1
|
Hanau S, Helliwell JR. Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy. Acta Crystallogr F Struct Biol Commun 2024; 80:236-251. [PMID: 39259139 PMCID: PMC11448927 DOI: 10.1107/s2053230x24008112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Stefania Hanau
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - John R Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Fuentes-Lemus E, Reyes JS, Figueroa JD, Davies MJ, López-Alarcón C. The enzymes of the oxidative phase of the pentose phosphate pathway as targets of reactive species: consequences for NADPH production. Biochem Soc Trans 2023; 51:2173-2187. [PMID: 37971161 DOI: 10.1042/bst20231027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The pentose phosphate pathway (PPP) is a key metabolic pathway. The oxidative phase of this process involves three reactions catalyzed by glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL) and 6-phosphogluconate dehydrogenase (6PGDH) enzymes. The first and third steps (catalyzed by G6PDH and 6PGDH, respectively) are responsible for generating reduced nicotinamide adenine dinucleotide phosphate (NAPDH), a key cofactor for maintaining the reducing power of cells and detoxification of both endogenous and exogenous oxidants and electrophiles. Despite the importance of these enzymes, little attention has been paid to the fact that these proteins are targets of oxidants. In response to oxidative stimuli metabolic pathways are modulated, with the PPP often up-regulated in order to enhance or maintain the reductive capacity of cells. Under such circumstances, oxidation and inactivation of the PPP enzymes could be detrimental. Damage to the PPP enzymes may result in a downward spiral, as depending on the extent and sites of modification, these alterations may result in a loss of enzymatic activity and therefore increased oxidative damage due to NADPH depletion. In recent years, it has become evident that the three enzymes of the oxidative phase of the PPP have different susceptibilities to inactivation on exposure to different oxidants. In this review, we discuss existing knowledge on the role that these enzymes play in the metabolism of cells, and their susceptibility to oxidation and inactivation with special emphasis on NADPH production. Perspectives on achieving a better understanding of the molecular basis of the oxidation these enzymes within cellular environments are given.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Juan Sebastián Reyes
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan David Figueroa
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Paul A, Roy PK, Babu NK, Dhumal TT, Singh S. Leishmania donovani 6-phosphogluconolactonase: Crucial for growth and host infection? Microb Pathog 2023; 178:106082. [PMID: 36958644 DOI: 10.1016/j.micpath.2023.106082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
The hexose monophosphate shunt is a crucial pathway in a variety of microorganisms owing to its vital metabolic products and intermediates such as NADPH, ribose 5-phosphate etc. The enzyme 6-phosphogluconolactonase catalyses the second step of this pathway, converting 6-phosphogluconolactone to 6-phosphogluconic acid. This enzyme has been known to have a significant involvement in growth, pathogenesis and sensitivity to oxidative stress in bacterial and protozoal pathogens. However, the functional role of kinetoplastid Leishmania donovani 6-phospohogluconolactonase (Ld6PGL) remains unexplored. L. donovani is the second largest parasitic killer and causative organism of life threatening visceral leishmaniasis. To understand its possible functional role in the parasite, the alleles of Ld6PGL were sequentially knocked-out followed by gene complementation. The Ld6PGL mutant cell lines showed decrease in transcriptional and translational expression as well as in the enzyme activity. In case of Ld6PGL null mutants, approximately 2-fold reduction was observed in growth. The null mutants also showed ∼38% decrease in infectivity, which recovered to ∼15% on complementation. Scanning electron microscopy showed a marked decrease in flagellar length in the knockout parasites. When treated with the standard drug miltefosine, the mutant strains had no significant change in the drug sensitivity. However, the Ld6PGL mutants were more susceptible to oxidative stress. Our findings suggest that 6PGL is required for parasite growth and infection but it is not essential.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Tushar Tukaram Dhumal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
4
|
Dhumal TT, Kumar R, Paul A, Roy PK, Garg P, Singh S. Molecular explorations of the Leishmania donovani 6-phosphogluconolactonase enzyme, a key player in the pentose phosphate pathway. Biochimie 2022; 202:212-225. [PMID: 36037881 DOI: 10.1016/j.biochi.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
