1
|
El-Assaad AM, Hamieh T. SARS-CoV-2: Prediction of critical ionic amino acid mutations. Comput Biol Med 2024; 178:108688. [PMID: 38870723 DOI: 10.1016/j.compbiomed.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that caused coronavirus disease 2019 (COVID-19), has been studied thoroughly, and several variants are revealed across the world with their corresponding mutations. Studies and vaccines development focus on the genetic mutations of the S protein due to its vital role in allowing the virus attach and fuse with the membrane of a host cell. In this perspective, we study the effects of all ionic amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 within the SARS-CoV-2:CC12.1 complex model. Binding free energy calculations between SARS-CoV-2 and antibody CC12.1 are based on the Analysis of Electrostatic Similarities of Proteins (AESOP) framework, where the electrostatic potentials are calculated using Adaptive Poisson-Boltzmann Solver (APBS). The atomic radii and charges that feed into the APBS calculations are calculated using the PDB2PQR software. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants worldwide. We find each of the following mutations: K378A, R408A, K424A, R454A, R457A, K458A, and K462A, to play significant roles in the binding to Antibody CC12.1, since they are turned into strong inhibitors on both chains of the S1 protein, whereas the mutations D405A, D420A, and D427A, show to play important roles in this binding, as they are turned into mild inhibitors on both chains of the S1 protein.
Collapse
Affiliation(s)
- Atlal M El-Assaad
- Department of Electrical Engineering & Computer Science, University of Toledo (UT), Toledo OH 43606, USA; Department of Computer Science, Lebanese International University (LIU), Bekaa, Lebanon.
| | - Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Hadath, Lebanon.
| |
Collapse
|
2
|
Mutational signatures in GATA3 transcription factor and its DNA binding domain that stimulate breast cancer and HDR syndrome. Sci Rep 2021; 11:22762. [PMID: 34815386 PMCID: PMC8611019 DOI: 10.1038/s41598-021-01832-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Transcription factors (TFs) play important roles in many biochemical processes. Many human genetic disorders have been associated with mutations in the genes encoding these transcription factors, and so those mutations became targets for medications and drug design. In parallel, since many transcription factors act either as tumor suppressors or oncogenes, their mutations are mostly associated with cancer. In this perspective, we studied the GATA3 transcription factor when bound to DNA in a crystal structure and assessed the effect of different mutations encountered in patients with different diseases and phenotypes. We generated all missense mutants of GATA3 protein and DNA within the adjacent and the opposite GATA3:DNA complex models. We mutated every amino acid and studied the new binding of the complex after each mutation. Similarly, we did for every DNA base. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations. After analyzing our data, we identified amino acids and DNA bases keys for binding. Furthermore, we validated those findings against experimental genetic data. Our results are the first to propose in silico modeling for GATA:DNA bound complexes that could be used to score effects of missense mutations in other classes of transcription factors involved in common and genetic diseases.
Collapse
|
3
|
Zhang Y, Guo J, Ning L, Tian J, Yao X, Liu H. The molecular mechanism of pH-regulating C3d-CR2 interactions: Insights from molecular dynamics simulation. Chem Biol Drug Des 2018; 93:628-637. [PMID: 30566277 DOI: 10.1111/cbdd.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 11/27/2022]
Abstract
The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 mediate the innate and adaptive immune systems. Due to the importance of C3d-CR2 interaction in the design of vaccines, many studies have indicated the interactions are pH-dependent. Moreover, C3d-CR2 interactions at pH 5.0 are unknown. To investigate the molecular mechanism of pH-regulating C3d-CR2 interaction, molecular dynamics simulations for C3d-CR2 complex in different pH are performed. Our results revealed that the protonation of His9 in C3d at pH 6.0 slightly weakens C3d-CR2 association as reducing pH from 7.4 to 6.0, initiated from a key hydrogen bond formed between Gly270 and His9 in C3d at pH 6.0. When reducing pH from 6.0 to 5.0, the protonation of His33 in C3d weakens C3d-SCR1 association by changing the hydrogen-bond network of Asp36, Glu37, and Glu39 in C3d with Arg13 in CR2. In addition, the protonation of His90 significantly enhances C3d-SCR2 association. This is because the enhanced hydrogen-bond interactions of His90 with Glu63 and Ser69 of the linker change the conformations of the linker, Cys112-Asn116 and Pro87-Gly91 regions. This study uncovers the molecular mechanism of the mediation of pH on C3d-CR2 interaction, which is valuable for vaccine design.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Guiyang College of Traditional Chinese Medicine, Guiyang, China.,State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Jingjing Guo
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Lulu Ning
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Jiaqi Tian
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China.,State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Zhang Y, Guo J, Li L, Liu X, Yao X, Liu H. The solvent at antigen-binding site regulated C3d–CR2 interactions through the C-terminal tail of C3d at different ion strengths: insights from molecular dynamics simulation. Biochim Biophys Acta Gen Subj 2016; 1860:2220-31. [DOI: 10.1016/j.bbagen.2016.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 03/16/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
|
5
|
El-Assaad A, Dawy Z, Nemer G. Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:4005-8. [PMID: 26737172 DOI: 10.1109/embc.2015.7319272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.
