1
|
Sethumadhavan S, Barth M, Spaapen RM, Schmidt C, Trowitzsch S, Tampé R. Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex. Sci Rep 2022; 12:1516. [PMID: 35087068 PMCID: PMC8795405 DOI: 10.1038/s41598-022-05000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients' allotypes.
Collapse
Affiliation(s)
- Sunesh Sethumadhavan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
2
|
Kanduc D. The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity. Biol Chem 2019; 400:629-638. [PMID: 30504522 DOI: 10.1515/hsz-2018-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 11/15/2022]
Abstract
Analyses of the peptide sharing between five common human viruses (Borna disease virus, influenza A virus, measles virus, mumps virus and rubella virus) and the human proteome highlight a massive viral vs. human peptide overlap that is mathematically unexpected. Evolutionarily, the data underscore a strict relationship between viruses and the origin of eukaryotic cells. Indeed, according to the viral eukaryogenesis hypothesis and in light of the endosymbiotic theory, the first eukaryotic cell (our lineage) originated as a consortium consisting of an archaeal ancestor of the eukaryotic cytoplasm, a bacterial ancestor of the mitochondria and a viral ancestor of the nucleus. From a pathologic point of view, the peptide sequence similarity between viruses and humans may provide a molecular platform for autoimmune crossreactions during immune responses following viral infections/immunizations.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, I-70124 Bari, Italy
| |
Collapse
|
3
|
The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins. Mol Immunol 2018; 101:55-64. [DOI: 10.1016/j.molimm.2018.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/03/2023]
|
4
|
Ringel O, Müller K, Koch J, Brill B, Wolf T, Stephan C, Vieillard V, Debré P, Dietrich U. Optimization of the EC26-2A4 Epitope in the gp41 Membrane Proximal External Region Targeted by Neutralizing Antibodies from an Elite Controller. AIDS Res Hum Retroviruses 2018; 34:365-374. [PMID: 29262692 PMCID: PMC5899297 DOI: 10.1089/aid.2017.0250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The analysis of patient derived HIV neutralizing antibodies (nAbs) and their target epitopes in the viral envelope (Env) protein provides important basic information for vaccine design. In this study we optimized an epitope, EC26-2A4, that is targeted by neutralizing antibodies from an elite controller (EC26) and localizes in the membrane-proximal external region from the gp41 transmembrane protein. Due to its overlap with the epitope of the first generation broadly neutralizing monoclonal Ab (mAb) 2F5 associated with autoreactivity, we first defined the minimal core epitope reacting with antibodies from EC26 plasma, but not with mAb 2F5. The optimized minimal epitope, EC26-2A4ΔM, was able to induce neutralizing antibodies in vaccinated mice. We further analyzed the frequency of antibodies against the EC26-2A4ΔM peptide in HIV-positive patient sera from a treated cohort and an untreated long-term nonprogressor (LTNP) cohort. Interestingly, 27% of the LTNP sera reacted with the peptide, whereas only 9% showed reactivity in the treated cohort. Although there was no association between the presence of antibodies against the EC26-2A4ΔM epitope and viral load or CD4 count in these patients, the CD4 nadir in the treated cohort was higher in patients positive for EC26-2A4ΔM antibodies, in particular in patients having such antibodies at an early and a late timepoint after infection.