The enzymes of the pentose phosphate pathway are vital to survival in kinetoplastids. The second step of the pentose phosphate pathway involves hydrolytic cleavage of 6-phosphogluconolactone to 6-phosphogluconic acid by 6- phosphogluconolactonase (6PGL). In the present study, Leishmania donovani 6PGL (Ld6PGL) was cloned and overexpressed in bacterial expression system. Comparative sequence analysis revealed the conserved sequence motifs, functionally and structurally important residues in 6PGL family. In silico amino acid substitution study and interacting partners of 6PGL were predicted. The Ld6PGL enzyme was found to be active in the assay and in the parasites. Specificity was confirmed by western blot analysis. The ∼30 kDa protein was found to be a dimer in MALDI, glutaraldehyde crosslinking and size exclusion chromatography studies. Kinetic analysis and structural stability studies of Ld6PGL were performed with denaturants and at varied temperature. Computational 3D Structural modelling of Ld6PGL elucidates that it has a similar α/β hydrolase fold structural topology as in other members of 6PGL family. The three loops are found in extended form when the structure is compared with the human 6PGL (Hs6PGL). Further, enzyme substrate binding mode and its mechanism were investigated using the molecular docking and molecular simulation studies. Interesting dynamics action of substrate 6-phosphogluconolactone was observed into active site during MD simulation. Interesting differences were observed between host and parasite enzyme which pointed towards its potential to be explored as an antileishmanial drug target. This study forms the basis for further analysis of the role of Ld6PGL in combating oxidative stress in Leishmania.
Collapse
Affiliation(s)
- Tushar Tukaram Dhumal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden
| | - Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
5
|
Tian D, Fu X, Cao W, Yuan H. Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum. Acta Crystallogr F Struct Biol Commun 2020; 76:228-234. [PMID: 32356525 PMCID: PMC7193515 DOI: 10.1107/s2053230x20005336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Gluconate 5-dehydrogenase (Ga5DH; EC 1.1.1.69) from Lentibacter algarum (LaGa5DH) was recombinantly expressed in Escherichia coli and purified to homogeneity. The protein was crystallized and the crystal structure was solved at 2.1 Å resolution. The crystal belonged to the monoclinic system, with space group P1 and unit-cell parameters a = 55.42, b = 55.48, c = 79.16 Å, α = 100.51, β = 105.66, γ = 97.99°. The structure revealed LaGaDH to be a tetramer, with each subunit consisting of six α-helices and three antiparallel β-hairpins. LaGa5DH has high structural similarity to other Ga5DH proteins, demonstrating that this enzyme is highly conserved.
Collapse
Affiliation(s)
- Dengke Tian
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, People’s Republic of China
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, People’s Republic of China
| | - Wenqiang Cao
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, People’s Republic of China
- Zhuhai Hopegenes Medical and Phamaceutical Institute, Hengqin New Area, Zhuhai, Guangdong 519000, People’s Republic of China
| | - Hong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People’s Republic of China
| |
Collapse
|
6
|
Lansing H, Doering L, Fischer K, Baune MC, Schaewen AV. Analysis of potential redundancy among Arabidopsis 6-phosphogluconolactonase isoforms in peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:823-836. [PMID: 31641750 DOI: 10.1093/jxb/erz473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
Recent work revealed that PGD2, an Arabidopsis 6-phosphogluconate dehydrogenase (6-PGD) catalysing the third step of the oxidative pentose-phosphate pathway (OPPP) in peroxisomes, is essential during fertilization. Earlier studies on the second step, catalysed by PGL3, a dually targeted Arabidopsis 6-phosphogluconolactonase (6-PGL), reported the importance of OPPP reactions in plastids but their irrelevance in peroxisomes. Assuming redundancy of 6-PGL activity in peroxisomes, we examined the sequences of other higher plant enzymes. In tomato, there exist two 6-PGL isoforms with the strong PTS1 motif SKL. However, their analysis revealed problems regarding peroxisomal targeting: reporter-PGL detection in peroxisomes required construct modification, which was also applied to the Arabidopsis isoforms. The relative contribution of PGL3 versus PGL5 during fertilization was assessed by mutant crosses. Reduced transmission ratios were found for pgl3-1 (T-DNA-eliminated PTS1) and also for knock-out allele pgl5-2. The prominent role of PGL3 showed as compromised growth of pgl3-1 seedlings on sucrose and higher activity of mutant PGL3-1 versus PGL5 using purified recombinant proteins. Evidence for PTS1-independent uptake was found for PGL3-1 and other Arabidopsis PGL isoforms, indicating that peroxisome import may be supported by a piggybacking mechanism. Thus, multiple redundancy at the level of the second OPPP step in peroxisomes explains the occurrence of pgl3-1 mutant plants.
