1
|
Hao J, Han G, Liang X, Ruan Y, Huang C, Sa N, Hu H, Hu B, Li Z, Zhang K, Gao P, Dong X. PELO regulates erythroid differentiation through interaction with MYC to upregulate KLF10. FEBS J 2024; 291:4714-4731. [PMID: 39206622 DOI: 10.1111/febs.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/27/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Erythropoiesis is a multistep process of erythroid cell production that is controlled by multiple regulatory factors. Ribosome rescue factor PELO plays a crucial role in cell meiotic division and mice embryonic development. However, the function of PELO in erythroid differentiation remains unclear. Here, we showed that knockdown of PELO increased hemin-induced erythroid differentiation of K562 and HEL cells, exhibiting a higher number of benzidine-positive cells and increased mRNA levels of erythroid genes. PELO knockdown inhibited the proliferation and cell cycle progression and promoted apoptosis of K562 cells. Mechanistically, PELO could regulate the expression of KLF10 through interaction with MYC. Moreover, KLF10 knockdown also enhanced erythroid differentiation of K562 and HEL cells induced by hemin. Collectively, our results demonstrated that PELO regulates erythroid differentiation and increases KLF10 expression levels by interacting with MYC.
Collapse
Affiliation(s)
- Jinglan Hao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guiqin Han
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yongtong Ruan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Naer Sa
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hang Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bixi Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhongqi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kai Zhang
- Hansoh Bio, 9600 Medical Center drive, Rockville, USA
| | - Ping Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoming Dong
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
2
|
Hoffmann M, Trummer N, Schwartz L, Jankowski J, Lee HK, Willruth LL, Lazareva O, Yuan K, Baumgarten N, Schmidt F, Baumbach J, Schulz MH, Blumenthal DB, Hennighausen L, List M. TF-Prioritizer: a Java pipeline to prioritize condition-specific transcription factors. Gigascience 2022; 12:giad026. [PMID: 37132521 PMCID: PMC10155229 DOI: 10.1093/gigascience/giad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results. RESULTS We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we observe and discuss assay-specific differences. CONCLUSION TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.
Collapse
Affiliation(s)
- Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354, Germany
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nico Trummer
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Leon Schwartz
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Jakub Jankowski
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lina-Liv Willruth
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Olga Lazareva
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Kevin Yuan
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Nina Baumgarten
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Florian Schmidt
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, 60 Biopolis Street, Singapore
138672, Singapore
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lothar Hennighausen
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| |
Collapse
|
3
|
Bagchi A, Devaraju N, Chambayil K, Rajendiran V, Venkatesan V, Sayed N, Pai AA, Nath A, David E, Nakamura Y, Balasubramanian P, Srivastava A, Thangavel S, Mohankumar KM, Velayudhan SR. Erythroid lineage-specific lentiviral RNAi vectors suitable for molecular functional studies and therapeutic applications. Sci Rep 2022; 12:14033. [PMID: 35982069 PMCID: PMC9388678 DOI: 10.1038/s41598-022-13783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Nivedhitha Devaraju
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Nilofer Sayed
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, 3050074, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Kumarasamypet M Mohankumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India.
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
4
|
Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis. Blood 2022; 139:3532-3545. [PMID: 35297980 DOI: 10.1182/blood.2021014308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Hemogen, also known as EDAG, is a hematopoietic tissue-specific gene that regulates the proliferation and differentiation of hematopoietic cells. However, the mechanism underlying hemogen function in erythropoiesis is unknown. We found that depletion of hemogen in human CD34+ erythroid progenitor cells and HUDEP2 cells significantly reduced the expression of genes associated with heme and hemoglobin synthesis, supporting a positive role of hemogen in erythroid maturation. In human K562 cells, hemogen antagonized the occupancy of co-repressors NuRD complex and facilitated LDB1 complex-mediated chromatin looping. Hemogen recruited SWI/SNF complex ATPase BRG1 as a co-activator to regulate nucleosome accessibility and H3K27ac enrichment for promoter and enhancer activity. To ask if hemogen/BRG1 cooperativity is conserved in mammalian systems, we generated hemogen KO/KI mice and investigated hemogen/BRG1 function in murine erythropoiesis. Loss of hemogen in E12.5-E16.5 fetal liver cells impeded erythroid differentiation through reducing the production of mature erythroblasts. ChIP-seq in WT and hemogen KO animal revealed BRG1 is largely dependent on hemogen to regulate chromatin accessibility at erythroid gene promoters and enhancers. In summary, hemogen/BRG1 interaction in mammals is essential for fetal erythroid maturation and hemoglobin production through its active role in promoter and enhancer activity and chromatin organization.
Collapse
|
5
|
Abstract
β-thalassemia is caused by mutations in the β-globin gene which diminishes or abolishes β-globin chain production. This reduction causes an imbalance of the α/β-globin chain ratio and contributes to the pathogenesis of the disease. Several approaches to reduce the imbalance of the α/β ratio using several nucleic acid-based technologies such as RNAi, lentiviral mediated gene therapy, splice switching oligonucleotides (SSOs) and gene editing technology have been investigated extensively. These approaches aim to reduce excess free α-globin, either by reducing the α-globin chain, restoring β-globin expression and reactivating γ-globin expression, leading a reduced disease severity, treatment necessity, treatment interval, and disease complications, thus, increasing the life quality of the patients and alleviating economic burden. Therefore, nucleic acid-based therapy might become a potential targeted therapy for β-thalassemia.
