1
|
Casazza KM, Williams GM, Johengen L, Twoey G, Surtees JA. Msh2-Msh3 DNA-binding is not sufficient to promote trinucleotide repeat expansions in Saccharomyces cerevisiae. Genetics 2025; 229:iyae222. [PMID: 39790027 PMCID: PMC11912836 DOI: 10.1093/genetics/iyae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion or deletion (in/del) loops up to ∼17 nucleotides (nt.) and base-base mispairs, respectively; the 2 complexes have overlapping specificity for small (1-2 nt.) in/dels. The DNA-binding specificity for the 2 complexes resides in their respective mispair binding domains (MBDs) and has distinct DNA-binding modes. Msh2-Msh3 also plays a role in promoting CAG/CTG trinucleotide repeat (TNR) expansions, which underlie many neurodegenerative diseases such as Huntington's disease and myotonic dystrophy type 1. Models for Msh2-Msh3's role in promoting TNR tract expansion have invoked its specific DNA-binding activity and predict that the TNR structure alters its DNA binding and downstream activities to block repair. Using a chimeric Msh complex that replaces the MBD of Msh6 with the Msh3 MBD, we demonstrate that Msh2-Msh3 DNA-binding activity is not sufficient to promote TNR expansions. We propose a model for Msh2-Msh3-mediated TNR expansions that requires a fully functional Msh2-Msh3 including DNA binding, coordinated ATP binding, and hydrolysis activities and interactions with Mlh complexes that are analogous to those required for MMR.
Collapse
Affiliation(s)
- Katherine M Casazza
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Gregory M Williams
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Curia Global, Inc., Buffalo, NY 14203, USA
| | - Lauren Johengen
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Gavin Twoey
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jennifer A Surtees
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Li J, Wang H, Yang W. Tandem MutSβ binding to long extruded DNA trinucleotide repeats underpins pathogenic expansions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571350. [PMID: 38168405 PMCID: PMC10760016 DOI: 10.1101/2023.12.12.571350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Expansion of trinucleotide repeats causes Huntington's disease, Fragile X syndrome and over twenty other monogenic disorders1. How mismatch repair protein MutSβ and large repeats of CNG (N=A, T, C or G) cooperate to drive the expansion is poorly understood. Contrary to expectations, we find that MutSβ prefers to bind the stem of an extruded (CNG) hairpin rather than the hairpin end or hairpin-duplex junction. Structural analyses reveal that in the presence of MutSβ, CNG repeats with N:N mismatches adopt a B form-like pseudo-duplex, with one or two CNG repeats slipped out forming uneven bubbles that partly mimic insertion-deletion loops of mismatched DNA2. When the extruded hairpin exceeds 40-45 repeats, it can be bound by three or more MutSβ molecules, which are resistant to ATP-dependent dissociation. We envision that such MutSβ-CNG complexes recruit MutLγ endonuclease to nick DNA and initiate the repeat expansion process3,4. To develop drugs against the expansion diseases, we have identified lead compounds that prevent MutSβ binding to CNG repeats but not to mismatched DNA.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
Medina-Rivera M, Phelps S, Sridharan M, Becker J, Lamb N, Kumar C, Sutton M, Bielinsky A, Balakrishnan L, Surtees J. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo. Nucleic Acids Res 2023; 51:12185-12206. [PMID: 37930834 PMCID: PMC10711559 DOI: 10.1093/nar/gkad934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.
Collapse
Affiliation(s)
- Melisa Medina-Rivera
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Samantha Phelps
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Madhumita Sridharan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jordan Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Natalie A Lamb
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Charanya Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Anja Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jennifer A Surtees
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| |
Collapse
|
4
|
Yakushina V, Kavun A, Veselovsky E, Grigoreva T, Belova E, Lebedeva A, Mileyko V, Ivanov M. Microsatellite Instability Detection: The Current Standards, Limitations, and Misinterpretations. JCO Precis Oncol 2023; 7:e2300010. [PMID: 37315263 DOI: 10.1200/po.23.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Affiliation(s)
- Valentina Yakushina
- OncoAtlas LLC, Moscow, Russian Federation
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russian Federation
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
| |
Collapse
|
5
|
Bruekner SR, Pieters W, Fish A, Liaci AM, Scheffers S, Rayner E, Kaldenbach D, Drost L, Dekker M, van Hees-Stuivenberg S, Delzenne-Goette E, de Konink C, Houlleberghs H, Dubbink H, AlSaegh A, de Wind N, Förster F, te Riele H, Sixma T. Unexpected moves: a conformational change in MutSα enables high-affinity DNA mismatch binding. Nucleic Acids Res 2023; 51:1173-1188. [PMID: 36715327 PMCID: PMC9943660 DOI: 10.1093/nar/gkad015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The DNA mismatch repair protein MutSα recognizes wrongly incorporated DNA bases and initiates their correction during DNA replication. Dysfunctions in mismatch repair lead to a predisposition to cancer. Here, we study the homozygous mutation V63E in MSH2 that was found in the germline of a patient with suspected constitutional mismatch repair deficiency syndrome who developed colorectal cancer before the age of 30. Characterization of the mutant in mouse models, as well as slippage and repair assays, shows a mildly pathogenic phenotype. Using cryogenic electron microscopy and surface plasmon resonance, we explored the mechanistic effect of this mutation on MutSα function. We discovered that V63E disrupts a previously unappreciated interface between the mismatch binding domains (MBDs) of MSH2 and MSH6 and leads to reduced DNA binding. Our research identifies this interface as a 'safety lock' that ensures high-affinity DNA binding to increase replication fidelity. Our mechanistic model explains the hypomorphic phenotype of the V63E patient mutation and other variants in the MBD interface.