Collapse
Affiliation(s)
- Oliver Ringel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Karsten Müller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Boris Brill
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Timo Wolf
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Christoph Stephan
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Vincent Vieillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Patrice Debré
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| |
Collapse
|
5
|
Rutkowski E, Leibelt S, Born C, Friede ME, Bauer S, Weil S, Koch J, Steinle A. Clr-a: A Novel Immune-Related C-Type Lectin-like Molecule Exclusively Expressed by Mouse Gut Epithelium. THE JOURNAL OF IMMUNOLOGY 2016; 198:916-926. [PMID: 27956531 DOI: 10.4049/jimmunol.1600666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022]
Abstract
The mouse gut epithelium represents a constitutively challenged environment keeping intestinal commensal microbiota at bay and defending against invading enteric pathogens. The complex immunoregulatory network of the epithelial barrier surveillance also involves NK gene complex (NKC)-encoded C-type lectin-like molecules such as NKG2D and Nkrp1 receptors. To our knowledge, in this study, we report the first characterization of the orphan C-type lectin-like molecule Clr-a encoded by the Clec2e gene in the mouse NKC. Screening of a panel of mouse tissues revealed that Clec2e transcripts are restricted to the gastrointestinal tract. Using Clr-a-specific mAb, we characterize Clr-a as a disulfide-linked homodimeric cell surface glycoprotein. Of note, a substantial fraction of Clr-a molecules are retained intracellularly, and analyses of Clr-a/Clr-f hybrids attribute intracellular retention to both the stalk region and parts of the cytoplasmic domain. Combining quantitative PCR analyses with immunofluorescence studies revealed exclusive expression of Clr-a by intestinal epithelial cells and crypt cells throughout the gut. Challenge with polyinosinic-polycytidylic acid results in a rapid and strong downregulation of intestinal Clr-a expression in contrast to the upregulation of Clr-f, a close relative of Clr-a, that also is specifically expressed by the intestinal epithelium and acts as a ligand of the inhibitory Nkrp1g receptor. Collectively, we characterize expression of the mouse NKC-encoded glycoprotein Clr-a as strictly associated with mouse intestinal epithelium. Downregulation upon polyinosinic-polycytidylic acid challenge and expression by crypt cells clearly distinguish Clr-a from the likewise intestinal epithelium-restricted Clr-f, pointing to a nonredundant function of these highly related C-type lectin-like molecules in the context of intestinal immunosurveillance.
Collapse
Affiliation(s)
- Emilia Rutkowski
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Stefan Leibelt
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Christina Born
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Miriam E Friede
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps University Marburg, 35043 Marburg, Germany
| | - Sandra Weil
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany; and.,Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Joachim Koch
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany; and.,Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
6
|
Trott M, Weiß S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 2014; 9:e97478. [PMID: 24828352 PMCID: PMC4020869 DOI: 10.1371/journal.pone.0097478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/20/2014] [Indexed: 12/30/2022] Open
Abstract
HIV neutralizing antibodies (nAbs) represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP) and elite controllers (EC), represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env) proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb) A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR) in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.
Collapse
Affiliation(s)
- Maria Trott
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Svenja Weiß
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Sascha Antoni
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Hagen von Briesen
- HIV Specimen Cryorepository (HSC) at Fraunhofer Institute of Biomedical Engineering, St. Ingbert, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
7
|
Binici J, Hartmann J, Herrmann J, Schreiber C, Beyer S, Güler G, Vogel V, Tumulka F, Abele R, Mäntele W, Koch J. A soluble fragment of the tumor antigen BCL2-associated athanogene 6 (BAG-6) is essential and sufficient for inhibition of NKp30 receptor-dependent cytotoxicity of natural killer cells. J Biol Chem 2013; 288:34295-303. [PMID: 24133212 DOI: 10.1074/jbc.m113.483602] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Immunosurveillance of tumor cells depends on NKp30, a major activating receptor of human natural killer (NK) cells. The human BCL2-associated athanogene 6 (BAG-6, also known as BAT3; 1126 amino acids) is a cellular ligand of NKp30. To date, little is known about the molecular details of this receptor ligand system. Within the current study, we have located the binding site of NKp30 to a sequence stretch of 250 amino acids in the C-terminal region of BAG-6 (BAG-6(686-936)). BAG-6(686-936) forms a noncovalent dimer of 57-59 kDa, which is sufficient for high affinity interaction with NKp30 (KD < 100 nM). As our most important finding, BAG-6(686-936) inhibits NKp30-dependent signaling, interferon-γ release, and degranulation of NK cells in the presence of malignantly transformed target cells. Based on these data, we show for the first time that BAG-6(686-936) comprises a subdomain of BAG-6, which is sufficient for receptor docking and inhibition of NKp30-dependent NK cell cytotoxicity as part of a tumor immune escape mechanism. These molecular insights provide an access point to restore tumor immunosurveillance by NK cells and to increase the efficacy of cellular therapies.