Collapse
Affiliation(s)
- Annette d'Arqom
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
6
|
Schmidt F, Kern F, Schulz MH. Integrative prediction of gene expression with chromatin accessibility and conformation data. Epigenetics Chromatin 2020; 13:4. [PMID: 32029002 PMCID: PMC7003490 DOI: 10.1186/s13072-020-0327-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Enhancers play a fundamental role in orchestrating cell state and development. Although several methods have been developed to identify enhancers, linking them to their target genes is still an open problem. Several theories have been proposed on the functional mechanisms of enhancers, which triggered the development of various methods to infer promoter-enhancer interactions (PEIs). The advancement of high-throughput techniques describing the three-dimensional organization of the chromatin, paved the way to pinpoint long-range PEIs. Here we investigated whether including PEIs in computational models for the prediction of gene expression improves performance and interpretability. RESULTS We have extended our [Formula: see text] framework to include DNA contacts deduced from chromatin conformation capture experiments and compared various methods to determine PEIs using predictive modelling of gene expression from chromatin accessibility data and predicted transcription factor (TF) motif data. We designed a novel machine learning approach that allows the prioritization of TFs binding to distal loop and promoter regions with respect to their importance for gene expression regulation. Our analysis revealed a set of core TFs that are part of enhancer-promoter loops involving YY1 in different cell lines. CONCLUSION We present a novel approach that can be used to prioritize TFs involved in distal and promoter-proximal regulatory events by integrating chromatin accessibility, conformation, and gene expression data. We show that the integration of chromatin conformation data can improve gene expression prediction and aids model interpretability.
Collapse
Affiliation(s)
- Florian Schmidt
- High-throughput Genomics & Systems Biology, Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max-Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672 Singapore
| | - Fabian Kern
- High-throughput Genomics & Systems Biology, Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Chair for Clinical Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Marcel H. Schulz
- High-throughput Genomics & Systems Biology, Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max-Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Institute of Cardiovascular Regeneration, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner Site Rhein-Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Dong X, Wang F, Xue Y, Lin Z, Song W, Yang N, Li Q. MicroRNA‑9‑5p downregulates Klf4 and influences the progression of hepatocellular carcinoma via the AKT signaling pathway. Int J Mol Med 2019; 43:1417-1429. [PMID: 30664155 PMCID: PMC6365078 DOI: 10.3892/ijmm.2019.4062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Krüppel-like factor 4 (Klf4) is a transcriptional factor involved in the progression of hepatocellular carcinoma (HCC). However, the underlying regulatory mechanisms associated with the Klf4 gene as a tumor suppressor in HCC remain unclear. microRNAs (miRNAs or miRs) are a series of small non-coding RNAs that serve a vital role in regulating gene expression via their influence on protein translation and the associated degradation of mRNA. The mRNA expression levels of the miRNA, miR-9-5p, and Klf4 were measured using reverse transcription-quantitative polymerase chain reaction. The protein expression levels of Klf4, protein kinase B (AKT), phosphorylated (p-)AKT, mechanistic target of rapamycin (mTOR), p-mTOR, B cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) were determined by western blot analysis. Dual luciferase reporter assay was used to confirm a direct interaction between miR-9-5p and the 3′-untranslated region (3′-UTR) sequence of Klf4. Cell counting kit-8 assay, wound healing assay, Transwell migration assay and flow cytometric analysis were performed to evaluate the proliferative, migratory and apoptotic capabilities of the HCC cells. In the present study, miR-9-5p was revealed to be overexpressed in HCC as a novel upstream gene of Klf4. miR-9-5p expression was inversely associated with Klf4 expression in clinical samples. Additionally, Kaplan-Meier analysis revealed a markedly poor prognosis of HCC in the miR-9-5p high-expression group. Bioinformatics analysis revealed that miR-9-5p bound directly to the 3′-UTR of Klf4, which reduced the expression levels of Klf4. The miR-9-5p/Klf4 axis promoted HCC proliferation and migration, and inhibited HCC apoptosis. Furthermore, miR-9-5p upregulated the Bcl-2/Bax protein ratio and activated AKT/mTOR signaling. Taken together, these data demonstrated that the miR-9-5p/Klf4 axis was able to promote HCC progression, which may occur via regulation of the AKT signaling pathway, highlighting a potential novel target in HCC treatment.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ying Xue
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhipeng Lin
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Weifeng Song
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ning Yang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200082, P.R. China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
8
|
Yi X, Zai H, Long X, Wang X, Li W, Li Y. Krüppel-like factor 8 induces epithelial-to-mesenchymal transition and promotes invasion of pancreatic cancer cells through transcriptional activation of four and a half LIM-only protein 2. Oncol Lett 2017; 14:4883-4889. [PMID: 28943967 DOI: 10.3892/ol.2017.6734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive types of cancer with an extremely poor prognosis. Invasive growth and early metastasis is one of the greatest challenges to overcome for the treatment of PC. Numerous previous studies have indicated that the transcription factor Krüppel-like factor 8 (KLF8) and nuclear cofactor four and a half LIM-only protein 2 (FHL2) serve important roles in tumorigenesis and tumor progression; however, their roles in PC remain elusive. The present study revealed that KLF8 and FHL2 expression is aberrantly co-overexpressed in PC tissue samples and associated with tumor metastasis. Furthermore, a positive correlation between the expression levels of KLF8 and FHL2 was observed. Subsequently, the present study identified KLF8 as a critical inducer of epithelial-to-mesenchymal transition (EMT) and invasion. Of note, the present study demonstrated that KLF8 overexpression induced a strong increase in FHL2 expression, and subsequent promoter reporter assays determined that KLF8 directly bound and activated the FHL2 gene promoter. Furthermore, FHL2 knockdown in KLF8-overexpressing cells partially reversed the EMT and invasive phenotypes. The present study identified KLF8-induced FHL2 activation as a novel and critical signaling mechanism underlying human PC invasion.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Postdoctoral Research Workstation of Pathology and Pathophysiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongyan Zai