Collapse
Affiliation(s)
| | | | - Alexander Fish
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - A Manuel Liaci
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Serge Scheffers
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - Emily Rayner
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600 2300RC Leiden, The Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Lisa Drost
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | | | - Elly Delzenne-Goette
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Charlotte de Konink
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hellen Houlleberghs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hendrikus Jan Dubbink
- Department of Pathology, Erasmus Medical Center, PO Box 2040 3000CA Rotterdam, The Netherlands
| | - Abeer AlSaegh
- Sultan Qaboos Comprehensive Cancer Care and Research Center, PO Box 787, 117 Muscat, Oman
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600 2300RC Leiden, The Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Hein te Riele
- Correspondence may also be addressed to Hein te Riele. Tel: +31 20 512 2084;
| | - Titia K Sixma
- To whom correspondence should be addressed: Tel: +31 20 512 1959;
| |
Collapse
|
6
|
Katju V, Konrad A, Deiss TC, Bergthorsson U. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 GENES|GENOMES|GENETICS 2022; 12:6407146. [PMID: 34849777 PMCID: PMC8727991 DOI: 10.1093/g3journal/jkab364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
- Faculdade de Ciência da Universidade de Lisboa (FCUL), CE3C—Centre for Ecology, Evolution and Environmental Changes, 1749-016 Lisboa, Portugal
| | - Thaddeus C Deiss
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
7
|
Ajjugal Y, Rathinavelan T. Conformational distortions induced by periodically recurring A…A in d(CAG).d(CAG) provide stereochemical rationale for the trapping of MSH2.MSH3 in polyQ disorders. Comput Struct Biotechnol J 2021; 19:4447-4455. [PMID: 34471491 PMCID: PMC8379282 DOI: 10.1016/j.csbj.2021.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
CAG repeat instability causes a number of neurodegenerative disorders. The unusual hairpin stem structure formed by the CAG repeats in DNA traps the human mismatch repair MSH2.MSH3 (Mutsβ) complex. To understand the mechanism behind the abnormal binding of Mutsβ with the imperfect hairpin stem structure formed by CAG repeats, molecular dynamics simulations have been carried out for Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 (1 A…A mismatch) and Mutsβ-d(CAG)5.d(CAG)5 (5 mismatches, wherein, A…A occurs periodically) complexes. The interaction of MSH3 residue Tyr245 at the minor groove side of A…A, an essential interaction responsible for the recognition by Mutsβ, are retained in both the cases. Nevertheless, the periodic unwinding caused by the nonisostericity of A…A with the flanking canonical base pairs in d(CAG)5.d(CAG)5 distorts the regular B-form geometry. Such an unwinding exposes one of the A…A mismatches (that interacts with Tyr245) at the major groove side and also facilitates the on and off hydrogen bonding interaction with Lys546 sidechain (MSH2-domain-IV). In contrast, kinking of the DNA towards the major groove in Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 doesn’t facilitate such an exposure of the bases at the major groove. Further, the unwinding of the helix in d(CAG)5.d(CAG)5 enhances the tighter binding between MSH2-domain-I and d(CAG)5.d(CAG)5 at the major groove side as well as between MSH3-domain-I and MSH3-domain-IV. Markedly, such enhanced interactions are absent in Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 that has a single A…A mismatch. Thus, the above-mentioned enhancement in intra- and inter- molecular interactions in Mutsβ-d(CAG)5.d(CAG)5 provide the stereochemical rationale for the trapping of Mutsβ in CAG repeat expansion disorders.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | | |
Collapse
|
8
|
Eichmiller R, Medina-Rivera M, DeSanto R, Minca E, Kim C, Holland C, Seol JH, Schmit M, Oramus D, Smith J, Gallardo IF, Finkelstein IJ, Lee SE, Surtees JA. Coordination of Rad1-Rad10 interactions with Msh2-Msh3, Saw1 and RPA is essential for functional 3' non-homologous tail removal. Nucleic Acids Res 2019; 46:5075-5096. [PMID: 29660012 PMCID: PMC6007489 DOI: 10.1093/nar/gky254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
Double strand DNA break repair (DSBR) comprises multiple pathways. A subset of DSBR pathways, including single strand annealing, involve intermediates with 3' non-homologous tails that must be removed to complete repair. In Saccharomyces cerevisiae, Rad1-Rad10 is the structure-specific endonuclease that cleaves the tails in 3' non-homologous tail removal (3' NHTR). Rad1-Rad10 is also an essential component of the nucleotide excision repair (NER) pathway. In both cases, Rad1-Rad10 requires protein partners for recruitment to the relevant DNA intermediate. Msh2-Msh3 and Saw1 recruit Rad1-Rad10 in 3' NHTR; Rad14 recruits Rad1-Rad10 in NER. We created two rad1 separation-of-function alleles, rad1R203A,K205A and rad1R218A; both are defective in 3' NHTR but functional in NER. In vitro, rad1R203A,K205A was impaired at multiple steps in 3' NHTR. The rad1R218A in vivo phenotype resembles that of msh2- or msh3-deleted cells; recruitment of rad1R218A-Rad10 to recombination intermediates is defective. Interactions among rad1R218A-Rad10 and Msh2-Msh3 and Saw1 are altered and rad1R218A-Rad10 interactions with RPA are compromised. We propose a model in which Rad1-Rad10 is recruited and positioned at the recombination intermediate through interactions, between Saw1 and DNA, Rad1-Rad10 and Msh2-Msh3, Saw1 and Msh2-Msh3 and Rad1-Rad10 and RPA. When any of these interactions is altered, 3' NHTR is impaired.