Collapse
|
6
|
Abstract
![]()
Electrostatic effects
are ubiquitous in protein interactions and
are found to be pervasive in the complement system as well. The interaction
between complement fragment C3d and complement receptor 2 (CR2) has
evolved to become a link between innate and adaptive immunity. Electrostatic
interactions have been suggested to be the driving factor for the
association of the C3d:CR2 complex. In this study, we investigate
the effects of ionic strength and mutagenesis on the association of
C3d:CR2 through Brownian dynamics simulations. We demonstrate that
the formation of the C3d:CR2 complex is ionic strength-dependent,
suggesting the presence of long-range electrostatic steering that
accelerates the complex formation. Electrostatic steering occurs through
the interaction of an acidic surface patch in C3d and the positively
charged CR2 and is supported by the effects of mutations within the
acidic patch of C3d that slow or diminish association. Our data are
in agreement with previous experimental mutagenesis and binding studies
and computational studies. Although the C3d acidic patch may be locally
destabilizing because of unfavorable Coulombic interactions of like
charges, it contributes to the acceleration of association. Therefore,
acceleration of function through electrostatic steering takes precedence
to stability. The site of interaction between C3d and CR2 has been
the target for delivery of CR2-bound nanoparticle, antibody, and small
molecule biomarkers, as well as potential therapeutics. A detailed
knowledge of the physicochemical basis of C3d:CR2 association may
be necessary to accelerate biomarker and drug discovery efforts.
Collapse
Affiliation(s)
- Rohith R Mohan
- Department of Bioengineering, University of California , Riverside, California 92521, United States
| | - Gary A Huber
- Department of Chemistry and Biochemistry, University of California , San Diego, California 92093, United States
| | - Dimitrios Morikis
- Department of Bioengineering, University of California , Riverside, California 92521, United States
| |
Collapse
|
7
|
A theoretical view of the C3d:CR2 binding controversy. Mol Immunol 2014; 64:112-22. [PMID: 25433434 DOI: 10.1016/j.molimm.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/06/2014] [Indexed: 11/23/2022]
Abstract
The C3d:CR2(SCR1-2) interaction plays an important role in bridging innate and adaptive immunity, leading to enhanced antibody production at sites of complement activation. Over the past decade, there has been much debate over the binding mode of this interaction. An initial cocrystal structure (PDB: 1GHQ) was published in 2001, in which the only interactions observed were between the SCR2 domain of CR2 and a side-face of C3d whereas a cocrystal structure (PDB: 3OED) published in 2011 showed both the SCR1 and SCR2 domains of CR2 interacting with an acidic patch on the concave surface of C3d. The initial 1GHQ structure is at odds with the majority of existing biochemical data and the publication of the 3OED structure renewed uncertainty regarding the physiological relevance of 1GHQ, suggesting that crystallization may have been influenced by the presence of zinc acetate in the crystallization process. In our study, we used a variety of computational approaches to gain insight into the binding mode between C3d and CR2 and demonstrate that the binding site at the acidic patch (3OED) is electrostatically more favorable, exhibits better structural and dissociative stability, specifically at the SCR1 domain, and has higher binding affinity than the 1GHQ binding mode. We also observe that nonphysiological zinc ions enhance the formation of the C3d:CR2 complex at the side face of C3d (1GHQ) through increases in electrostatic favorability, intermolecular interactions, dissociative character and overall energetic favorability. These results provide a theoretical basis for the association of C3d:CR2 at the acidic cavity of C3d and provide an explanation for binding of CR2 at the side face of C3d in the presence of nonphysiological zinc ions.
Collapse
|
8
|
Ojha H, Panwar HS, Gorham RD, Morikis D, Sahu A. Viral regulators of complement activation: structure, function and evolution. Mol Immunol 2014; 61:89-99. [PMID: 24976595 DOI: 10.1016/j.molimm.2014.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 11/25/2022]
Abstract
The complement system surveillance in the host is effective in controlling viral propagation. Consequently, to subvert this effector mechanism, viruses have developed a series of adaptations. One among these is encoding mimics of host regulators of complement activation (RCA) which help viruses to avoid being labeled as 'foreign' and protect them from complement-mediated neutralization and complement-enhanced antiviral adaptive immunity. In this review, we provide an overview on the structure, function and evolution of viral RCA proteins.