- Department of General Surgery, Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xueying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoyi Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yixiong Li
- Department of General Surgery, Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
9
|
Ernst J, Melnikov A, Zhang X, Wang L, Rogov P, Mikkelsen TS, Kellis M. Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions. Nat Biotechnol 2016; 34:1180-1190. [PMID: 27701403 PMCID: PMC5125825 DOI: 10.1038/nbt.3678] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/16/2016] [Indexed: 02/07/2023]
Abstract
Massively parallel reporter assays (MPRAs) enable nucleotide-resolution dissection of transcriptional regulatory regions, such as enhancers, but only few regions at a time. Here we present a combined experimental and computational approach, Systematic high-resolution activation and repression profiling with reporter tiling using MPRA (Sharpr-MPRA), that allows high-resolution analysis of thousands of regions simultaneously. Sharpr-MPRA combines dense tiling of overlapping MPRA constructs with a probabilistic graphical model to recognize functional regulatory nucleotides, and to distinguish activating and repressive nucleotides, using their inferred contribution to reporter gene expression. We used Sharpr-MPRA to test 4.6 million nucleotides spanning 15,000 putative regulatory regions tiled at 5-nucleotide resolution in two human cell types. Our results recovered known cell-type-specific regulatory motifs and evolutionarily conserved nucleotides, and distinguished known activating and repressive motifs. Our results also showed that endogenous chromatin state and DNA accessibility are both predictive of regulatory function in reporter assays, identified retroviral elements with activating roles, and uncovered 'attenuator' motifs with repressive roles in active chromatin.
Collapse
Affiliation(s)
- Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, California, USA
- Computer Science Department, University of California, Los Angeles, California, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Alexandre Melnikov
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Xiaolan Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Li Wang
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Peter Rogov
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Tarjei S. Mikkelsen
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Manolis Kellis
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Shen YN, He HG, Shi Y, Cao J, Yuan JY, Wang ZC, Shi CF, Zhu N, Wei YP, Liu F, Huang JL, Yang GS, Lu JH. Krüppel-like factor 8 promotes cancer stem cell-like traits in hepatocellular carcinoma through Wnt/β-catenin signaling. Mol Carcinog 2016; 56:751-760. [PMID: 27478926 DOI: 10.1002/mc.22532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 01/15/2023]
Abstract
Krüppel-like factor 8 (KLF8) is highly expressed in hepatocellular carcinoma (HCC) and contributes to tumor initiation and progression by promoting HCC cell proliferation and invasion. However, the role of KLF8 in liver cancer stem cells (LCSCs) is not known. In the current study, we investigated the role of KLF8 in LCSCs to determine if KLF8 is a novel marker of these cells. We found that KLF8 was highly expressed in primary HCC tumors, distant migrated tissues, and LCSCs. Patients with high KLF8 expression had a poor prognosis. KLF8 promoted stem cell-like features through activation of the Wnt/β-catenin signaling pathway. Cell apoptosis was significantly increased in HCC cells with knockdown of KLF8 compared with the control cells when treated with the same doses of sorafenib or cisplatin. Taken together, our study shows that KLF8 plays a potent oncogenic role in HCC tumorigenesis by maintaining stem cell-like features through activation of the Wnt/β-catenin signaling pathway and promoting chemoresistance. Thus, targeting KLF8 may provide an effective therapeutic approach to suppress tumorigenicity of HCC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Nan Shen
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Guan He
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yang Shi
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian Cao
- The 3rd Department of Surgery, The Third People's Hospital of Jiujiang, Jiujiang, Jiangxi Prov, China
| | - Jian-Yong Yuan
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhou-Chong Wang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chun-Feng Shi
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nan Zhu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Peng Wei
- Xiangan Institute of Health of Retired Cadres, Second Military Medical University, Shanghai, China
| | - Fang Liu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jia-Li Huang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guang-Shun Yang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Hua Lu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Saki N, Abroun S, Soleimani M, Kavianpour M, Shahjahani M, Mohammadi-Asl J, Hajizamani S. MicroRNA Expression in β-Thalassemia and Sickle Cell Disease: A Role in The Induction of Fetal Hemoglobin. CELL JOURNAL 2016; 17:583-92. [PMID: 26862517 PMCID: PMC4746408 DOI: 10.22074/cellj.2016.3808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/11/2015] [Indexed: 12/13/2022]
Abstract
Today the regulatory role of microRNAs (miRs) is well characterized in many diverse cel-
lular processes. MiR-based regulation is categorized under epigenetic regulatory mecha-
nisms. These small non-coding RNAs participate in producing and maturing erythrocytes,
expressing hematopoietic factors and regulating expression of globin genes by post-tran-
scriptional gene silencing. The changes in expression of miRs (miR-144/-320/-451/-503)
in thalassemic/sickle cells compared with normal erythrocytes may cause clinical severity.