Collapse
Affiliation(s)
- Hannes Lansing
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Lennart Doering
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Kerstin Fischer
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Marie-Christin Baune
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Antje Von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| |
Collapse
|
7
|
Targeting the Pentose Phosphate Pathway: Characterization of a New 6PGL Inhibitor. Biophys J 2018; 115:2114-2126. [PMID: 30467026 DOI: 10.1016/j.bpj.2018.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Human African trypanosomiasis, or sleeping sickness, is a lethal disease caused by the protozoan parasite Trypanosoma brucei. However, although many efforts have been made to understand the biochemistry of this parasite, drug development has led to treatments that are of limited efficiency and of great toxicity. To develop new drugs, new targets must be identified, and among the several metabolic processes of trypanosomes that have been proposed as drug targets, carbohydrate metabolism (glycolysis and the pentose phosphate pathway (PPP)) appears as a promising one. As far as the PPP is concerned, a limited number of studies are related to the glucose-6-phosphate dehydrogenase. In this work, we have focused on the activity of the second PPP enzyme (6-phospho-gluconolactonase (6PGL)) that transforms 6-phosphogluconolactone into 6-phosphogluconic acid. A lactam analog of the natural substrate has been synthesized, and binding of the ligand to 6PGL has been investigated by NMR titration. The ability of this ligand to inhibit 6PGL has also been demonstrated using ultraviolet experiments, and protein-inhibitor interactions have been investigated through docking calculations and molecular dynamics simulations. In addition, a marginal inhibition of the third enzyme of the PPP (6-phosphogluconate dehydrogenase) was also demonstrated. Our results thus open new prospects for targeting T. brucei.
Collapse
|
8
|
Fatima T, Rani S, Fischer S, Efferth T, Kiani FA. The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism. Biophys Chem 2018; 240:98-106. [PMID: 30014892 DOI: 10.1016/j.bpc.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/28/2022]
Abstract
Hydrolysis reaction marks the basis of life yet the mechanism of this crucial biochemical reaction is not completely understood. We recently reported the mechanisms of hydrolysis of nucleoside triphosphate and phosphate monoester. These two reactions hydrolyze P-O-P and P-O-C linkages, respectively. Here, we present the mechanism of hydrolysis of δ-6-phosphogluconolactone, which is an important precursor in the second step of the pentose phosphate pathway. Its hydrolysis requires the cleavage of C-O-C linkage and its mechanism is hitherto unknown. We report three mechanisms of hydrolysis of δ-6-phosphogluconolactone based on density functional computations. In the energetically most favorable mechanism, two water molecules participate in the hydrolysis reaction and the mechanism is sequential, i.e., activation of the attacking water molecule (OH bond breaking) precedes that of the cleavage of the CO bond of the C-O-C linkage. The rate-limiting energy barrier of this mechanism is comparable to the reported experimental free energy barrier. This mechanism has similarities with the mechanism of triphosphate hydrolysis and that of hydrolytic cleavage of DNA in EcoRV enzyme. This two-water sequential hydrolysis mechanism could be the unified mechanism required for the hydrolysis of other hydrolysable species in living cells.
Collapse
Affiliation(s)
- Tabeer Fatima
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; Department of Biotechnology, University of Sialkot, 51310 Sialkot, Pakistan
| | - Sadaf Rani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Stefan Fischer
- Interdisciplinary Center for Scientific Computing, The University of Heidelberg, D-69120 Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Farooq Ahmad Kiani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, 02118 Boston, MA, United States.
| |
Collapse
|
9
|
Sutter JM, Johnsen U, Schönheit P. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. FEMS Microbiol Lett 2018; 364:3898818. [PMID: 28854683 DOI: 10.1093/femsle/fnx140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022] Open
Abstract
Haloferax volcanii degrades the pentoses D-xylose and L-arabinose via an oxidative pathway to α-ketoglutarate as an intermediate. The initial dehydrogenases of the pathway, D-xylose dehydrogenase (XDH) and L-arabinose dehydrogenase (L-AraDH) catalyze the NADP+ dependent D-xylose and L-arabinose oxidation. It is shown here that the pentoses are oxidized to the corresponding lactones, D-xylono-γ-lactone and L-arabino-γ-lactone, rather than to the respective sugar acids. A putative lactonase gene, xacC, located in genomic vicinity of XDH and L-AraDH, was found to be transcriptionally upregulated by both D-xylose and L-arabinose mediated by the pentose-specific regulator XacR. The recombinant lactonase catalyzed the hydrolysis of D-xylono-γ-lactone and L-arabino-γ-lactone. This is the first report of a functional lactonase involved in sugar catabolism in the domain of archaea.