Collapse
Affiliation(s)
- Hina Ojha
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Hemendra Singh Panwar
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Ronald D Gorham
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Arvind Sahu
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
9
|
Wan H, Hu JP, Tian XH, Chang S. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Phys Chem Chem Phys 2013; 15:1241-51. [DOI: 10.1039/c2cp41388d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Kieslich CA, Morikis D. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity. PLoS Comput Biol 2012; 8:e1002840. [PMID: 23300422 PMCID: PMC3531323 DOI: 10.1371/journal.pcbi.1002840] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. Complement fragment C3d is a thioester-containing protein that is a key component/domain in the complement system, an ancient line of defense, due to its ability to covalently attach to pathogen cell surfaces, such as bacteria. As the immune system evolved in complexity, from acellular defense mechanisms to multicellular systems with memory, so has the function of C3d. In humans, but not lower species such as invertebrates, C3d attached to pathogen surfaces binds B-cell co-receptor CR2, in conjunction with an antibody/antigen complex, forming a link between the innate and adaptive immune systems. The C3d-CR2 interaction ultimately increases B-cell sensitivity to the C3d tagged pathogen by 1,000–10,000 fold, and is known to be driven by electrostatic forces. Since electrostatics are crucial to the C3d-CR2 interaction, it is likely that probing the evolution of the electrostatics of C3d and CR2 will provide insight into this gained function. To this end, we employ a novel computational approach for identifying the electrostatic “hot-spots” of C3d and CR2, which are produced by clusters of like-charged residues found on the surface of the protein. Electrostatic “hot-spots” are often evolutionarily favored and in this study provide new insight into the evolution of C3d in its role in a link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Chris A. Kieslich
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
López de Victoria A, Kieslich CA, Rizos AK, Krambovitis E, Morikis D. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties. BMC BIOPHYSICS 2012; 5:3. [PMID: 22313935 PMCID: PMC3295656 DOI: 10.1186/2046-1682-5-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/07/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. RESULTS Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. CONCLUSIONS We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3 loop with coreceptors CCR5/CXCR4, whereas the charge distribution contributes to the specific short-range interactions responsible for the formation of the bound complex. We also propose a scheme for coreceptor selectivity based on the sequence glycosylation motif, the 11/24/25 rule, and net charge.
Collapse
Affiliation(s)
| | - Chris A Kieslich
- Department of Bioengineering, University of California, Riverside 92521, USA
| | - Apostolos K Rizos
- Department of Chemistry, University of Crete and Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003, Heraklion, Crete, Greece
| | - Elias Krambovitis
- Department of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside 92521, USA
| |
Collapse
|
12
|
Complement Inhibition by Staphylococcus aureus: Electrostatics of C3d–EfbC and C3d–Ehp Association. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0195-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
13
|
Electrostatic exploration of the C3d-FH4 interaction using a computational alanine scan. Mol Immunol 2011; 48:1844-50. [PMID: 21683447 DOI: 10.1016/j.molimm.2011.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/09/2011] [Indexed: 11/20/2022]
Abstract
The complement system is a component of innate immunity and is activated by a cascade of protein interactions whose function is vital to our ability to fight infection. When proper regulation fails, the complement system is unable to recognize "self" from "nonself" and, therefore, attacks own tissues leading to autoimmune diseases. The central protein of the complement system is C3, which is the convergence point of three independently activated but communicating pathways. Regulation of C3 occurs through modular proteins which consist of many repeats of complement control protein (CCP) modules. CCP modules have diverse sequences, similar structures, and diverse physicochemical compositions, with excess of charge being a predominant characteristic. The goal of our study is to understand the electrostatic mechanism that underlies the interaction between the C3d domain of C3 and the fourth module of the complement regulator Factor H (FH4). We have performed a computational alanine scan in which we have replaced every ionizable amino acid, one at a time, with an alanine to generate a family of mutants for the C3d-FH4 complex. We have used Poisson-Boltzmann electrostatic calculations in combination with clustering of spatial distributions of electrostatic potentials and free energy calculations to delineate the contribution of each replaced amino acid to the C3d-FH4 interaction. We have analyzed our data in view of a two-step model which separates association into long-range recognition and short-range binding and we have identified key amino acids that contribute to association. We discuss the complex role of C3d in binding FH4 and the bacterial proteins Efb/Ehp from Staphylococcus aureus.