According to the suppressive effects of certain miRs (miR-15a/-16-1/-23a/-26b/-27a/-451)
on a number of transcription factors [myeloblastosis oncogene (MYB), B-cell lymphoma
11A (BCL11A), GATA1, Krüppel-like factor 3 (KLF3) and specificity protein 1 (Sp1)] during
β globin gene expression, It has been possible to increasing γ globin gene expression
and fetal hemoglobin (HbF) production. Therefore, this strategy can be used as a novel
therapy in infusing HbF and improving clinical complications of patients with hemoglobi-
nopathies.
Collapse
Affiliation(s)
- Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maria Kavianpour
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mohammadi-Asl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeideh Hajizamani
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Dobrivojević M, Habek N, Kapuralin K, Ćurlin M, Gajović S. Krüppel-like transcription factor 8 (Klf8) is expressed and active in the neurons of the mouse brain. Gene 2015; 570:132-40. [PMID: 26071188 DOI: 10.1016/j.gene.2015.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
Krüppel-like transcription factor 8 (KLF8) is a transcription factor suggested to be involved in various cellular events, including malignant cell transformation, still its expression in the adult rodent brain remained unknown. To analyze Klf8 in the mouse brain and to identify cell types expressing it, a specific transgenic Klf8(Gt1Gaj) mouse was used. The resulting Klf8 gene-driven β-galactosidase activity was visualized by X-gal histochemical staining of the brain sections. The obtained results were complemented by in situ RNA hybridization and immunohistochemistry. Klf8 was highly expressed throughout the adult mouse brain gray matter including the cerebral cortex, hippocampus, olfactory bulb, hypothalamus, pallidum, and striatum, but not in the cerebellum. Immunofluorescent double-labeling revealed that KLF8-immunoreactive cells were neurons, and the staining was located in their nucleus. This was the first study showing that Klf8 was highly expressed in various regions of the mouse brain and in particular in the neurons, where it was localized in the cell nuclei.
Collapse
Affiliation(s)
- Marina Dobrivojević
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Nikola Habek
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Katarina Kapuralin
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Marija Ćurlin
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Srećko Gajović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia.
| |
Collapse
|
13
|
Zhang J, Lin H, Liu H, Zhang L, Yuan G, Chen Z. SP1 promotes the odontoblastic differentiation of dental papilla cells. Dev Growth Differ 2015; 57:400-407. [DOI: 10.1111/dgd.12221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jie Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Lu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Guohua Yuan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
14
|
Finotti A, Bianchi N, Fabbri E, Borgatti M, Breveglieri G, Gasparello J, Gambari R. Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions. Pharmacol Res 2014; 91:57-68. [PMID: 25478892 PMCID: PMC4309890 DOI: 10.1016/j.phrs.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G + C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy.
| |
Collapse
|
15
|
Liu N, Wang Y, Zhou Y, Pang H, Zhou J, Qian P, Liu L, Zhang H. Krüppel-like factor 8 involved in hypoxia promotes the invasion and metastasis of gastric cancer via epithelial to mesenchymal transition. Oncol Rep 2014; 32:2397-404. [PMID: 25333643 DOI: 10.3892/or.2014.3495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/17/2014] [Indexed: 11/05/2022] Open
Abstract
Previously, we reported that hypoxia was able to induce invasion and metastasis in gastric cancer and that hypoxia-inducible factor-1 (HIF-1) is a key factor involved in this tumor type. Krüppel-like factor 8 (KLF8) as a transcriptional repressor has been suggested as a promoter of tumor metastasis in breast cancer and an inducer of the epithelial‑mesenchymal transition (EMT). KLF8 is also highly expressed in gastric cancer tissues, contributing to poor prognosis. However, the association between KLF8 and HIF-1 in regulating the progression of human gastric cancer in hypoxia is unclear. In the present study, we found that KLF8 was overexpressed in gastric cancer metastatic tissues and cells. Additionally, KLF8 siRNA significantly inhibited SGC7901 cell invasion and migration compared with SGC7901, SGC7901/Scr-si cells. Hypoxia is thus able to induce KLF8 expression and EMT in SGC7901 cells. However, following the examination of changes in cell morphology and epithelial and mesenchymal markers, it was found that KLF8 siRNA and HIF-1 siRNA strongly reversed EMT in cells undergoing hypoxia. Furthermore, hypoxia-induced KLF8 overexpression was attenuated by HIF-1 siRNA. Experiments using luciferase promoter constructs resulted in a marked increase in the activity of cells exposed to hypoxia and decreased activity in cells co-transfected with HIF-1 siRNA. The chromatin immunoprecipitation assay revealed proximal HRE at -133 is the main HIF-1 binding site in the KLF8 promoter. In conclusion, the results demonstrated that KLF8 is actively enhanced by hypoxia and is a novel HIF-1 target. KLF8 is a novel EMT regulating transcription factor that involved in the progression of gastric cancer. The specific anti-EMT drugs in combination with anti-hypoxia are new promising cancer therapies.
