry 2009; 48:10308-20. [PMID: 19795834 PMCID: PMC3586275 DOI: 10.1021/bi900980g] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The streptococcal coaggregation regulator (ScaR) of Streptococcus gordonii is a manganese-dependent transcriptional regulator. When intracellular manganese concentrations become elevated, ScaR represses transcription of the scaCBA operon, which encodes a manganese uptake transporter. A member of the DtxR/MntR family of metalloregulators, ScaR shares sequence similarity with other family members, and many metal-binding residues are conserved. Here, we show that ScaR is an active dimer, with two dimers binding the 46 base pair scaC operator. Each ScaR subunit binds two manganese ions, and the protein is activated by a variety of other metal ions, including Cd(2+), Co(2+), and Ni(2+) but not Zn(2+). The crystal structure of apo-ScaR reveals a tertiary and quaternary structure similar to its homologue, the iron-responsive regulator DtxR. While each DtxR subunit binds a metal ion in two sites, labeled primary and ancillary, crystal structures of ScaR determined in the presence of Cd(2+) and Zn(2+) show only a single occupied metal-binding site that is novel to ScaR. The site analogous to the primary site in DtxR is unoccupied, and the ancillary site is absent from ScaR. Instead, metal ions bind to ScaR at a site labeled "secondary", which is composed of Glu80, Cys123, His125, and Asp160 and lies roughly 5 A away from where the ancillary site would be predicted to exist. This difference suggests that ScaR and its closely related homologues are activated by a mechanism distinct from that of either DtxR or MntR.
Collapse
Affiliation(s)
- Kate E. Stoll
- Department of Chemistry, Reed College, Portland, Oregon 97202
| | | | - Joseph I. Kliegman
- Department of Chemistry, Reed College, Portland, Oregon 97202
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0358
| | - Misha V. Golynskiy
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0358
| | | | - Rebecca K. Phillips
- Department of Chemistry, Reed College, Portland, Oregon 97202
- Department of Biochemistry and Molecular Biology, U. T. M. D. Anderson Cancer Center, Unit 1000 Houston, TX 77030
| | - Hattie K. Brown
- Department of Chemistry, Reed College, Portland, Oregon 97202
| | - Wendy A. Breyer
- Department of Chemistry, Reed College, Portland, Oregon 97202
| | | | - Howard F. Jenkinson
- Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, U. T. M. D. Anderson Cancer Center, Unit 1000 Houston, TX 77030
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0358
| | - Arthur Glasfeld
- Department of Chemistry, Reed College, Portland, Oregon 97202
| |
Collapse
|
27
|
Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109:4644-81. [PMID: 19788177 PMCID: PMC2783614 DOI: 10.1021/cr900077w] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 USA
| | - Faith E. Jacobsen
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| |
Collapse
|
28
|
Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J Bacteriol 2008; 190:5382-93. [PMID: 18515418 DOI: 10.1128/jb.00307-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homeostasis of Zn(2+) and Mn(2+) is important for the physiology and virulence of the human pathogen Streptococcus pneumoniae. Here, transcriptome analysis was used to determine the response of S. pneumoniae D39 to a high concentration of Zn(2+). Interestingly, virulence genes encoding the choline binding protein PcpA, the extracellular serine protease PrtA, and the Mn(2+) uptake system PsaBC(A) were strongly upregulated in the presence of Zn(2+). Using random mutagenesis, a previously described Mn(2+)-responsive transcriptional repressor, PsaR, was found to mediate the observed Zn(2+)-dependent derepression. In addition, PsaR is also responsible for the Mn(2+)-dependent repression of these genes. Subsequently, we investigated how these opposite effects are mediated by the same regulator. In vitro binding of purified PsaR to the prtA, pcpA, and psaB promoters was stimulated by Mn(2+), whereas Zn(2+) destroyed the interaction of PsaR with its target promoters. Mutational analysis of the pcpA promoter demonstrated the presence of a PsaR operator that mediates the transcriptional effects. In conclusion, PsaR is responsible for the counteracting effects of Mn(2+) and Zn(2+) on the expression of several virulence genes in S. pneumoniae, suggesting that the ratio of these metal ions exerts an important influence on pneumococcal pathogenesis.
Collapse
|
29
|
Golynskiy M, Li S, Woods VL, Cohen SM. Conformational studies of the manganese transport regulator (MntR) from Bacillus subtilis using deuterium exchange mass spectrometry. J Biol Inorg Chem 2007; 12:699-709. [PMID: 17342524 DOI: 10.1007/s00775-007-0216-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
The manganese transport regulator (MntR) of Bacillus subtilis is a metalloregulatory protein responsible for regulation of genes involved in manganese uptake by this organism. MntR belongs to the iron-responsive DtxR family, but is allosterically regulated by manganese and cadmium ions. Having previously characterized the metal binding affinities of this protein as well as the DNA-binding activation profiles for the relevant metal ions, we have focused the current study on investigating the structural changes of MntR in solution upon binding divalent transition metal ions. Deuterium exchange mass spectrometry was utilized to investigate the deuterium exchange dynamics between apo-MntR, Co(2+)-MntR, Cd(2+)-MntR, and Mn(2+)-MntR. Comparing the rates of deuteration of each metal-bound form of MntR reveals that the N-terminal DNA-binding motif is more mobile in solution than the C-terminal dimerization domain. Furthermore, significant protection from deuterium exchange is observed in the helices that contribute metal-chelating amino acids to form the metal binding site of MntR. In contrast, the bulk of the DNA-binding winged helix-turn-helix motif shows no difference in deuterium exchange upon metal binding. Mapping of the deuteration patterns onto the crystal structures of MntR yields insight into how metal binding affects the protein structure and complements earlier studies on the mechanism of MntR. Metal binding acts to rigidify MntR, thereby limiting the mobility of the protein and reducing the entropic cost of DNA binding.
Collapse
Affiliation(s)
- Misha Golynskiy
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | | | | | | |
Collapse
|
30
|
Giedroc DP, Arunkumar AI. Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Trans 2007:3107-20. [PMID: 17637984 DOI: 10.1039/b706769k] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metalloregulatory proteins control the expression of genes that allow organisms to quickly adapt to chronic toxicity or deprivation of both biologically essential metal ions and heavy metal pollutants found in their microenvironment. Emerging evidence suggests that metal ion homeostasis and resistance defines an important tug-of-war in human host-bacterial pathogen interactions. This adaptive response originates with the formation of "metal receptor" complexes of exquisite selectivity. In this perspective, we summarize consensus structural features of metal sensing coordination complexes and the evolution of distinct metal selectivities within seven characterized metal sensor protein families. In addition, we place recent efforts to understand the structural basis of metal-induced allosteric switching of these metalloregulatory proteins in a thermodynamic framework, and review the degree to which coordination chemistry drives changes in protein structure and dynamics in selected metal sensor systems. New insights into how metal sensor proteins function in the complex intracellular milieu of the cytoplasm of cells will require a more sophisticated understanding of the "metallome" and will benefit greatly from ongoing collaborative efforts in bioinorganic, biophysical and analytical chemistry, structural biology and microbiology.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA.
| | | |
Collapse
|