Collapse
Affiliation(s)
- Robin Eichmiller
- Department of Biochemistry, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Melisa Medina-Rivera
- Department of Biochemistry, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Rachel DeSanto
- Department of Biochemistry, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Eugen Minca
- Department of Biochemistry, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Christopher Kim
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Cory Holland
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Ja-Hwan Seol
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Megan Schmit
- Department of Biochemistry, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Diane Oramus
- Department of Biochemistry, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Jessica Smith
- Department of Biochemistry, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Ignacio F Gallardo
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.,Department of Radiation Oncology, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jennifer A Surtees
- Department of Biochemistry, University at Buffalo (SUNY), Buffalo, NY 14214, USA.,Genetics, Genomics and Bioinformatics Graduate Program, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| |
Collapse
|
9
|
Chakraborty U, Dinh TA, Alani E. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression. Genetics 2018; 209:439-456. [PMID: 29654124 PMCID: PMC5972419 DOI: 10.1534/genetics.118.300923] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/12/2018] [Indexed: 02/04/2023] Open
Abstract
Mismatch repair (MMR) proteins act in spellchecker roles to excise misincorporation errors that occur during DNA replication. Curiously, large-scale analyses of a variety of cancers showed that increased expression of MMR proteins often correlated with tumor aggressiveness, metastasis, and early recurrence. To better understand these observations, we used The Cancer Genome Atlas and Gene Expression across Normal and Tumor tissue databases to analyze MMR protein expression in cancers. We found that the MMR genes MSH2 and MSH6 are overexpressed more frequently than MSH3, and that MSH2 and MSH6 are often cooverexpressed as a result of copy number amplifications of these genes. These observations encouraged us to test the effects of upregulating MMR protein levels in baker's yeast, where we can sensitively monitor genome instability phenotypes associated with cancer initiation and progression. Msh6 overexpression (two- to fourfold) almost completely disrupted mechanisms that prevent recombination between divergent DNA sequences by interacting with the DNA polymerase processivity clamp PCNA and by sequestering the Sgs1 helicase. Importantly, cooverexpression of Msh2 and Msh6 (∼eightfold) conferred, in a PCNA interaction-dependent manner, several genome instability phenotypes including increased mutation rate, increased sensitivity to the DNA replication inhibitor HU and the DNA-damaging agents MMS and 4-nitroquinoline N-oxide, and elevated loss-of-heterozygosity. Msh2 and Msh6 cooverexpression also altered the cell cycle distribution of exponentially growing cells, resulting in an increased fraction of unbudded cells, consistent with a larger percentage of cells in G1. These novel observations suggested that overexpression of MSH factors affected the integrity of the DNA replication fork, causing genome instability phenotypes that could be important for promoting cancer progression.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Timothy A Dinh
- Curriculum in Genetics and Molecular Biology, Biological and Biomedical Sciences Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
10
|
Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats. G3-GENES GENOMES GENETICS 2017; 7:1463-1473. [PMID: 28341698 PMCID: PMC5427490 DOI: 10.1534/g3.117.040816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1 Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.
Collapse
|
11
|
A MutSβ-Dependent Contribution of MutSα to Repeat Expansions in Fragile X Premutation Mice? PLoS Genet 2016; 12:e1006190. [PMID: 27427765 PMCID: PMC4948851 DOI: 10.1371/journal.pgen.1006190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
The fragile X-related disorders result from expansion of a CGG/CCG microsatellite in the 5’ UTR of the FMR1 gene. We have previously demonstrated that the MSH2/MSH3 complex, MutSβ, that is important for mismatch repair, is essential for almost all expansions in a mouse model of these disorders. Here we show that the MSH2/MSH6 complex, MutSα also contributes to the production of both germ line and somatic expansions as evidenced by the reduction in the number of expansions observed in Msh6-/- mice. This effect is not mediated via an indirect effect of the loss of MSH6 on the level of MSH3. However, since MutSβ is required for 98% of germ line expansions and almost all somatic ones, MutSα is apparently not able to efficiently substitute for MutSβ in the expansion process. Using purified human proteins we demonstrate that MutSα, like MutSβ, binds to substrates with loop-outs of the repeats and increases the thermal stability of the structures that they form. We also show that MutSα facilitates binding of MutSβ to these loop-outs. These data suggest possible models for the contribution of MutSα to repeat expansion. In addition, we show that unlike MutSβ, MutSα may also act to protect against repeat contractions in the Fmr1 gene. The repeat expansion diseases are a group of human genetic disorders that are caused by expansion of a specific microsatellite in a single affected gene. How this expansion occurs is unknown, but previous work in various models for different diseases in the group, including the fragile X-related disorders (FXDs), has implicated the mismatch repair complex MutSβ in the process. With the exception of somatic expansion in Friedreich ataxia, MutSα has not been reported to contribute to generation of expansions in other disease models. Here we show that MutSα does in fact play a role in both germ line and somatic expansions in a mouse model of the FXDs since the expansion frequency is significantly reduced in Msh6-/- mice. However, since we have previously shown that loss of MutSβ eliminates almost all expansions, MutSα is apparently not able to fully substitute for MutSβ in the expansion process. We also show here that MutSα increases the stability of the structures formed by the fragile X repeats that are thought to be the substrates for expansion and promotes binding of MutSβ to the repeats. This, together with our genetic data, suggests possible models for how MutSα and MutSβ, could co-operate to generate repeat expansions in the FXDs.
Collapse
|
12
|
Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants. Proc Natl Acad Sci U S A 2016; 113:4128-33. [PMID: 26951660 DOI: 10.1073/pnas.1520813113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that "oligo targeting" can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors.