Collapse
Affiliation(s)
- Na Liu
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yafang Wang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yongan Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hailin Pang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jing Zhou
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Pei Qian
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Lili Liu
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Helong Zhang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
16
|
A feedback loop consisting of microRNA 23a/27a and the β-like globin suppressors KLF3 and SP1 regulates globin gene expression. Mol Cell Biol 2013; 33:3994-4007. [PMID: 23918807 DOI: 10.1128/mcb.00623-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The developmental stage-specific expression of the human β-like globin genes has been studied for decades, and many transcriptional factors as well as other important cis elements have been identified. However, little is known about the microRNAs that potentially regulate β-like globin gene expression directly or indirectly during erythropoiesis. In this study, we show that microRNA 23a (miR-23a) and miR-27a promote β-like globin gene expression in K562 cells and primary erythroid cells through targeting of the transcription factors KLF3 and SP1. Intriguingly, miR-23a and miR-27a further enhance the transcription of β-like globin genes through repression of KLF3 and SP1 binding to the β-like globin gene locus during erythroid differentiation. Moreover, KLF3 can bind to the promoter of the miR-23a∼27a∼24-2 cluster and suppress this microRNA cluster expression. Hence, a positive feedback loop comprised of KLF3 and miR-23a promotes the expression of β-like globin genes and the miR-23a∼27a∼24-2 cluster during erythropoiesis.
Collapse
|
17
|
Borg J, Phylactides M, Bartsakoulia M, Tafrali C, Lederer C, Felice AE, Papachatzopoulou A, Kourakli A, Stavrou EF, Christou S, Hou J, Karkabouna S, Lappa-Manakou C, Ozgur Z, van Ijcken W, von Lindern M, Grosveld FG, Georgitsi M, Kleanthous M, Philipsen S, Patrinos GP. KLF10 gene expression is associated with high fetal hemoglobin levels and with response to hydroxyurea treatment in β-hemoglobinopathy patients. Pharmacogenomics 2013; 13:1487-500. [PMID: 23057549 DOI: 10.2217/pgs.12.125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM In humans, fetal hemoglobin (HbF) production is controlled by many intricate mechanisms that, to date, remain only partly understood. PATIENTS & METHODS Pharmacogenomic analysis of the effects of hydroxyurea (HU) on HbF production was undertaken in a collection of Hellenic β-thalassemia and sickle cell disease (SCD) compound heterozygotes and a collection of healthy and KLF1-haploinsufficient Maltese adults, to identify genomic signatures that follow high HbF patterns. RESULTS KLF10 emerged as a top candidate. Moreover, genotype analysis of β-thalassemia major and intermedia patients and an independent cohort of β-thalassemia/SCD compound heterozygous patients that do or do not respond to HU treatment showed that the homozygous mutant state of a tagSNP in the KLF10 3'UTR is not present in β-thalassemia intermedia patients and is underrepresented in β-thalassemia/SCD compound heterozygous patients that respond well to HU treatment. CONCLUSION These data suggest that KLF10 may constitute a pharmacogenomic marker to discriminate between response and nonresponse to HU treatment.
Collapse
Affiliation(s)
- Joseph Borg
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fan C, Dong L, Zhu N, Xiong Y, Zhang J, Wang L, Shen Y, Zhang X, Chen M. Isolation of siRNA target by biotinylated siRNA reveals that human CCDC12 promotes early erythroid differentiation. Leuk Res 2012; 36:779-83. [PMID: 22269669 DOI: 10.1016/j.leukres.2011.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/06/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Erythroid differentiation is a tightly regulated multi-step process that has not been fully elucidated. We previously reported that a siRNA screened from random siRNA library, siRNA clone-67, induced erythroid differentiation in human erythroleukemia K-562cell line. Here we identified that human CCDC12 (coiled-coil domain containing 12) is a target of siRNA clone-67, by target capture with biotinylated siRNA. Over-expression of CCDC12 in K-562cell up-regulated the expression of CD235, ε-globin and γ-globin, accelerated cell growth, and slightly down-regulated the expression of GATA-2. Knockdown of CCDC12 slowed down the cell growth. These data indicate that CCDC12 is a new participant that promotes early erythroid differentiation.
Collapse
Affiliation(s)
- Cuiqing Fan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), National Laboratory of Medical Molecular Biology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bortolanza S, Nonis A, Sanvito F, Maciotta S, Sitia G, Wei J, Torrente Y, Di Serio C, Chamberlain JR, Gabellini D. AAV6-mediated systemic shRNA delivery reverses disease in a mouse model of facioscapulohumeral muscular dystrophy. Mol Ther 2011; 19:2055-64. [PMID: 21829175 PMCID: PMC3222524 DOI: 10.1038/mt.2011.153] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Treatment of dominantly inherited muscle disorders remains a difficult task considering the need to eliminate the pathogenic gene product in a body-wide fashion. We show here that it is possible to reverse dominant muscle disease in a mouse model of facioscapulohumeral muscular dystrophy (FSHD). FSHD is a common form of muscular dystrophy associated with a complex cascade of epigenetic events following reduction in copy number of D4Z4 macrosatellite repeats located on chromosome 4q35. Several 4q35 genes have been examined for their role in disease, including FRG1. Overexpression of FRG1 causes features related to FSHD in transgenic mice and the FRG1 mouse is currently the only available mouse model of FSHD. Here we show that systemic delivery of RNA interference expression cassettes in the FRG1 mouse, after the onset of disease, led to a dose-dependent long-term FRG1 knockdown without signs of toxicity. Histological features including centrally nucleated fibers, fiber size reduction, fibrosis, adipocyte accumulation, and inflammation were all significantly improved. FRG1 mRNA knockdown resulted in a dramatic restoration of muscle function. Through RNA interference (RNAi) expression cassette redesign, our method is amenable to targeting any pathogenic gene offering a viable option for long-term, body-wide treatment of dominant muscle disease in humans.