Collapse
|
14
|
The effect of electrostatics on factor H function and related pathologies. J Mol Graph Model 2011; 29:1047-55. [PMID: 21605993 DOI: 10.1016/j.jmgm.2011.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 12/15/2022]
Abstract
Factor H (FH) contributes to the regulation of the complement system by binding to polyanionic surfaces and the proteins C3b/C3c/C3d. This implicates charge and electrostatic interactions in recognition and binding of FH. Despite the large amount of experimental and pathology data the exact mechanism at molecular level is not yet known. We have implemented a computational framework for comparative analysis of the charge and electrostatic diversity of FH modules and C3b domains to identify electrostatic hotspots and predict potential binding sites. Our electrostatic potential clustering analysis shows that charge distributions and electrostatic potential distributions are more useful in understanding C3b-FH interactions than net charges alone. We present a model of non-specific electrostatic interactions of FH with polyanion-rich surfaces and specific interactions with C3b, using our computational data and existing experimental data. We discuss the electrostatic contributions to the formation of the C3b-FH complex and the competition between FH and Factor Bb (Bb) for binding to C3b. We also discuss the significance of mutations of charged amino acids in the pathobiology of FH-mediated disease, such as age-related macular degeneration, atypical hemolytic uremic syndrome, and dense deposit disease. Our data can be used to guide future experimental studies.
Collapse
|
15
|
Kieslich CA, Morikis D, Yang J, Gunopulos D. Automated computational framework for the analysis of electrostatic similarities of proteins. Biotechnol Prog 2011; 27:316-25. [PMID: 21485028 DOI: 10.1002/btpr.541] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Indexed: 12/14/2022]
Abstract
Charge plays an important role in protein-protein interactions. In the case of excessively charged proteins, their electrostatic potentials contribute to the processes of recognition and binding with other proteins or ligands. We present an automated computational framework for determining the contribution of each charged amino acid to the electrostatic properties of proteins, at atomic resolution level. This framework involves computational alanine scans, calculation of Poisson-Boltzmann electrostatic potentials, calculation of electrostatic similarity distances (ESDs), hierarchical clustering analysis of ESDs, calculation of solvation free energies of association, and visualization of the spatial distributions of electrostatic potentials. The framework is useful to classify families of mutants with similar electrostatic properties and to compare them with the parent proteins in the complex. The alanine scan mutants introduce perturbations in the local electrostatic properties of the proteins and aim in delineating the contribution of each mutated amino acid in the spatial distribution of electrostatic potential, and in biological function when electrostatics is a dominant contributing factor in protein-protein interactions. The framework can be used to design new proteins with tailored electrostatic properties, such as immune system regulators, inhibitors, and vaccines, and in guiding experimental studies. We present an example for the interaction of the immune system protein C3d (the d-fragment of complement protein C3) with its receptor CR2, and we discuss our data in view of a binding site controversy.
Collapse
Affiliation(s)
- Chris A Kieslich
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
16
|
Electrostatic clustering and free energy calculations provide a foundation for protein design and optimization. Ann Biomed Eng 2010; 39:1252-63. [PMID: 21140293 PMCID: PMC3069318 DOI: 10.1007/s10439-010-0226-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 11/24/2010] [Indexed: 01/14/2023]
Abstract
Electrostatic interactions are ubiquitous in proteins and dictate stability and function. In this review, we discuss several methods for the analysis of electrostatics in protein–protein interactions. We discuss alanine-scanning mutagenesis, Poisson–Boltzmann electrostatics, free energy calculations, electrostatic similarity distances, and hierarchical clustering of electrostatic potentials. Our recently developed computational framework, known as Analysis of Electrostatic Similarities Of Proteins (AESOP), incorporates these tools to efficiently elucidate the role of electrostatic potentials in protein interactions. We present the application of AESOP to several proteins and protein complexes, for which charge is purported to facilitate protein association. Specifically, we illustrate how recent work has shaped the formulation of electrostatic calculations, the correlation of electrostatic free energies and electrostatic potential clustering results with experimental binding and activity data, the pH dependence of protein stability and association, the design of mutant proteins with enhanced immunological activity, and how AESOP can expose deficiencies in structural models and experimental data. This integrative approach can be utilized to develop mechanistic models and to guide experimental studies by predicting mutations with desired physicochemical properties and function. Alteration of the electrostatic properties of proteins offers a basis for the design of proteins with optimized binding and activity.