Collapse
|
13
|
Brown MW, Kim Y, Williams GM, Huck JD, Surtees JA, Finkelstein IJ. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions. Nat Commun 2016; 7:10607. [PMID: 26837705 PMCID: PMC4742970 DOI: 10.1038/ncomms10607] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022] Open
Abstract
DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2-Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2-Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2-Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2-Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2-Msh3 and Msh2-Msh6 navigate on a crowded genome and suggest how Msh2-Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin.
Collapse
Affiliation(s)
- Maxwell W Brown
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yoori Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Gregory M Williams
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - John D Huck
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Jennifer A Surtees
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
14
|
A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae. Genetics 2015; 202:525-40. [PMID: 26680658 DOI: 10.1534/genetics.115.184093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker's yeast, the Msh DNA mismatch recognition complex and the Sgs1 helicase act to suppress SSA between divergent sequences by binding to mismatches present in heteroduplex DNA intermediates and triggering a DNA unwinding mechanism known as heteroduplex rejection. Using baker's yeast as a model, we have identified new factors and regulatory steps in heteroduplex rejection during SSA. First we showed that Top3-Rmi1, a topoisomerase complex that interacts with Sgs1, is required for heteroduplex rejection. Second, we found that the replication processivity clamp proliferating cell nuclear antigen (PCNA) is dispensable for heteroduplex rejection, but is important for repairing mismatches formed during SSA. Third, we showed that modest overexpression of Msh6 results in a significant increase in heteroduplex rejection; this increase is due to a compromise in Msh2-Msh3 function required for the clipping of 3' tails. Thus 3' tail clipping during SSA is a critical regulatory step in the repair vs. rejection decision; rejection is favored before the 3' tails are clipped. Unexpectedly, Msh6 overexpression, through interactions with PCNA, disrupted heteroduplex rejection between divergent sequences in another recombination substrate. These observations illustrate the delicate balance that exists between repair and replication factors to optimize genome stability.
Collapse
|
15
|
Schmidt MHM, Pearson CE. Disease-associated repeat instability and mismatch repair. DNA Repair (Amst) 2015; 38:117-126. [PMID: 26774442 DOI: 10.1016/j.dnarep.2015.11.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Monika H M Schmidt
- Genetics & Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay St., Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Bldg., 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay St., Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Bldg., 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
16
|
Smith CE, Bowen N, Graham WJ, Goellner EM, Srivatsan A, Kolodner RD. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System. J Biol Chem 2015; 290:21580-90. [PMID: 26170454 PMCID: PMC4571882 DOI: 10.1074/jbc.m115.662189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/07/2022] Open
Abstract
Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR.
Collapse
Affiliation(s)
| | - Nikki Bowen
- From the Ludwig Institute for Cancer Research
| | | | | | | | - Richard D Kolodner
- From the Ludwig Institute for Cancer Research, the Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center, and the Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093
| |
Collapse
|
17
|
Sharma M, Predeus AV, Kovacs N, Feig M. Differential mismatch recognition specificities of eukaryotic MutS homologs, MutSα and MutSβ. Biophys J 2015; 106:2483-92. [PMID: 24896128 DOI: 10.1016/j.bpj.2014.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/16/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
In eukaryotes, the recognition of the DNA postreplication errors and initiation of the mismatch repair is carried out by two MutS homologs: MutSα and MutSβ. MutSα recognizes base mismatches and 1 to 2 unpaired nucleotides whereas MutSβ recognizes longer insertion-deletion loops (IDLs) with 1 to 15 unpaired nucleotides as well as certain mismatches. Results from molecular dynamics simulations of native MutSβ:IDL-containing DNA and MutSα:mismatch DNA complexes as well as complexes with swapped DNA substrates provide mechanistic insight into how the differential substrate specificities are achieved by MutSα and MutSβ, respectively. Our simulations results suggest more extensive interactions between MutSβ and IDL-DNA and between MutSα and mismatch-containing DNA that suggest corresponding differences in stability. Furthermore, our simulations suggest more expanded mechanistic details involving a different degree of bending when DNA is bound to either MutSα or MutSβ and a more likely opening of the clamp domains when noncognate substrates are bound. The simulation results also provide detailed information on key residues in MutSβ and MutSα that are likely involved in recognizing IDL-DNA and mismatch-containing DNA, respectively.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Alexander V Predeus
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Nicholas Kovacs
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan; Department of Chemistry, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
18
|
Kumar C, Eichmiller R, Wang B, Williams GM, Bianco PR, Surtees JA. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates. DNA Repair (Amst) 2014; 18:18-30. [PMID: 24746922 DOI: 10.1016/j.dnarep.2014.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.
Collapse
Affiliation(s)
- Charanya Kumar
- Department of Biochemistry, Immunology, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Robin Eichmiller
- Department of Biochemistry, Immunology, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Bangchen Wang
- Department of Biochemistry, Immunology, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Gregory M Williams
- Department of Biochemistry, Immunology, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Piero R Bianco
- Department of Microbiology and Immunology, University at Buffalo (SUNY), Buffalo, NY 14214, USA
| | - Jennifer A Surtees
- Department of Biochemistry, Immunology, University at Buffalo (SUNY), Buffalo, NY 14214, USA.
| |
Collapse
|
19
|
Srivatsan A, Bowen N, Kolodner RD. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex. J Biol Chem 2014; 289:9352-64. [PMID: 24550389 DOI: 10.1074/jbc.m114.552190] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions.
Collapse
|
20
|
Abstract
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.