Collapse
Affiliation(s)
- Sergia Bortolanza
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bin L, Kim BE, Hall CF, Leach SM, Leung DYM. Inhibition of transcription factor specificity protein 1 alters the gene expression profile of keratinocytes leading to upregulation of kallikrein-related peptidases and thymic stromal lymphopoietin. J Invest Dermatol 2011; 131:2213-22. [PMID: 21753780 PMCID: PMC3193562 DOI: 10.1038/jid.2011.202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription factor specificity protein 1 (Sp1) is involved in diverse cellular functions. We recently found that Sp1 was significantly decreased in skin biopsy samples obtained from patients with atopic dermatitis (AD) and had an even greater reduction in AD patients with a history of eczema herpeticum. In the current study, we sought to better understand the role of Sp1 in skin biological processes by using a small-interfering RNA (siRNA) technique to knock down Sp1 gene expression in normal human keratinocytes (NHKs) and investigated the genome-wide gene expression profiling of Sp1-silenced NHKs. The gene arrays revealed that 53 genes had greater than 3-fold changes in the expression in Sp1-silenced NHKs as compared with scrambled siRNA-silenced cells. Strikingly, six kallikrein (KLK)-related peptidase genes, namely KLK5, KLK6, KLK7, KLK8, KLK10, and KLK12, were upregulated in NHKs following Sp1 silencing. Functionally, protease activity was significantly enhanced in Sp1-silenced keratinocytes as compared with scrambled siRNA-silenced keratinocytes. Moreover, thymic stromal lymphopoietin (TSLP), an epithelial-derived T(H)2-promoting cytokine, was induced in Sp1-silenced keratinocytes because of elevated KLK activity. These results indicate that Sp1 expression deficiency leads to abnormally increased KLK protease activity in keratinocytes and may contribute to T(H)2 immune responses in the skin by inducing TSLP.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
21
|
Kalra IS, Alam MM, Choudhary PK, Pace BS. Krüppel-like Factor 4 activates HBG gene expression in primary erythroid cells. Br J Haematol 2011; 154:248-59. [PMID: 21539536 DOI: 10.1111/j.1365-2141.2011.08710.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The SP1/Krüppel-like Factor (SP1/KLF) family of transcription factors plays a role in diverse cellular processes, including proliferation, differentiation and control of gene transcription. The discovery of KLF1 (EKLF), a key regulator of HBB (β-globin) gene expression, expanded our understanding of the role of KLFs in erythropoiesis. In this study, we investigated a mechanism of HBG (γ-globin) regulation by KLF4. siRNA-mediated gene silencing and enforced expression of KLF4 in K562 cells substantiated the ability of KLF4 to positively regulate endogenous HBG gene transcription. The physiological significance of this finding was confirmed in primary erythroid cells, where KLF4 knockdown at day 11 significantly attenuated HBG mRNA levels and enforced expression at day 28 stimulated the silenced HBG genes. In vitro binding characterization using the γ-CACCC and β-CACCC probes demonstrated KLF4 preferentially binds the endogenous γ-CACCC, while CREB binding protein (CREBBP) binding was not selective. Co-immunoprecipitation studies confirmed protein-protein interaction between KLF4 and CREBBP. Furthermore, sequential chromatin immunoprecipitation assays showed co-localization of both factors in the γ-CACCC region. Subsequent luciferase reporter studies demonstrated that KLF4 trans-activated HBG promoter activity and that CREBBP enforced expression resulted in gene repression. Our data supports a model of antagonistic interaction of KLF4/CREBBP trans-factors in HBG regulation.
Collapse
Affiliation(s)
- Inderdeep S Kalra
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, USA
| | | | | | | |
Collapse
|
22
|
Urvalek AM, Lu H, Wang X, Li T, Yu L, Zhu J, Lin Q, Zhao J. Regulation of the oncoprotein KLF8 by a switch between acetylation and sumoylation. Am J Transl Res 2011; 3:121-132. [PMID: 21416054 PMCID: PMC3056558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/20/2010] [Indexed: 05/30/2023]
Abstract
KLF8 regulates target genes by recruiting the p300 and PCAF co-activators via glutamines (Q) 118 and 248, the CtBP co-repressor to 86PVDLS90 or SUMO to lysine (K) 67. Here we examined how these interactions coordinate to regulate KLF8 transactivity. Mass spectrometry and immunoprecipitations determined that p300 and/or PCAF promoted KLF8 acetylation at K67, K93, and K95 and this acetylation was abolished in lysine-to-arginine (R) mutants. Treatment with HDAC inhibitors or expression of co-activators inhibited sumoylation at K67. K93R or K95R mutation exerted high levels of sumoylation while the acetylation mimetic mutations K93Q and K95Q blocked the sumoylation. Interestingly, CtBP promoted sumoylation at K67 of wild-type but not AVALF mutant KLF8, and KLF8 interaction with CtBP was inhibited by treatment with the HDAC inhibitors, ectopic expression of the co-activators, or K93Q or K95Q mutation. Promoter reporter assays showed that CtBP inhibited KLF8 transactivity which was rescued by PCAF or p300 expresson. Finally, KLF8-mediated cyclin D1 protein expression and cell cycle progression were significantly decreased in the K93R and K95R but increased in the K93Q, K95Q, K67R or K67Q mutant. Taken together, these results identified a novel mechanism by which co-activators promote KLF8 transactivity by competing with SUMO for K67 modification and by acetylating K93 and K95 to inhibit CtBP-induced K67 sumoylation.