Collapse
Affiliation(s)
- Janina Binici
- From the Georg-Speyer-Haus, Institute for Biomedical Research, D-60596 Frankfurt am Main and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Characterisation of mouse monoclonal antibodies against rhesus macaque killer immunoglobulin-like receptors KIR3D. Immunogenetics 2012; 64:845-8. [PMID: 22893031 PMCID: PMC3470681 DOI: 10.1007/s00251-012-0640-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Killer immunoglobulin-like receptors (KIRs) represent a highly polymorphic and diverse gene family in rhesus macaques. Analyses of the respective gene products have been hampered until now due to non-availability of specific monoclonal antibodies and failure of cross-reactivity of anti-human KIR antibodies. We utilised one activating (KIR3DSW08) and two inhibitory (KIR3DLW03 and KIR3DL05) rhesus macaque KIR-Fc fusion proteins for generation of monoclonal antibodies in mice. Besides broadly reacting ones, we obtained anti-rhesus macaque KIR antibodies with intermediate and with single specificity. These monoclonal antibodies were tested for binding to a panel of rhesus macaque KIR proteins after heterologous expression on transiently transfected cells. Epitope mapping identified two polymorphic regions that are located next to each other in the mature KIR proteins. The availability of monoclonal antibodies against rhesus macaque KIR proteins will enable future studies on KIR at the protein level in rhesus macaques as important animal models of human infectious diseases.
Collapse
|
9
|
Klöß S, Köhl U. [Immunotherapy with allogeneic NK cells after stem cell transplantation: harnessing a potent "killer" of tumor cells]. ACTA ACUST UNITED AC 2012; 41:239-45. [PMID: 22844672 DOI: 10.1002/pauz.201200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stephan Klöß
- Zentrum für Kinder- und Jugendmedizin, Frankfurt
| | | |
Collapse
|
10
|
Panter MS, Jain A, Leonhardt RM, Ha T, Cresswell P. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex. J Biol Chem 2012; 287:31172-84. [PMID: 22829594 PMCID: PMC3438949 DOI: 10.1074/jbc.m112.387704] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.
Collapse
Affiliation(s)
- Michaela S Panter
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | |
Collapse
|
11
|
Lampen MH, Verweij MC, Querido B, van der Burg SH, Wiertz EJHJ, van Hall T. CD8+ T cell responses against TAP-inhibited cells are readily detected in the human population. THE JOURNAL OF IMMUNOLOGY 2010; 185:6508-17. [PMID: 20980626 DOI: 10.4049/jimmunol.1001774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Target cell recognition by CTLs depends on the presentation of peptides by HLA class I molecules. Tumors and herpes viruses have adopted strategies to greatly hamper this peptide presentation at the important bottleneck, the peptide transporter TAP. Previously, we described the existence of a CD8(+) CTL subpopulation that selectively recognizes such TAP-deficient cells in mouse models. In this study, we show that the human counterpart of this CTL subset is readily detectable in healthy subjects. Autologous PBMC cultures were initiated with dendritic cells rendered TAP-impaired by gene transfer of the viral evasion molecule UL49.5. Strikingly, specific reactivity to B-LCLs expressing one of the other viral TAP-inhibitors (US6, ICP47, or BNLF2a) was already observed after three rounds of stimulation. These short-term T cell cultures and isolated CD8(+) CTL clones derived thereof did not recognize the normal B-LCL, indicating that the cognate peptide-epitopes emerge at the cell surface upon an inhibition in the MHC class I processing pathway. A diverse set of TCRs was used by the clones, and the cellular reactivity was TCR-dependent and HLA class I-restricted, implying the involvement of a broad antigenic peptide repertoire. Our data indicate that the human CD8(+) T cell pool comprises a diverse reactivity to target cells with impairments in the intracellular processing pathway, and these might be exploited for cancers that are associated with such defects and for infections with immune-evading herpes viruses.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
van Luijn MM, Chamuleau MED, Ressing ME, Wiertz EJ, Ostrand-Rosenberg S, Souwer Y, Zevenbergen A, Ossenkoppele GJ, van de Loosdrecht AA, van Ham SM. Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes. Cancer Immunol Immunother 2010; 59:1825-38. [PMID: 20820776 PMCID: PMC2945475 DOI: 10.1007/s00262-010-0908-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023]
Abstract
