1
|
Wang Z, Yang M, Yang Y, He Y, Qian H. Structural basis for catalysis of human choline/ethanolamine phosphotransferase 1. Nat Commun 2023; 14:2529. [PMID: 37137909 PMCID: PMC10156783 DOI: 10.1038/s41467-023-38290-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are two primary components of the eukaryotic membrane and play essential roles in the maintenance of membrane integrity, lipid droplet biogenesis, autophagosome formation, and lipoprotein formation and secretion. Choline/ethanolamine phosphotransferase 1 (CEPT1) catalyzes the last step of the biosynthesis of PC and PE in the Kennedy pathway by transferring the substituted phosphate group from CDP-choline/ethanolamine to diacylglycerol. Here, we present the cryo-EM structures of human CEPT1 and its complex with CDP-choline at resolutions of 3.7 Å and 3.8 Å, respectively. CEPT1 is a dimer with 10 transmembrane segments (TMs) in each protomer. TMs 1-6 constitute a conserved catalytic domain with an interior hydrophobic chamber accommodating a PC-like density. Structural observations and biochemical characterizations suggest that the hydrophobic chamber coordinates the acyl tails during the catalytic process. The PC-like density disappears in the structure of the complex with CDP-choline, suggesting a potential substrate-triggered product release mechanism.
Collapse
Affiliation(s)
- Zhenhua Wang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Meng Yang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yufan Yang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yonglin He
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hongwu Qian
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
2
|
Valvano MA. Remodelling of the Gram-negative bacterial Kdo 2-lipid A and its functional implications. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394417 DOI: 10.1099/mic.0.001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipopolysaccharide (LPS) is a characteristic molecule of the outer leaflet of the Gram-negative bacterial outer membrane, which consists of lipid A, core oligosaccharide, and O antigen. The lipid A is embedded in outer membrane and provides an efficient permeability barrier, which is particularly important to reduce the permeability of antibiotics, toxic cationic metals, and antimicrobial peptides. LPS, an important modulator of innate immune responses ranging from localized inflammation to disseminated sepsis, displays a high level of structural and functional heterogeneity, which arise due to regulated differences in the acylation of the lipid A and the incorporation of non-stoichiometric modifications in lipid A and the core oligosaccharide. This review focuses on the current mechanistic understanding of the synthesis and assembly of the lipid A molecule and its most salient non-stoichiometric modifications.
Collapse
Affiliation(s)
- Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
3
|
Chakrabarty B, Parekh N. DbStRiPs: Database of structural repeats in proteins. Protein Sci 2022; 31:23-36. [PMID: 33641184 PMCID: PMC8740836 DOI: 10.1002/pro.4052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 01/03/2023]
Abstract
Recent interest in repeat proteins has arisen due to stable structural folds, high evolutionary conservation and repertoire of functions provided by these proteins. However, repeat proteins are poorly characterized because of high sequence variation between repeating units and structure-based identification and classification of repeats is desirable. Using a robust network-based pipeline, manual curation and Kajava's structure-based classification schema, we have developed a database of tandem structural repeats, Database of Structural Repeats in Proteins (DbStRiPs). A unique feature of this database is that available knowledge on sequence repeat families is incorporated by mapping Pfam classification scheme onto structural classification. Integration of sequence and structure-based classifications help in identifying different functional groups within the same structural subclass, leading to refinement in the annotation of repeat proteins. Analysis of complete Protein Data Bank revealed 16,472 repeat annotations in 15,141 protein chains, one previously uncharacterized novel protein repeat family (PRF), named left-handed beta helix, and 33 protein repeat clusters (PRCs). Based on their unique structural motif, ~79% of these repeat proteins are classified in one of the 14 PRFs or 33 PRCs, and the remaining are grouped as unclassified repeat proteins. Each repeat protein is provided with a detailed annotation in DbStRiPs that includes start and end boundaries of repeating units, copy number, secondary and tertiary structure view, repeat class/subclass, disease association, MSA of repeating units and cross-references to various protein pattern databases, human protein atlas and interaction resources. DbStRiPs provides easy search and download options to high-quality annotations of structural repeat proteins (URL: http://bioinf.iiit.ac.in/dbstrips/).