Collapse
Affiliation(s)
- Alison M Urvalek
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
- Current address: Department of Pharmacology, Weill Medical College of Cornell UniversityNew York, NY 10065,USA
| | - Heng Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Xianhui Wang
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
- Current address: Ge*NY*sis Center for Excellence in Cancer Genomics, University at AlbanyRensselaer, NY 1214, USA
| | - Tianshu Li
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Jinghua Zhu
- Center for Functional Genomics, University at AlbanyRensselaer, NY 12144, USA
| | - Qishan Lin
- Center for Functional Genomics, University at AlbanyRensselaer, NY 12144, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| |
Collapse
|
23
|
Urvalek AM, Wang X, Lu H, Zhao J. KLF8 recruits the p300 and PCAF co-activators to its amino terminal activation domain to activate transcription. Cell Cycle 2010; 9:601-11. [PMID: 20107328 DOI: 10.4161/cc.9.3.10606] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) regulates critical cellular processes including cell cycle progression, transformation, epithelial-to-mesenchymal transition, migration and invasion by either repressing or activating target gene promoters. As a repressor, KLF8 recruits the CtBP co-repressor via its PVDLS repression motif. However, how KLF8 acts as an activator has not been determined. Here we report the identification of both the KLF8 activation domain and associated co-activators. By site-directed mutagenesis and cyclin D1 promoter reporter assays using both mouse fibroblasts and human epithelial cells, we determined that deletion of residues 100-260 or mutation of Q118-Q248 abolished KLF8 transactivity. this transactivity was dramatically reduced in p300(-/-), CBP(-/-) or PCAF(-/-) cells and could be restored by re-expressing p300 or PCAF, but not CBP. Co-immunoprecipitation analyses demonstrated that KLF8 interacted with these co-activators whereas the Q118N-Q248N mutant did not. Chromatin immunoprecipitation experiments showed that KLF8 promoted histone acetylation at the promoter whereas the Q118N-Q248N mutant had a dramatic loss of this function. Western blotting revealed that unlike wild-type KLF8 the Q118N-Q248N was no longer able to upregulate cyclin D1 protein level. BrdU incorporation assays showed that the Q118N-Q248N mutant also lost the ability to promote DNA synthesis. Taken together, these results identified the KLF8 activation domain located between residues 101-260 where the well-conserved Q118 and Q248 are essential for recruiting p300 and PCAF to activate target gene transcription.
Collapse
Affiliation(s)
- Alison M Urvalek
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
24
|
Marini MG, Porcu L, Asunis I, Loi MG, Ristaldi MS, Porcu S, Ikuta T, Cao A, Moi P. Regulation of the human HBA genes by KLF4 in erythroid cell lines. Br J Haematol 2010; 149:748-58. [PMID: 20331458 DOI: 10.1111/j.1365-2141.2010.08130.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
KLF1/EKLF and related Krueppel-like factors (KLFs) are variably implicated in the regulation of the HBB-like globin genes. Prompted by the observation that four KLF sites are distributed in the human alpha-globin gene (HBA) promoter, we investigated if KLFs could also act to modulate the expression of the HBA genes. Among the KLFs tested, only KLF4/GKLF bound specifically to three out of four alpha-globin KLF sites. The occupancy of the same sites by KLF4 in vivo was confirmed by chromatin immunoprecipitation assays with KLF4-specific antibodies. In luciferase reporter assays in MEL cells, high levels of the wild type HBA promoter, but not mutated promoters bearing point mutations that disrupted KLF4-DNA binding, were transactivated by over-expression of KLF4. In K562 cells, induced KLF4 expression with a Tet-off regulated cassette stimulated the expression of the endogenous HBA genes. In a complementary assay in the same cell line, knocking down KLF4 with lentiviral delivered sh-RNAs caused a parallel decrease in the transcription of the HBA genes. All experiments combined support a regulatory role of KLF4 in the control of HBA gene expression.