Collapse
|
21
|
Rakshambikai R, Srinivasan N, Nishant KT. Structural insights into Saccharomyces cerevisiae Msh4-Msh5 complex function using homology modeling. PLoS One 2013; 8:e78753. [PMID: 24244354 PMCID: PMC3828297 DOI: 10.1371/journal.pone.0078753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
The Msh4–Msh5 protein complex in eukaryotes is involved in stabilizing Holliday junctions and its progenitors to facilitate crossing over during Meiosis I. These functions of the Msh4–Msh5 complex are essential for proper chromosomal segregation during the first meiotic division. The Msh4/5 proteins are homologous to the bacterial mismatch repair protein MutS and other MutS homologs (Msh2, Msh3, Msh6). Saccharomyces cerevisiae msh4/5 point mutants were identified recently that show two fold reduction in crossing over, compared to wild-type without affecting chromosome segregation. Three distinct classes of msh4/5 point mutations could be sorted based on their meiotic phenotypes. These include msh4/5 mutations that have a) crossover and viability defects similar to msh4/5 null mutants; b) intermediate defects in crossing over and viability and c) defects only in crossing over. The absence of a crystal structure for the Msh4–Msh5 complex has hindered an understanding of the structural aspects of Msh4–Msh5 function as well as molecular explanation for the meiotic defects observed in msh4/5 mutations. To address this problem, we generated a structural model of the S. cerevisiae Msh4–Msh5 complex using homology modeling. Further, structural analysis tailored with evolutionary information is used to predict sites with potentially critical roles in Msh4–Msh5 complex formation, DNA binding and to explain asymmetry within the Msh4–Msh5 complex. We also provide a structural rationale for the meiotic defects observed in the msh4/5 point mutations. The mutations are likely to affect stability of the Msh4/5 proteins and/or interactions with DNA. The Msh4–Msh5 model will facilitate the design and interpretation of new mutational data as well as structural studies of this important complex involved in meiotic chromosome segregation.
Collapse
Affiliation(s)
| | | | - Koodali Thazath Nishant
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| |
Collapse
|
22
|
Genetic screens to identify pathogenic gene variants in the common cancer predisposition Lynch syndrome. Proc Natl Acad Sci U S A 2013; 110:9403-8. [PMID: 23690608 DOI: 10.1073/pnas.1220537110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In many individuals suspected of the common cancer predisposition Lynch syndrome, variants of unclear significance (VUS), rather than an obviously pathogenic mutations, are identified in one of the DNA mismatch repair (MMR) genes. The uncertainty of whether such VUS inactivate MMR, and therefore are pathogenic, precludes targeted healthcare for both carriers and their relatives. To facilitate the identification of pathogenic VUS, we have developed an in cellulo genetic screen-based procedure for the large-scale mutagenization, identification, and cataloging of residues of MMR genes critical for MMR gene function. When a residue identified as mutated in an individual suspected of Lynch syndrome is listed as critical in such a reverse diagnosis catalog, there is a high probability that the corresponding human VUS is pathogenic. To investigate the applicability of this approach, we have generated and validated a prototypic reverse diagnosis catalog for the MMR gene MutS Homolog 2 (Msh2) by mutagenizing, identifying, and cataloging 26 deleterious mutations in 23 amino acids. Extensive in vivo and in vitro analysis of mutants listed in the catalog revealed both recessive and dominant-negative phenotypes. Nearly half of these critical residues match with VUS previously identified in individuals suspected of Lynch syndrome. This aids in the assignment of pathogenicity to these human VUS and validates the approach described here as a diagnostic tool. In a wider perspective, this work provides a model for the translation of personalized genomics into targeted healthcare.
Collapse
|
23
|
Abstract
The mismatch repair (MMR) system detects non-Watson-Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
24
|
Distinct requirements within the Msh3 nucleotide binding pocket for mismatch and double-strand break repair. J Mol Biol 2013; 425:1881-1898. [PMID: 23458407 DOI: 10.1016/j.jmb.2013.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, repair of insertion/deletion loops is carried out by Msh2-Msh3-mediated mismatch repair (MMR). Msh2-Msh3 is also required for 3' non-homologous tail removal (3' NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, the kinetics of the two processes appear different; MMR is likely rapid in order to coordinate with the replication fork, whereas 3' NHTR has been shown to be a slower process. To understand the molecular requirements in both repair pathways, we performed an in vivo analysis of well-conserved residues in Msh3 that are hypothesized to be required for MMR and/or 3' NHTR. These residues are predicted to be involved in either communication between the DNA-binding and ATPase domains within the complex or nucleotide binding and/or exchange within Msh2-Msh3. We identified a set of aromatic residues within the FLY motif of the predicted Msh3 nucleotide binding pocket that are essential for Msh2-Msh3-mediated MMR but are largely dispensable for 3' NHTR. In contrast, mutations in other regions gave similar phenotypes in both assays. Based on these results, we suggest that the two pathways have distinct requirements with respect to the position of the bound ATP within Msh3. We propose that the differences are related, at least in part, to the kinetics of each pathway. Proper binding and positioning of ATP is required to induce rapid conformational changes at the replication fork, but is less important when more time is available for repair, as in 3' NHTR.
Collapse
|
25
|
Edelbrock MA, Kaliyaperumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res 2013; 743-744:53-66. [PMID: 23391514 DOI: 10.1016/j.mrfmmm.2012.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.