During HLA class II synthesis in antigen-presenting cells, the invariant chain (Ii) not only stabilizes HLA class II complexes in the endoplasmic reticulum, but also mediates their transport to specialized lysosomal antigen-loading compartments termed MIICs. This study explores an alternative HLA class II presentation pathway in leukemic blasts that involves proteasome and transporter associated with antigen processing (TAP)-dependent peptide loading. Although HLA-DR did associate with Ii, Ii silencing in the human class II-associated invariant chain peptide (CLIP)-negative KG-1 myeloid leukemic cell line did not affect total and plasma membrane expression levels of HLA-DR, as determined by western blotting and flow cytometry. Since HLA-DR expression does require peptide binding, we examined the role of endogenous antigen-processing machinery in HLA-DR presentation by CLIP(-) leukemic blasts. The suppression of proteasome and TAP function using various inhibitors resulted in decreased HLA-DR levels in both CLIP(-) KG-1 and ME-1 blasts. Simultaneous inhibition of TAP and Ii completely down-modulated the expression of HLA-DR, demonstrating that together these molecules form the key mediators of HLA class II antigen presentation in leukemic blasts. By the use of a proteasome- and TAP-dependent pathway for HLA class II antigen presentation, CLIP(-) leukemic blasts might be able to present a broad range of endogenous leukemia-associated peptides via HLA class II to activate leukemia-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology, Cancer Center Amsterdam, VU Institute for Cancer and Immunology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schölz C, Tampé R. The peptide-loading complex--antigen translocation and MHC class I loading. Biol Chem 2009; 390:783-94. [PMID: 19426129 DOI: 10.1515/bc.2009.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A large and dynamic membrane-associated machinery orchestrates the translocation of antigenic peptides into the endoplasmic reticulum (ER) lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. The peptide-loading complex ensures that only high-affinity peptides, which guarantee long-term stability of MHC I complexes, are presented to T-lymphocytes. Adaptive immunity is dependent on surface display of the cellular proteome in the form of protein fragments, thus allowing efficient recognition of infected or malignant transformed cells. In this review, we summarize recent findings of antigen translocation by the transporter associated with antigen processing and loading of MHC class I molecules in the ER, focusing on the mechanisms involved in this process.
Collapse
Affiliation(s)
- Christian Schölz
- Institute of Biochemistry, Biocenter, Center for Membrane Proteomics (CMP) and Cluster of Excellence (CEF)-Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany
| | | |
Collapse
|
14
|
Verweij MC, Koppers-Lalic D, Loch S, Klauschies F, de la Salle H, Quinten E, Lehner PJ, Mulder A, Knittler MR, Tampé R, Koch J, Ressing ME, Wiertz EJHJ. The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. THE JOURNAL OF IMMUNOLOGY 2008; 181:4894-907. [PMID: 18802093 DOI: 10.4049/jimmunol.181.7.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Loch S, Klauschies F, Schölz C, Verweij MC, Wiertz EJHJ, Koch J, Tampé R. Signaling of a varicelloviral factor across the endoplasmic reticulum membrane induces destruction of the peptide-loading complex and immune evasion. J Biol Chem 2008; 283:13428-36. [PMID: 18321854 DOI: 10.1074/jbc.m800226200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytotoxic T lymphocytes eliminate infected cells upon surface display of antigenic peptides on major histocompatibility complex I molecules. To promote immune evasion, UL49.5 of several varicelloviruses interferes with the pathway of major histocompatibility complex I antigen processing. However, the inhibition mechanism has not been elucidated yet. Within the macromolecular peptide-loading complex we identified the transporter associated with antigen processing (TAP1 and TAP2) as the prime target of UL49.5. Moreover, we determined the active oligomeric state and crucial elements of the viral factor. Remarkably, the last two residues of the cytosolic tail of UL49.5 are essential for endoplasmic reticulum (ER)-associated proteasomal degradation of TAP. However, this process strictly requires additional signaling of an upstream regulatory element in the ER lumenal domain of UL49.5. Within this new immune evasion mechanism, we show for the first time that additive elements of a small viral factor and their signaling across the ER membrane are essential for targeted degradation of a multi-subunit membrane complex.
Collapse
Affiliation(s)
- Sandra Loch
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, D-60438, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|