Collapse
|
17
|
Contribution of specific amino acid changes in penicillin binding protein 1 to amoxicillin resistance in clinical Helicobacter pylori isolates. Antimicrob Agents Chemother 2010; 55:101-9. [PMID: 20956585 DOI: 10.1128/aac.00545-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Amoxicillin is commonly used to treat Helicobacter pylori, a major cause of peptic ulcers, stomach cancer, and B-cell mucosa-associated lymphoid tissue lymphoma. Amoxicillin resistance in H. pylori is increasing steadily, especially in developing countries, leading to treatment failures. In this study, we characterize the mechanism of amoxicillin resistance in the U.S. clinical isolate B258. Transformation of amoxicillin-susceptible strain 26695 with the penicillin binding protein 1 gene (pbp1) from B258 increased the amoxicillin resistance of 26695 to equal that of B258, while studies using biotinylated amoxicillin showed a decrease in the binding of amoxicillin to the PBP1 of B258. Transformation with 4 pbp1 fragments, each encompassing several amino acid substitutions, combined with site-directed mutagenesis studies, identified 3 amino acid substitutions in PBP1 of B258 which affected amoxicillin susceptibility (Val 469 Met, Phe 473 Leu, and Ser 543 Arg). Homology modeling showed the spatial orientation of these specific amino acid changes in PBP1 from 26695 and B258. The results of these studies demonstrate that amoxicillin resistance in the clinical U.S. isolate B258 is due solely to an altered PBP1 protein with a lower binding affinity for amoxicillin. Homology modeling analyses using previously identified amino acid substitutions of amoxicillin-resistant PBP1s demonstrate the importance of specific amino acid substitutions in PBP1 that affect the binding of amoxicillin in the putative binding cleft, defining those substitutions deemed most important in amoxicillin resistance.
Collapse
|
18
|
Shaw CD, Storek MJ, Young KA, Kovacs JM, Thurman JM, Holers VM, Hannan JP. Delineation of the complement receptor type 2-C3d complex by site-directed mutagenesis and molecular docking. J Mol Biol 2010; 404:697-710. [PMID: 20951140 DOI: 10.1016/j.jmb.2010.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/01/2022]
Abstract
The interactions between the complement receptor type 2 (CR2) and the C3 complement fragments C3d, C3dg, and iC3b are essential for the initiation of a normal immune response. A crystal-derived structure of the two N-terminal short consensus repeat (SCR1-2) domains of CR2 in complex with C3d has previously been elucidated. However, a number of biochemical and biophysical studies targeting both CR2 and C3d appear to be in conflict with these structural data. Previous mutagenesis and heteronuclear NMR spectroscopy studies directed toward the C3d-binding site on CR2 have indicated that the CR2-C3d cocrystal structure may represent an encounter/intermediate or nonphysiological complex. With regard to the CR2-binding site on C3d, mutagenesis studies by Isenman and coworkers [Isenman, D. E., Leung, E., Mackay, J. D., Bagby, S. & van den Elsen, J. M. H. (2010). Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: Implications for the controversy regarding the CR2/C3d cocrystal structure. J. Immunol. 184, 1946-1955] have implicated an electronegative "concave" surface on C3d in the binding process. This surface is discrete from the CR2-C3d interface identified in the crystal structure. We generated a total of 18 mutations targeting the two (X-ray crystallographic- and mutagenesis-based) proposed CR2 SCR1-2 binding sites on C3d. Using ELISA analyses, we were able to assess binding of mutant forms of C3d to CR2. Mutations directed toward the concave surface of C3d result in substantially compromised CR2 binding. By contrast, targeting the CR2-C3d interface identified in the cocrystal structure and the surrounding area results in significantly lower levels of disruption in binding. Molecular modeling approaches used to investigate disparities between the biochemical data and the X-ray structure of the CR2-C3d cocrystal result in highest-scoring solutions in which CR2 SCR1-2 is docked within the concave surface of C3d.
Collapse
Affiliation(s)
- Craig D Shaw
- Institute of Structural and Molecular Biology, School of Biological Sciences, King's Buildings, Mayfield Road, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Chae K, Gonong BJ, Kim SC, Kieslich CA, Morikis D, Balasubramanian S, Lord EM. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4277-90. [PMID: 20667964 PMCID: PMC2955742 DOI: 10.1093/jxb/erq228] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 05/19/2023]
Abstract
Lily stigma/style cysteine-rich adhesin (SCA), a plant lipid transfer protein (LTP) which is secreted into the extracellular matrix, functions in pollen tube guidance in fertilization. A gain-of-function mutant (ltp5-1) for Arabidopsis LTP5, an SCA-like molecule, was recently shown to display defects in sexual reproduction. In the current study, it is reported that ltp5-1 plants have dwarfed primary shoots, delayed hypocotyl elongation, various abnormal tissue fusions, and display multibranching. These mutant phenotypes in vegetative growth are recessive. No abnormality was found in ltp5-1/+ plants. In a phylogenetic analysis of plant LTPs, SCA-like Arabidopsis LTPs were classified with conventional plant LTPs. Homology modelling-based electrostatic similarity index (ESI) clustering was used to show diversity in spatial distributions of electrostatic potentials of SCA-like LTPs, suggestive of their various roles in interaction in the extracellular matrix space. β-Glucuronidase (GUS) analysis showed that SCA-like Arabidopsis LTP genes are diversely present in various tissues. LTP4 was found specifically in the guard cells and LTP6 in trichomes as well as in other tissues. LTP1 levels were specifically abundant in the stigma, and both LTP3 and LTP6 in the ovules. LTP2 and LTP4 gene levels were up-regulated in whole seedlings with 20% polyethylene glycol (PEG) and 300 mM NaCl treatments, respectively. LTP5 was up-regulated in the hypocotyl with 3 d dark growth conditions. LTP6 was specifically expressed in the tip of the cotyledon under drought stress conditions. The results suggest that SCA-like Arabidopsis LTPs are multifunctional, with diversified roles in plant growth and reproduction.