Collapse
Affiliation(s)
| | - Saravanan Kaliyaperumal
- Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | - Kandace J Williams
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry & Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
26
|
Gómez R, Spampinato CP. Mismatch recognition function of Arabidopsis thaliana MutSγ. DNA Repair (Amst) 2013; 12:257-64. [PMID: 23380521 DOI: 10.1016/j.dnarep.2013.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/24/2022]
Abstract
Genetic stability depends in part on an efficient DNA lesion recognition and correction by the DNA mismatch repair (MMR) system. In eukaryotes, MMR is initiated by the binding of heterodimeric MutS homologue (MSH) complexes, MSH2-MSH6 and MSH2-MSH3, which recognize and bind mismatches and unpaired nucleotides. Plants encode another mismatch recognition protein, named MSH7. MSH7 forms a heterodimer with MSH2 and the protein complex is designated MutSγ. We here report the effect the expression of Arabidopsis MSH2 and MSH7 alone or in combination exert on the genomic stability of Saccharomyces cerevisiae. AtMSH2 and AtMutSγ proteins failed to complement the hypermutator phenotype of an msh2 deficient strain. However, overexpressing AtMutSγ in MMR proficient strains generated a 4-fold increase in CAN1 forward mutation rate, when compared to wild-type strains. Can(r) mutation spectrum analysis of AtMutSγ overproducing strains revealed a substantial increase in the frequency of base substitution mutations, including an increased accumulation of base pair changes from G:C to A:T and T:A to C:G, G:C or A:T. Taken together, these results suggest that AtMutSγ affects yeast genomic stability by recognizing specific mismatches and preventing correction by yeast MutSα and MutSβ, with subsequent inability to interact with yeast downstream proteins needed to complete MMR.
Collapse
Affiliation(s)
- Rodrigo Gómez
- Centro de Estudios Fotosintéticos y Bioquímicos CEFOBI, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | |
Collapse
|
27
|
Kantartzis A, Williams GM, Balakrishnan L, Roberts RL, Surtees JA, Bambara RA. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions. Cell Rep 2012; 2:216-22. [PMID: 22938864 DOI: 10.1016/j.celrep.2012.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/31/2012] [Accepted: 06/28/2012] [Indexed: 11/17/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication.
Collapse
Affiliation(s)
- Athena Kantartzis
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
28
|
Gupta S, Gellert M, Yang W. Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nat Struct Mol Biol 2011; 19:72-8. [PMID: 22179786 PMCID: PMC3252464 DOI: 10.1038/nsmb.2175] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/12/2011] [Indexed: 12/25/2022]
Abstract
DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch Syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutSα is well characterized. We report here crystal structures of human MutSβ complexed with DNA containing insertion-deletion loops (IDL) of 2, 3, 4, or 6 unpaired nucleotides. In contrast to eukaryotic MutSα and bacterial MutS, which bind the base of a mismatched nucleotide, MutSβ binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flipped out into the major groove and partially exposed to solvent. A normal downstream basepair can become unpaired; thereby a single unpaired base can be converted to an IDL of 2 nucleotides and recognized by MutSβ. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.
Collapse
Affiliation(s)
- Shikha Gupta
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
29
|
Cyr JL, Brown GD, Stroop J, Heinen CD. The predicted truncation from a cancer-associated variant of the MSH2 initiation codon alters activity of the MSH2-MSH6 mismatch repair complex. Mol Carcinog 2011; 51:647-58. [PMID: 21837758 DOI: 10.1002/mc.20838] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 06/24/2011] [Accepted: 07/11/2011] [Indexed: 12/15/2022]
Abstract
Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes. MMR recognizes and repairs DNA mismatches and small insertion/deletion loops. Carriers of MMR gene variants have a high risk of developing colorectal, endometrial, ovarian, and other extracolonic carcinomas. We report on an ovarian cancer patient who carries a germline MSH2 c.1A>C variant which alters the translation initiation codon. Mutations affecting the MSH2 start codon have been described previously for LS-related malignancies. However, the patients often lack a clear family history indicative of LS and their tumors often fail to display microsatellite instability, a hallmark feature of LS. Therefore, the pathogenicity of start codon variants remains undefined. Loss of the MSH2 start codon has been predicted to result in a truncated protein translated from a downstream in-frame AUG that would lack the first 25 amino acids. We therefore purified recombinant MSH2(NΔ25)-MSH6 and MSH2(NΔ25)-MSH3 to examine their DNA lesion recognition and adenosine nucleotide processing functions in vitro. We found that the MSH2(NΔ25) mutant confers distinct biochemical defects on MSH2-MSH6, but does not have a significant effect on MSH2-MSH3. We confirmed that expression of the MSH2 c.1A>C cDNA results in the production of multiple protein products in human cells that may include the truncated and full-length forms of MSH2. An in vivo MMR assay revealed a slight reduction in MMR efficiency in these cells. These data suggest that mutation of the MSH2 initiation codon, while not a strong, high-risk disease allele, may have a moderate impact on disease phenotype.
Collapse
Affiliation(s)
- Jennifer L Cyr
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-3101, USA
| | | | | | | |
Collapse
|
30
|
Tseng Q, Orans J, Hast MA, Iyer RR, Changela A, Modrich PL, Beese LS. Purification, crystallization and preliminary X-ray diffraction analysis of the human mismatch repair protein MutSβ. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:947-52. [PMID: 21821902 PMCID: PMC3151135 DOI: 10.1107/s1744309111019300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/21/2011] [Indexed: 11/10/2022]
Abstract
MutSβ is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutSα (MSH2-MSH6). Although mismatch recognition by MutSα has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutSβ. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutSβ and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported.
Collapse
Affiliation(s)
- Quincy Tseng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Jillian Orans
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael A. Hast
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Ravi R. Iyer
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Anita Changela
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul L. Modrich
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Lorena S. Beese
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
31
|
Multiple factors insulate Msh2-Msh6 mismatch repair activity from defects in Msh2 domain I. J Mol Biol 2011; 411:765-80. [PMID: 21726567 DOI: 10.1016/j.jmb.2011.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 01/16/2023]
Abstract
DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.