Collapse
Affiliation(s)
- Jan-Moritz Sutter
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
10
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
11
|
The Pentose Phosphate Pathway in Parasitic Trypanosomatids. Trends Parasitol 2016; 32:622-634. [DOI: 10.1016/j.pt.2016.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022]
|
12
|
Keller MA, Piedrafita G, Ralser M. The widespread role of non-enzymatic reactions in cellular metabolism. Curr Opin Biotechnol 2015; 34:153-61. [PMID: 25617827 PMCID: PMC4728180 DOI: 10.1016/j.copbio.2014.12.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
Non-enzymatic reactions are widespread and integral part of metabolism. Non-enzymatic metabolic reactions occur either spontaneously or small molecule catalyzed. They subdivide between broad/unspecific, and specific reactions that contribute to metabolism. Specific reactions occur both, exclusively non-enzymatically or parallel to enzymes. Non-enzymatic reactions affect drug design and network reconstruction.
Enzymes shape cellular metabolism, are regulated, fast, and for most cases specific. Enzymes do not however prevent the parallel occurrence of non-enzymatic reactions. Non-enzymatic reactions were important for the evolution of metabolic pathways, but are retained as part of the modern metabolic network. They divide into unspecific chemical reactivity and specific reactions that occur either exclusively non-enzymatically as part of the metabolic network, or in parallel to existing enzyme functions. Non-enzymatic reactions resemble catalytic mechanisms as found in all major enzyme classes and occur spontaneously, small molecule (e.g. metal-) catalyzed or light-induced. The frequent occurrence of non-enzymatic reactions impacts on stability and metabolic network structure, and has thus to be considered in the context of metabolic disease, network modeling, biotechnology and drug design.
Collapse
Affiliation(s)
- Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| | - Gabriel Piedrafita
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK; MRC National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK.
| |
Collapse
|
13
|
Pokkuluri PR, Dwulit-Smith J, Duke NE, Wilton R, Mack JC, Bearden J, Rakowski E, Babnigg G, Szurmant H, Joachimiak A, Schiffer M. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: structure of one sensor domain from a histidine kinase and another from a chemotaxis protein. Microbiologyopen 2013; 2:766-77. [PMID: 23897711 PMCID: PMC3831638 DOI: 10.1002/mbo3.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/11/2013] [Indexed: 11/16/2022] Open
Abstract
Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans.
Collapse
Affiliation(s)
- P Raj Pokkuluri
- Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Calligari PA, Salgado GF, Pelupessy P, Lopes P, Ouazzani J, Bodenhausen G, Abergel D. Insights into internal dynamics of 6-phosphogluconolactonase from Trypanosoma brucei studied by nuclear magnetic resonance and molecular dynamics. Proteins 2012; 80:1196-210. [DOI: 10.1002/prot.24019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/23/2011] [Accepted: 12/04/2011] [Indexed: 11/05/2022]
|
15
|
Ortíz C, Larrieux N, Medeiros A, Botti H, Comini M, Buschiazzo A. Expression, crystallization and preliminary X-ray crystallographic analysis of glucose-6-phosphate dehydrogenase from the human pathogen Trypanosoma cruzi in complex with substrate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1457-61. [PMID: 22102256 PMCID: PMC3212475 DOI: 10.1107/s1744309111037821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/16/2011] [Indexed: 11/10/2022]
Abstract
An N-terminally truncated version of the enzyme glucose-6-phosphate dehydrogenase from Trypanosoma cruzi lacking the first 37 residues was crystallized both in its apo form and in a binary complex with glucose 6-phosphate. The crystals both belonged to space group P2(1) and diffracted to 2.85 and 3.35 Å resolution, respectively. Self-rotation function maps were consistent with point group 222. The structure was solved by molecular replacement, confirming a tetrameric quaternary structure.