Collapse
Affiliation(s)
- Keun Chae
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| | - Benedict J. Gonong
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Seung-Chul Kim
- Department of Biological Sciences, SungKyunKwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea
| | - Chris A. Kieslich
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Dimitrios Morikis
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - Elizabeth M. Lord
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
20
|
Kovacs JM, Hannan JP, Eisenmesser EZ, Holers VM. Biophysical investigations of complement receptor 2 (CD21 and CR2)-ligand interactions reveal amino acid contacts unique to each receptor-ligand pair. J Biol Chem 2010; 285:27251-27258. [PMID: 20558730 PMCID: PMC2930724 DOI: 10.1074/jbc.m110.106617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/18/2010] [Indexed: 11/06/2022] Open
Abstract
Human complement receptor type 2 (CR2 and CD21) is a cell membrane receptor, with 15 or 16 extracellular short consensus repeats (SCRs), that promotes B lymphocyte responses and bridges innate and acquired immunity. The most distally located SCRs, SCR1-2, mediate the interaction of CR2 with its four known ligands (C3d, EBV gp350, IFNalpha, and CD23). To ascertain specific interacting residues on CR2, we utilized NMR studies wherein gp350 and IFNalpha were titrated into (15)N-labeled SCR1-2, and chemical shift changes indicative of specific inter-molecular interactions were identified. With backbone assignments made, the chemical shift changes were mapped onto the crystal structure of SCR1-2. With regard to gp350, the binding region of CR2 is primarily focused on SCR1 and the inter-SCR linker, specifically residues Asn(11), Arg(13), Ala(22), Arg(28), Ser(32), Arg(36), Lys(41), Lys(57), Tyr(64), Lys(67), Tyr(68), Arg(83), Gly(84), and Arg(89). With regard to IFNalpha, the binding is similar to the CR2-C3d interaction with specific residues being Arg(13), Tyr(16), Arg(28), Ser(42), Lys(48), Lys(50), Tyr(68), Arg(83), Gly(84), and Arg(89). We also report thermodynamic properties of each ligand-receptor pair determined using isothermal titration calorimetry. The CR2-C3d interaction was characterized as a two-mode binding interaction with K(d) values of 0.13 and 160 microm, whereas the CR2-gp350 and CR2-IFNalpha interactions were characterized as single site binding events with affinities of 0.014 and 0.035 microm, respectively. The compilation of chemical binding maps suggests specific residues on CR2 that are uniquely important in each of these three binding interactions.
Collapse
Affiliation(s)
- James M Kovacs
- Department of Medicine and Immunology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045
| | - Jonathan P Hannan
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045
| | - V Michael Holers
- Department of Medicine and Immunology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045.