Collapse
|
32
|
Functional studies and homology modeling of Msh2-Msh3 predict that mispair recognition involves DNA bending and strand separation. Mol Cell Biol 2010; 30:3321-8. [PMID: 20421420 DOI: 10.1128/mcb.01558-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Msh2-Msh3 heterodimer recognizes various DNA mispairs, including loops of DNA ranging from 1 to 14 nucleotides and some base-base mispairs. Homology modeling of the mispair-binding domain (MBD) of Msh3 using the related Msh6 MBD revealed that mismatch recognition must be different, even though the MBD folds must be similar. Model-based point mutation alleles of Saccharomyces cerevisiae msh3 designed to disrupt mispair recognition fell into two classes. One class caused defects in repair of both small and large insertion/deletion mispairs, whereas the second class caused defects only in the repair of small insertion/deletion mispairs; mutations of the first class also caused defects in the removal of nonhomologous tails present at the ends of double-strand breaks (DSBs) during DSB repair, whereas mutations of the second class did not cause defects in the removal of nonhomologous tails during DSB repair. Thus, recognition of small insertion/deletion mispairs by Msh3 appears to require a greater degree of interactions with the DNA conformations induced by small insertion/deletion mispairs than with those induced by large insertion/deletions that are intrinsically bent and strand separated. Mapping of the two classes of mutations onto the Msh3 MBD model appears to distinguish mispair recognition regions from DNA stabilization regions.
Collapse
|
33
|
Functional analysis of human mismatch repair gene mutations identifies weak alleles and polymorphisms capable of polygenic interactions. Proc Natl Acad Sci U S A 2010; 107:5070-5. [PMID: 20176959 DOI: 10.1073/pnas.1000798107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many of the mutations reported as potentially causing Lynch syndrome are missense mutations in human mismatch repair (MMR) genes. Here, we used a Saccharomyces cerevisiae-based system to study polymorphisms and suspected missense mutations in human MMR genes by modeling them at the appropriate S. cerevisiae chromosomal locus and determining their effect on mutation rates. We identified a number of weak alleles of MMR genes and MMR gene polymorphisms that are capable of interacting with other weak alleles of MMR genes to produce strong polygenic MMR defects. We also identified a number of alleles of MSH2 that act as if they inactivate the Msh2-Msh3 mispair recognition complex thus causing weak MMR defects that interact with an msh6Delta mutation to result in complete MMR defects. These results indicate that weak MMR gene alleles capable of polygenic interactions with other MMR gene alleles may be relatively common.
Collapse
|
34
|
Tay YD, Sidebotham JM, Wu L. Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair. Nucleic Acids Res 2010; 38:1889-901. [PMID: 20047969 PMCID: PMC2847250 DOI: 10.1093/nar/gkp1199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In budding yeast the DNA helicase Mph1 prevents genome rearrangements during ectopic homologous recombination (HR) by suppressing the formation of crossovers (COs). Here we show that during ectopic HR repair, the anti-CO function of Mph1 is intricately associated with the mismatch repair (MMR) factor, MutSα. In particular, during HR repair using a completely homologous substrate, we reveal an MMR-independent function of MutSα in generating COs that is specifically antagonized by Mph1, but not Sgs1. In contrast, both Mph1 and MutSα are required to efficiently suppress COs in the presence of a homeologous substrate. Mph1 acts redundantly with Sgs1 in this respect since mph1Δ sgs1Δ double mutant cells pheno-copy MutSα mutants and completely fail to discriminate homologous and homeologous sequences during HR repair. However, this defect of mph1Δ sgs1Δ cells is not due to an inability to carry out MMR but rather is accompanied by elevated levels of gene conversion (GC) and bi-directional GC tracts specifically in non-crossover products. Models describing how Mph1, MutSα and Sgs1 act in concert to suppress genome rearrangements during ectopic HR repair are discussed.
Collapse
Affiliation(s)
- Ye Dee Tay
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
35
|
A conserved MutS homolog connector domain interface interacts with MutL homologs. Proc Natl Acad Sci U S A 2009; 106:22223-8. [PMID: 20080788 DOI: 10.1073/pnas.0912250106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Escherichia coli MutS forms a mispair-dependent ternary complex with MutL that is essential for initiating mismatch repair (MMR) but is structurally uncharacterized, in part owing to its dynamic nature. Here, we used hydrogen/deuterium exchange mass spectrometry and other methods to identify a region in the connector domain (domain II) of MutS that binds MutL and is required for mispair-dependent ternary complex formation and MMR. A structurally conserved region in Msh2, the eukaryotic homolog, was required for formation of a mispair-dependent Msh2-Msh6-Mlh1-Pms1 ternary complex. These data indicate that the connector domain of MutS and Msh2 contains the interface for binding MutL and Mlh1-Pms1, respectively, and support a mechanism whereby mispair and ATP binding induces a conformational change that allows the MutS and Msh2 interfaces to interact with their partners.