Collapse
Affiliation(s)
- Broto Chakrabarty
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information TechnologyHyderabadIndia
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information TechnologyHyderabadIndia
| |
Collapse
|
4
|
Ryan MD, Parkes AL, Corbett D, Dickie AP, Southey M, Andersen OA, Stein DB, Barbeau OR, Sanzone A, Thommes P, Barker J, Cain R, Compper C, Dejob M, Dorali A, Etheridge D, Evans S, Faulkner A, Gadouleau E, Gorman T, Haase D, Holbrow-Wilshaw M, Krulle T, Li X, Lumley C, Mertins B, Napier S, Odedra R, Papadopoulos K, Roumpelakis V, Spear K, Trimby E, Williams J, Zahn M, Keefe AD, Zhang Y, Soutter HT, Centrella PA, Clark MA, Cuozzo JW, Dumelin CE, Deng B, Hunt A, Sigel EA, Troast DM, DeJonge BLM. Discovery of Novel UDP- N-Acetylglucosamine Acyltransferase (LpxA) Inhibitors with Activity against Pseudomonas aeruginosa. J Med Chem 2021; 64:14377-14425. [PMID: 34569791 DOI: 10.1021/acs.jmedchem.1c00888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 μg/mL). Lack of activity against E. coli was maintained (IC50 > 20 μM and MIC > 128 μg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.
Collapse
Affiliation(s)
- M Dominic Ryan
- X-Biotix Therapeutics, 465 Waverly Oaks Road, Waltham, Massachusetts 02452, United States
| | - Alastair L Parkes
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - David Corbett
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Anthony P Dickie
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Michelle Southey
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Ole A Andersen
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Daniel B Stein
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Olivier R Barbeau
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Angelo Sanzone
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Pia Thommes
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - John Barker
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Ricky Cain
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Christel Compper
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Magali Dejob
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Alain Dorali
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Donnya Etheridge
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Sian Evans
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Adele Faulkner
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Elise Gadouleau
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Timothy Gorman
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Denes Haase
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | | | - Thomas Krulle
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Xianfu Li
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Christopher Lumley
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Barbara Mertins
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Spencer Napier
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Rajesh Odedra
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Kostas Papadopoulos
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | | | - Kate Spear
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Emily Trimby
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Jennifer Williams
- Evotec UK, Anti-infectives, Block 23F, Alderley Park, Cheshire SK10 4TG, U.K
| | - Michael Zahn
- Evotec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Anthony D Keefe
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Holly T Soutter
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Paolo A Centrella
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Matthew A Clark
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John W Cuozzo
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | | | - Boer Deng
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Avery Hunt
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Eric A Sigel
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Dawn M Troast
- X-Chem, 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Boudewijn L M DeJonge
- X-Biotix Therapeutics, 465 Waverly Oaks Road, Waltham, Massachusetts 02452, United States
| |
Collapse
|
5
|
Qian H, Zhao X, Yan R, Yao X, Gao S, Sun X, Du X, Yang H, Wong CCL, Yan N. Structural basis for catalysis and substrate specificity of human ACAT1. Nature 2020; 581:333-338. [DOI: 10.1038/s41586-020-2290-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/17/2020] [Indexed: 02/03/2023]
|
6
|
Bhaskar BV, Babu TMC, Rammohan A, Zheng GY, Zyryanov GV, Gu W. Structure-Based Virtual Screening of Pseudomonas aeruginosa LpxA Inhibitors Using Pharmacophore-Based Approach. Biomolecules 2020; 10:biom10020266. [PMID: 32050706 PMCID: PMC7072397 DOI: 10.3390/biom10020266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
Multidrug resistance in Pseudomonas aeruginosa is a noticeable and ongoing major obstacle for inhibitor design. In P. aeruginosa, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) acetyltransferase (PaLpxA) is an essential enzyme of lipid A biosynthesis and an attractive drug target. PaLpxA is a homotrimer, and the binding pocket for its substrate, UDP-GlcNAc, is positioned between the monomer A-monomer B interface. The uracil moiety binds at one monomer A, the GlcNAc moiety binds at another monomer B, and a diphosphate form bonds with both monomers. The catalytic residues are conserved and display a similar catalytic mechanism across orthologs, but some distinctions exist between pocket sizes, residue differences, substrate positioning and specificity. The analysis of diversified pockets, volumes, and ligand positions was determined between orthologues that could aid in selective inhibitor development. Thenceforth, a complex-based pharmacophore model was generated and subjected to virtual screening to identify compounds with similar pharmacophoric properties. Docking and general Born-volume integral (GBVI) studies demonstrated 10 best lead compounds with selective inhibition properties with essential residues in the pocket. For biological access, these scaffolds complied with the Lipinski rule, no toxicity and drug likeness properties, and were considered as lead compounds. Hence, these scaffolds could be helpful for the development of potential selective PaLpxA inhibitors.