| |
Collapse
|
21
|
Pyaram K, Kieslich CA, Yadav VN, Morikis D, Sahu A. Influence of electrostatics on the complement regulatory functions of Kaposica, the complement inhibitor of Kaposi's sarcoma-associated herpesvirus. THE JOURNAL OF IMMUNOLOGY 2010; 184:1956-67. [PMID: 20089702 DOI: 10.4049/jimmunol.0903261] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kaposica, the complement regulator of Kaposi's sarcoma-associated herpesvirus, inhibits complement by supporting factor I-mediated inactivation of the proteolytically activated form of C3 (C3b) and C4 (C4b) (cofactor activity [CFA]) and by accelerating the decay of classical and alternative pathway C3-convertases (decay-accelerating activity [DAA]). Previous data suggested that electrostatic interactions play a critical role in the binding of viral complement regulators to their targets, C3b and C4b. We therefore investigated how electrostatic potential on Kaposica influences its activities. We built a homology structure of Kaposica and calculated the electrostatic potential of the molecule, using the Poisson-Boltzmann equation. Mutants were then designed to alter the overall positive potential of the molecule or of each of its domains and linkers by mutating Lys/Arg to Glu/Gln, and the functional activities of the expressed mutants were analyzed. Our data indicate that 1) positive potential at specific sites and not the overall positive potential on the molecule guides the CFAs and classical pathway DAA; 2) positive potential around the linkers between complement control protein domains (CCPs) 1-2 and 2-3 is more important for DAAs than for CFAs; 3) positive potential in CCP1 is crucial for binding to C3b and C4b, and thereby its functional activities; 4) conversion to negative or enhancement of negative potential for CCPs 2-4 has a marked effect on C3b-linked activities as opposed to C4b-linked activities; and 5) reversal of the electrostatic potential of CCP4 to negative has a differential effect on classical and alternative pathway DAAs. Together, our data provide functional relevance to conservation of positive potential in CCPs 1 and 4 and the linkers of viral complement regulators.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune, India
| | | | | | | | | |
Collapse
|
22
|
Kovacs JM, Hannan JP, Eisenmesser EZ, Holers VM. Mapping of the C3d ligand binding site on complement receptor 2 (CR2/CD21) using nuclear magnetic resonance and chemical shift analysis. J Biol Chem 2009; 284:9513-20. [PMID: 19164292 PMCID: PMC2666603 DOI: 10.1074/jbc.m808404200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/06/2009] [Indexed: 11/06/2022] Open
Abstract
Complement receptor 2 (CR2, CD21) is a cell membrane protein, with 15 or 16 extracellular short consensus repeats (SCRs), that promotes B lymphocyte responses and bridges innate and acquired immunity. The most distally located SCRs (SCR1-2) mediate the interaction of CR2 with its four known ligands (C3d, Epstein-Barr virus gp350, interferon-alpha, and CD23). Inhibitory monoclonal antibodies against SCR1-2 block binding of all ligands. To develop ligand-specific inhibitors that would also assist in identifying residues unique to each receptor-ligand interaction, phage were selected from randomly generated libraries by panning with recombinant SCR1-2, followed by specific ligand-driven elution. Derived peptides were tested by competition ELISA. One peptide, C3dp1 (APQHLSSQYSRT) exhibited ligand-specific inhibition at midmicromolar IC(50). C3d was titrated into (15)N-labeled SCR1-2, which revealed chemical shift changes indicative of specific intermolecular interactions. With backbone assignments made, the chemical shift changes were mapped onto the crystal structure of SCR1-2. With regard to C3d, the binding surface includes regions of SCR1, SCR2, and the inter-SCR linker, specifically residues Arg(13), Tyr(16), Arg(28), Tyr(29), Ser(32), Thr(34), Lys(48), Asp(56), Lys(57), Tyr(68), Arg(83), Gly(84), Asn(101), Asn(105), and Ser(109). SCR1 and SCR2 demonstrated distinct binding modes. The CR2 binding surface incorporating SCR1 is inconsistent with a previous x-ray CR2-C3d co-crystal analysis but consistent with mutagenesis, x-ray neutron scattering, and inhibitory monoclonal antibody epitope mapping. Titration with C3dp1 yielded chemical shift changes (Arg(13), Tyr(16), Thr(34), Lys(48), Asp(56), Lys(57), Tyr(68), Arg(83), Gly(84), Asn(105), and Ser(109)) overlapping with C3d, indicating that C3dp1 interacts at the same CR2 site as C3d.
Collapse
Affiliation(s)
- James M Kovacs
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
23
|
Molecular basis of the interaction between complement receptor type 2 (CR2/CD21) and Epstein-Barr virus glycoprotein gp350. J Virol 2008; 82:11217-27. [PMID: 18786993 DOI: 10.1128/jvi.01673-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The binding of the Epstein-Barr virus glycoprotein gp350 by complement receptor type 2 (CR2) is critical for viral attachment to B lymphocytes. We set out to test hypotheses regarding the molecular nature of this interaction by developing an enzyme-linked immunosorbent assay (ELISA) for the efficient analysis of the gp350-CR2 interaction by utilizing wild-type and mutant forms of recombinant gp350 and also of the CR2 N-terminal domains SCR1 and SCR2 (designated CR2 SCR1-2). To delineate the CR2-binding site on gp350, we generated 17 gp350 single-site substitutions targeting an area of gp350 that has been broadly implicated in the binding of both CR2 and the major inhibitory anti-gp350 monoclonal antibody (MAb) 72A1. These site-directed mutations identified a novel negatively charged CR2-binding surface described by residues Glu-21, Asp-22, Glu-155, Asp-208, Glu-210, and Asp-296. We also identified gp350 amino acid residues involved in non-charge-dependent interactions with CR2, including Tyr-151, Ile-160, and Trp-162. These data were supported by experiments in which phycoerythrin-conjugated wild-type and mutant forms of gp350 were incubated with CR2-expressing K562 cells and binding was assessed by flow cytometry. The ELISA was further utilized to identify several positively charged residues (Arg-13, Arg-28, Arg-36, Lys-41, Lys-57, Lys-67, Arg-83, and Arg-89) within SCR1-2 of CR2 that are involved in the binding interaction with gp350. These experiments allowed a comparison of those CR2 residues that are important for binding gp350 to those that define the epitope for an effective inhibitory anti-CR2 MAb, 171 (Asn-11, Arg-13, Ser-32, Thr-34, Arg-36, and Tyr-64). The mutagenesis data were used to calculate a model of the CR2-gp350 complex using the soft-docking program HADDOCK.