Collapse
Affiliation(s)
- Cecilia Ortíz
- Redox Biology of Trypanosomes Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Nicole Larrieux
- Unit of Protein Crystallography, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Andrea Medeiros
- Redox Biology of Trypanosomes Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
- Biochemistry Department, Universidad de la República, Avenida General Flores 2125, 11800 Montevideo, Uruguay
| | - Horacio Botti
- Unit of Protein Crystallography, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Marcelo Comini
- Redox Biology of Trypanosomes Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Unit of Protein Crystallography, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
- Department of Structural Biology and Chemistry, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
16
|
Vazquez J, Hall SC, Greco MA. Protein expression is altered during spontaneous sleep in aged Sprague Dawley rats. Brain Res 2009; 1298:37-45. [PMID: 19729003 PMCID: PMC2778600 DOI: 10.1016/j.brainres.2009.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 07/28/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
Age-related changes in brain function include those affecting learning, memory, and sleep-wakefulness. Sleep-wakefulness is an essential behavior that results from the interaction of multiple brain regions, peptides, and neurotransmitters. The biological function(s) of sleep, however, remains unknown due to a paucity of information available at the cellular level. Aged rats exhibit alterations in the circadian and homeostatic influences associated with sleep-wake regulation. We recently showed that alterations in cortical profiles occur after timed bouts of spontaneous sleep in young rats. Examination of the cellular response to sleep-wake in old rats may thus provide insight(s) into the biological function(s) of sleep. To test this hypothesis, we monitored cortical profiles in the frontal cortex of young and old Sprague-Dawley rats after timed bouts of spontaneous sleep-wake behavior. Proteins were separated by two-dimensional electrophoresis (2-DE), visualized by fluorescent staining, imaged, and analyzed as a function of behavioral state and age. Old rats showed a 6-fold increase in total protein expression, independent of the behavioral state at sacrifice. When analyzed according to age and behavioral state, there was a decrease (approximately 46%) in the number of phospho-spots present during SWS in aged animals. SWS-associated spots present only in old animals were associated with multiple functions including vesicular transport, cell signaling, oxidation state, cytoskeletal support, and energy metabolism. These data suggest that the intracellular response to the signaling associated with spontaneous sleep is affected by age and is consistent with the idea that the ability of sleep to fulfill its function(s) may become diminished with age.
Collapse
Affiliation(s)
- Jacqueline Vazquez
- Behavioral Biochemistry Laboratory, Biosciences Division SRI International, Menlo Park, CA, 94025
| | - Steven C. Hall
- Sandler-Moore Mass Spectrometry Facility, University of California, San Francisco, CA, 94143
| | - Mary Ann Greco
- Behavioral Biochemistry Laboratory, Biosciences Division SRI International, Menlo Park, CA, 94025
| |
Collapse
|
17
|
Zhang Q, Peng H, Gao F, Liu Y, Cheng H, Thompson J, Gao GF. Structural insight into the catalytic mechanism of gluconate 5-dehydrogenase from Streptococcus suis: Crystal structures of the substrate-free and quaternary complex enzymes. Protein Sci 2009; 18:294-303. [PMID: 19177572 DOI: 10.1002/pro.32] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gluconate 5-dehydrogenase (Ga5DH) is an NADP(H)-dependent enzyme that catalyzes a reversible oxidoreduction reaction between D-gluconate and 5-keto-D-gluconate, thereby regulating the flux of this important carbon and energy source in bacteria. Despite the considerable amount of physiological and biochemical knowledge of Ga5DH, there is little physical or structural information available for this enzyme. To this end, we herein report the crystal structures of Ga5DH from pathogenic Streptococcus suis serotype 2 in both substrate-free and liganded (NADP(+)/D-gluconate/metal ion) quaternary complex forms at 2.0 A resolution. Structural analysis reveals that Ga5DH adopts a protein fold similar to that found in members of the short chain dehydrogenase/reductase (SDR) family, while the enzyme itself represents a previously uncharacterized member of this family. In solution, Ga5DH exists as a tetramer that comprised four identical approximately 29 kDa subunits. The catalytic site of Ga5DH shows considerable architectural similarity to that found in other enzymes of the SDR family, but the S. suis protein contains an additional residue (Arg104) that plays an important role in the binding and orientation of substrate. The quaternary complex structure provides the first clear crystallographic evidence for the role of a catalytically important serine residue and also reveals an amino acid tetrad RSYK that differs from the SYK triad found in the majority of SDR enzymes. Detailed analysis of the crystal structures reveals important contributions of Ca(2+) ions to active site formation and of specific residues at the C-termini of subunits to tetramer assembly. Because Ga5DH is a potential target for therapy, our findings provide insight not only of catalytic mechanism, but also suggest a target of structure-based drug design.