Collapse
|
36
|
Spampinato CP, Gomez RL, Galles C, Lario LD. From bacteria to plants: a compendium of mismatch repair assays. Mutat Res 2009; 682:110-28. [PMID: 19622396 DOI: 10.1016/j.mrrev.2009.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/16/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
Mismatch repair (MMR) system maintains genome integrity by correcting mispaired or unpaired bases which have escaped the proofreading activity of DNA polymerases. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in the mechanism vary from prokaryotes to eukaryotes and even between humans and plants. Cells deficient in MMR genes have been observed to display a mutator phenotype characterized by an increased rate in spontaneous mutation, instability of microsatellite sequences and illegitimate recombination between diverged DNA sequences. Studies of the mutator phenotype have demonstrated a critical role for the MMR system in mutation avoidance and genetic stability. Here, we briefly review our current knowledge of the MMR mechanism and then focus on the in vivo biochemical and genetic assays used to investigate the function of the MMR proteins in processing DNA mismatches generated during replication and mitotic recombination in Escherichia coli, Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana. An overview of the biochemical assays developed to study mismatch correction in vitro is also provided.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.
| | | | | | | |
Collapse
|
37
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
38
|
The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Nat Struct Mol Biol 2009; 16:550-7. [PMID: 19377479 DOI: 10.1038/nsmb.1596] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/30/2009] [Indexed: 01/12/2023]
Abstract
Here we report that the human DNA mismatch complex MSH2-MSH3 recognizes small loops by a mechanism different from that of MSH2-MSH6 for single-base mismatches. The subunits MSH2 and MSH3 can bind either ADP or ATP with similar affinities. Upon binding to a DNA loop, however, MSH2-MSH3 adopts a single 'nucleotide signature', in which the MSH2 subunit is occupied by an ADP molecule and the MSH3 subunit is empty. Subsequent ATP binding and hydrolysis in the MSH3 subunit promote ADP-ATP exchange in the MSH2 subunit to yield a hydrolysis-independent ATP-MSH2-MSH3-ADP intermediate. Human MSH2-MSH3 and yeast Msh2-Msh6 both undergo ADP-ATP exchange in the Msh2 subunit but, apparently, have opposite requirements for ATP hydrolysis: ADP release from DNA-bound Msh2-Msh6 requires ATP stabilization in the Msh6 subunit, whereas ADP release from DNA-bound MSH2-MSH3 requires ATP hydrolysis in the MSH3 subunit. We propose a model in which lesion binding converts MSH2-MSH3 into a distinct nucleotide-bound form that is poised to be a molecular sensor for lesion specificity.
Collapse
|
39
|
McMurray CT. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair (Amst) 2008; 7:1121-34. [PMID: 18472310 DOI: 10.1016/j.dnarep.2008.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integrity. In this review, we consider two cases in which active MMR leads to mutation or to cell death. There may be similar mechanisms by which uncoupling of normal MMR recognition from downstream repair allows triplet expansions underlying human neurodegenerative disease, or cell death in response to chemical lesion.
Collapse
Affiliation(s)
- Cynthia T McMurray
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS. Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 2007; 26:579-92. [PMID: 17531815 DOI: 10.1016/j.molcel.2007.04.018] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/22/2007] [Accepted: 04/20/2007] [Indexed: 12/21/2022]
Abstract
Mismatch repair (MMR) ensures the fidelity of DNA replication, initiates the cellular response to certain classes of DNA damage, and has been implicated in the generation of immune diversity. Each of these functions depends on MutSalpha (MSH2*MSH6 heterodimer). Inactivation of this protein complex is responsible for tumor development in about half of known hereditary nonpolyposis colorectal cancer kindreds and also occurs in sporadic tumors in a variety of tissues. Here, we describe a series of crystal structures of human MutSalpha bound to different DNA substrates, each known to elicit one of the diverse biological responses of the MMR pathway. All lesions are recognized in a similar manner, indicating that diversity of MutSalpha-dependent responses to DNA lesions is generated in events downstream of this lesion recognition step. This study also allows rigorous mapping of cancer-causing mutations and furthermore suggests structural pathways for allosteric communication between different regions within the heterodimer.
Collapse
Affiliation(s)
- Joshua J Warren
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
41
|
Harrington JM, Kolodner RD. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol Cell Biol 2007; 27:6546-54. [PMID: 17636021 PMCID: PMC2099603 DOI: 10.1128/mcb.00855-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding.
Collapse
Affiliation(s)
- Jill M Harrington
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | | |
Collapse
|
42
|
Shell SS, Putnam CD, Kolodner RD. Chimeric Saccharomyces cerevisiae Msh6 protein with an Msh3 mispair-binding domain combines properties of both proteins. Proc Natl Acad Sci U S A 2007; 104:10956-61. [PMID: 17573527 PMCID: PMC1904149 DOI: 10.1073/pnas.0704148104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Msh2-Msh3 and Msh2-Msh6 are two partially redundant mispair-recognition complexes that initiate mismatch repair in eukaryotes. Crystal structures of the prokaryotic homolog MutS suggest the mechanism by which Msh6 interacts with mispairs because key mispair-contacting residues are conserved in these two proteins. Because Msh3 lacks these conserved residues, we constructed a series of mutants to investigate the requirements for mispair interaction by Msh3. We found that a chimeric protein in which the mispair-binding domain (MBD) of Msh6 was replaced by the equivalent domain of Msh3 was functional for mismatch repair. This chimera possessed the mispair-binding specificity of Msh3 and revealed that communication between the MBD and the ATPase domain is conserved between Msh2-Msh3 and Msh2-Msh6. Further, the chimeric protein retained Msh6-like properties with respect to genetic interactions with the MutL homologs and an Msh2 MBD deletion mutant, indicating that Msh3-like behaviors beyond mispair specificity are not features controlled by the MBD.
Collapse
Affiliation(s)
- Scarlet S. Shell
- *Ludwig Institute for Cancer Research
- Departments of Medicine and
- Cellular and Molecular Medicine, and
- Cancer Center, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669
| | | | - Richard D. Kolodner
- *Ludwig Institute for Cancer Research
- Departments of Medicine and
- Cellular and Molecular Medicine, and
- Cancer Center, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|