Collapse
|
24
|
Solution structure of the complex formed between human complement C3d and full-length complement receptor type 2. J Mol Biol 2008; 384:137-50. [PMID: 18804116 DOI: 10.1016/j.jmb.2008.08.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/23/2008] [Accepted: 08/26/2008] [Indexed: 11/21/2022]
Abstract
Complement receptor type 2 (CR2, CD21) is a cell surface protein that links the innate and adaptive immune response during the activation of B-cells through its binding to C3d, a cleavage fragment of the major complement component C3. The extracellular portion of CR2 comprises 15 or 16 short complement regulator (SCR) domains in a partially folded-back but flexible structure. Here, the effect of C3d binding to CR2 was determined by analytical ultracentrifugation and X-ray scattering. The sedimentation coefficient of unbound CR2 is 4.03 S in 50 mM NaCl. Because this agrees well with a value of 3.93 S in 137 mM NaCl, the overall CR2 structure is unaffected by change in ionic strength. Unbound C3d exists in monomer-dimer and monomer-trimer equilibria in 50 mM NaCl, but as a monomer only in 137 mM NaCl. In c(s) size-distribution analyses, an equimolar mixture of the CR2-C3d complex in 50 mM NaCl revealed a single peak shifted to 4.52 S when compared to unbound CR2 at 4.03 S to show that the complex had formed. The CR2-C3d complex in 137 mM NaCl showed two peaks at 2.52 S and 4.07 S to show that this had dissociated. Solution structural models for the CR2 SCR-1/2 complex with C3d and CR2 SCR-1/15 were superimposed. These gave an average sedimentation coefficient of 4.57 S for the complex, in good agreement with the observed value of 4.52 S. It is concluded that CR2 does not detectably change conformation when C3d is bound to it. Consistent with previous analyses, its C3d complex is not formed in physiological salt conditions. The implications of these solution results for its immune role are discussed. To our knowledge, this is the first solution structural study of a large multidomain SCR protein CR2 bound to its physiological ligand C3d.
Collapse
|
25
|
Huynh N, Mallik B, Zhang L, Martins-Green M, Morikis D. Computational studies of CXCR1, the receptor of IL-8/CXCL8, using molecular dynamics and electrostatics. Biopolymers 2008; 89:52-61. [PMID: 17876799 DOI: 10.1002/bip.20851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structure of IL-8/CXCL8 has been previously determined using NMR spectroscopy and X-ray crystallography, but the structure of the receptors for this chemokine has not been determined experimentally. We present here the development of a model for the structure of the IL-8/CXCL8 receptor CXCR1, using a combination of homology modeling and a molecular dynamics simulation. Based on this model, we discuss the analysis of structural, dynamic, and physicochemical properties of CXCR1. We focused on the role of pairwise ionic interactions in local structural stability of CXCR1 and the role of electrostatic potentials in recognition of CXCR1 with IL-8/CXCL8. We have performed theoretical mutations of six charged amino acids in CXCR1, which abolish binding as suggested by earlier experimental data, to shed light on the effect of charge on association ability. We propose that the observed loss of binding in the six CXCR1 mutants is owed to loss of local structural stability, rather than hindrance of the recognition process because of changes in the overall electrostatic properties of the receptor. Based on further structural analysis, we propose some mutations of charged residues involving ion pairs in different elements of transmembrane helices and extracellular loops, which are expected to alter the local structure and possibly affect binding.
Collapse
Affiliation(s)
- Nicholas Huynh
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
26
|
Yang W, Nymeyer H, Zhou HX, Berg B, Brüschweiler R. Quantitative computer simulations of biomolecules: A snapshot. J Comput Chem 2007; 29:668-72. [PMID: 17708535 DOI: 10.1002/jcc.20819] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A recent workshop titled "Quantitative Computational Biophysics" at Florida State University provided an overview of the state of the art in quantitative modeling of biomolecular systems. The presentations covered a wide range of interrelated topics, including the development and validation of force fields, the modeling of protein-protein interactions, the sampling of conformational space, and the assessment of equilibration and statistical errors. Substantial progress in all these areas was reported.
Collapse
Affiliation(s)
- Wei Yang
- School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | |
Collapse
|