Collapse
Affiliation(s)
- Qiangmin Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic Of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Insights into the enzymatic mechanism of 6-phosphogluconolactonase from Trypanosoma brucei using structural data and molecular dynamics simulation. J Mol Biol 2009; 388:1009-21. [PMID: 19345229 DOI: 10.1016/j.jmb.2009.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 11/23/2022]
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness. Current work for the development of new drugs against this pathology includes evaluation of enzymes of the pentose phosphate pathway (PPP), which first requires a clear understanding of their function and mechanism of action. In this context, we focused on T. brucei 6-phosphogluconolactonase (Tb6PGL), which converts delta-6-phosphogluconolactone into 6-phosphogluconic acid in the second step of the PPP. We have determined the crystal structure of Tb6PGL in complex with two ligands, 6-phosphogluconic acid and citrate, at 2.2 A and 2.0 A resolution, respectively. We have performed molecular dynamics (MD) simulations on Tb6PGL in its empty form and in complex with delta-6-phosphogluconolactone, its natural ligand. Analysis of the structural data and MD simulations allowed us to propose a detailed enzymatic mechanism for 6PGL enzymes.
Collapse
|
19
|
Igoillo-Esteve M, Maugeri D, Stern AL, Beluardi P, Cazzulo JJ. The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease. AN ACAD BRAS CIENC 2008; 79:649-63. [PMID: 18066434 DOI: 10.1590/s0001-37652007000400007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 08/17/2007] [Indexed: 11/21/2022] Open
Abstract
Trypanosoma cruzi is highly sensitive to oxidative stress caused by reactive oxygen species. Trypanothione, the parasite's major protection against oxidative stress, is kept reduced by trypanothione reductase, using NADPH; the major source of the reduced coenzyme seems to be the pentose phosphate pathway. Its seven enzymes are present in the four major stages in the parasite's biological cycle; we have cloned and expressed them in Escherichia coli as active proteins. Glucose 6-phosphate dehydrogenase, which controls glucose flux through the pathway by its response to the NADP/NADPH ratio, is encoded by a number of genes per haploid genome, and is induced up to 46-fold by hydrogen peroxide in metacyclic trypomastigotes. The genes encoding 6-phosphogluconolactonase, 6-phosphogluconate dehydrogenase, transaldolase and transketolase are present in the CL Brener clone as a single copy per haploid genome. 6-phosphogluconate dehydrogenase is very unstable, but was stabilized introducing two salt bridges by site-directed mutagenesis. Ribose-5-phosphate isomerase belongs to Type B; genes encoding Type A enzymes, present in mammals, are absent. Ribulose-5-phosphate epimerase is encoded by two genes. The enzymes of the pathway have a major cytosolic component, although several of them have a secondary glycosomal localization, and also minor localizations in other organelles.
Collapse
Affiliation(s)
- Mariana Igoillo-Esteve
- Instituto de Investigaciones Biotecnologicas, Instituto Tecnologico de Chascomus, Provincia de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
20
|
Nodet G, Abergel D. An overview of recent developments in the interpretation and prediction of fast internal protein dynamics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:985-93. [PMID: 17562038 DOI: 10.1007/s00249-007-0167-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/05/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
During the past decades, NMR spectroscopy has emerged as a unique tool for the study of protein dynamics. Indeed, relaxation studies on isotopically labeled proteins can provide information on the overall motions as well as the internal fast, sub-nanosecond, dynamics. Therefore, the interpretation and the prediction of spin relaxation rates in proteins are important issues that have motivated numerous theoretical and methodological developments, including the description of overall dynamics and its possible coupling to internal mobility, the introduction of models of internal dynamics, the determination of correlation functions from experimental data, and the relationship between relaxation and thermodynamical quantities. A brief account of recent developments that have proven useful in this domain are presented.
Collapse
Affiliation(s)
- Gabrielle Nodet
- Département de Chimie, Ecole Normale Supérieure, 24, rue Lhomond, 75231, Paris Cedex 05, France
| | | |
Collapse
|