Collapse
Affiliation(s)
- M Giuseppina Marini
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang M, Qian XH, Zhao DH, Fu SZ. Effects of Astragalus polysaccharide on the erythroid lineage and microarray analysis in K562 cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:242-250. [PMID: 19922785 DOI: 10.1016/j.jep.2009.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/30/2009] [Accepted: 11/08/2009] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus polysaccharide (APS), obtained from Astragalus membranaceus, displays a range of activities in many systems, including the promotion of immune responses, anti-inflammation, and the protection of vessels. It possesses potent pharmacological activity on differentiation to the erythroid lineage. AIM OF THE STUDY To investigate the effects of APS on the erythroid differentiation and the mechanism of action by microarray analysis in K562 cells. MATERIALS AND METHODS Benzidine staining, semi-quantitative RT-PCR, Western blot and microarray methods were used to survey the effects of APS on inducing erythroid differentiation and the changes of gene expression profile in K562 cells. RESULTS Of the 13.2% positive cells detected by benzidine staining, the induction was the highest with 200 microg/ml APS on 72h. Ggamma-mRNA expression and fetal hemoglobin synthesis were significantly up-regulated. Microarray analysis showed that 31 genes were up-regulated and 108 genes were down-regulated. These differential expression genes generally regulate protein binding, cellular metabolic process, the cell proliferation, and transcriptional activator activity. The gamma-globin gene was up-regulated, the genes related with erythroid differentiation such as LMO2, Runx1 and GTF2I were up-regulated, while Bklf, Eklf, EPHB4 and Sp1 were down-regulated. CONCLUSIONS Our studies indicate that APS indicate potent activities on the erythroid differentiation by modulating genes of LMO2, Klf1, Klf3, Runx1, EphB4 and Sp1, increasing gamma-globin mRNA expression and fetal hemoglobin synthesis in K562 cells.
Collapse
Affiliation(s)
- Min Yang
- Department of Neonatology, Nanfang Hospital Affiliated Nanfang Medical University, 1838 Guang Zhou Da Dao North, Guangzhou 510515, Guangdong, PR China
| | | | | | | |
Collapse
|
26
|
Mithraprabhu S, Loveland KL. Control of KIT signalling in male germ cells: what can we learn from other systems? Reproduction 2009; 138:743-57. [PMID: 19567460 DOI: 10.1530/rep-08-0537] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The KIT ligand (KITL)/KIT-signalling system is among several pathways known to be essential for fertility. In the postnatal testis, the KIT/KITL interaction is crucial for spermatogonial proliferation, differentiation, survival and subsequent entry into meiosis. Hence, identification of endogenous factors that regulate KIT synthesis is important for understanding the triggers driving germ cell maturation. Although limited information is available regarding local factors in the testicular microenvironment that modulate KIT synthesis at the onset of spermatogenesis, knowledge from other systems could be used as a basis for identifying how KIT function is regulated in germ cells. This review describes the known regulators of KIT, including transcription factors implicated in KIT promoter regulation. In addition, specific downstream outcomes in biological processes that KIT orchestrates are addressed. These are discussed in relationship to current knowledge of mammalian germ cell development.
Collapse
Affiliation(s)
- Sridurga Mithraprabhu
- Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
27
|
Fetal hemoglobin chemical inducers for treatment of hemoglobinopathies. Ann Hematol 2008; 88:505-28. [PMID: 19011856 DOI: 10.1007/s00277-008-0637-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/27/2008] [Indexed: 12/29/2022]
Abstract
The switch from fetal ((G)gamma and (A)gamma) to adult (beta and delta) globin gene expression occurs at birth, leading to the gradual replacement of HbF with HbA. Genetic regulation of this switch has been studied for decades, and the molecular mechanisms underlying this developmental change in gene expression have been in part elucidated. The understanding of the developmental regulation of gamma-globin gene expression was paralleled by the identification of a series of chemical compounds able to reactivate HbF synthesis in vitro and in vivo in adult erythroid cells. Reactivation of HbF expression is an important therapeutic option in patients with hemoglobin disorders, such as sickle cell anemia and beta-thalassemia. These HbF inducers can be grouped in several classes based on their chemical structures and mechanisms of action. Clinical studies with some of these agents have shown that they were effective, in a part of patients, in ameliorating the clinical condition. The increase in HbF in response to these drugs varies among patients with beta-thalassemia and sickle cell disease due to individual genetic determinants.
Collapse
|
28
|
Eaton SA, Funnell APW, Sue N, Nicholas H, Pearson RCM, Crossley M. A network of Krüppel-like Factors (Klfs). Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem 2008; 283:26937-47. [PMID: 18687676 DOI: 10.1074/jbc.m804831200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors of the Sp/Klf (Krüppel-like factor) family regulate biological processes such as hematopoiesis, adipogenesis, and stem cell maintenance. Here we show that Bklf or Klf3 (Basic Krüppel-like factor) represses the Klf8 (Krüppel-like Factor 8) gene in vivo. Conversely, Eklf or Klf1 (Erythroid Krüppel-like factor) activates the Klf8 gene. Klf8 is driven by two promoters, both of which contain multiple CACCC sites. Klf3 can repress Klf1-mediated activation of both promoters. Chromatin immunoprecipitation experiments confirm that Klf3 occupies both Klf8 promoters in vivo. Interestingly, in Klf3 knock-out tissue Klf1 gains access, binds, and activates both Klf8 promoters. These results demonstrate direct competition between activating and repressing Klfs in vivo. Together with previous evidence that Klf1 directly activates the Klf3 gene, the results reveal an elaborate network of cross-talk within the Klf family. The recognition of cross-regulation and potential redundancy between Klf family members is critical to the interpretation of various Klf knock-out mice and the understanding of individual Klfs in particular contexts.
Collapse
Affiliation(s)
- Sally A Eaton
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|