Collapse
Affiliation(s)
- Baki Vijaya Bhaskar
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong 515031, China;
- Correspondence: or (B.V.B.); (W.G.)
| | | | - Aluru Rammohan
- Department of organic and biomolecular chemistry, Ural Federal University, Yekaterinburg 620002, Russia; (A.R.); (G.V.Z.)
| | - Gui Yu Zheng
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong 515031, China;
| | - Grigory V. Zyryanov
- Department of organic and biomolecular chemistry, Ural Federal University, Yekaterinburg 620002, Russia; (A.R.); (G.V.Z.)
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Guangdong 515031, China;
- Correspondence: or (B.V.B.); (W.G.)
| |
Collapse
|
7
|
Kroeck KG, Sacco MD, Smith EW, Zhang X, Shoun D, Akhtar A, Darch SE, Cohen F, Andrews LD, Knox JE, Chen Y. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Sci Rep 2019; 9:15450. [PMID: 31664082 PMCID: PMC6820557 DOI: 10.1038/s41598-019-51844-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 11/09/2022] Open
Abstract
The lipid A biosynthesis pathway is essential in Pseudomonas aeruginosa. LpxA and LpxD are the first and third enzymes in this pathway respectively, and are regarded as promising antibiotic targets. The unique structural similarities between these two enzymes make them suitable targets for dual-binding inhibitors, a characteristic that would decrease the likelihood of mutational resistance and increase cell-based activity. We report the discovery of multiple small molecule ligands that bind to P. aeruginosa LpxA and LpxD, including dual-binding ligands. Binding poses were determined for select compounds by X-ray crystallography. The new structures reveal a previously uncharacterized magnesium ion residing at the core of the LpxD trimer. In addition, ligand binding in the LpxD active site resulted in conformational changes in the distal C-terminal helix-bundle, which forms extensive contacts with acyl carrier protein (ACP) during catalysis. These ligand-dependent conformational changes suggest a potential allosteric influence of reaction intermediates on ACP binding, and vice versa. Taken together, the novel small molecule ligands and their crystal structures provide new chemical scaffolds for ligand discovery targeting lipid A biosynthesis, while revealing structural features of interest for future investigation of LpxD function.
Collapse
Affiliation(s)
- Kyle G Kroeck
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Michael D Sacco
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Daniel Shoun
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Afroza Akhtar
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Sophie E Darch
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States
| | - Frederick Cohen
- Former employees of ACHAOGEN Inc., 1 Tower Place, Suite 400, South San Francisco, California, 94080, United States
| | - Logan D Andrews
- Former employees of ACHAOGEN Inc., 1 Tower Place, Suite 400, South San Francisco, California, 94080, United States
| | - John E Knox
- Former employees of ACHAOGEN Inc., 1 Tower Place, Suite 400, South San Francisco, California, 94080, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida, 33612, United States.
| |
Collapse
|
8
|
Pankov G, Dawson A, Hunter WN. The structure of lipopolysaccharide transport protein B (LptB) from Burkholderia pseudomallei. Acta Crystallogr F Struct Biol Commun 2019; 75:227-232. [PMID: 30950822 PMCID: PMC6450526 DOI: 10.1107/s2053230x19001778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/30/2019] [Indexed: 11/10/2022] Open
Abstract
The thick outer membrane (OM) of Gram-negative bacteria performs an important protective role against hostile environments, supports cell integrity, and contributes to surface adhesion and in some cases also to virulence. A major component of the OM is lipopolysaccharide (LPS), a complex glycolipid attached to a core containing fatty-acyl chains. The assembly and transport of lipid A, the membrane anchor for LPS, to the OM begins when a heteromeric LptB2FG protein complex extracts lipid A from the outer leaflet of the inner membrane. This process requires energy, and upon hydrolysis of ATP one component of the heteromeric assembly, LptB, triggers a conformational change in LptFG in support of lipid A transport. A structure of LptB from the intracellular pathogen Burkholderia pseudomallei is reported here. LptB forms a dimer that displays a relatively fixed structure irrespective of whether it is in complex with LptFG or in isolation. Highly conserved sequence and structural features are discussed that allow LptB to fuel the transport of lipid A.
Collapse
Affiliation(s)
- Genady Pankov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Alice Dawson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
9
|
Current Progress in the Structural and Biochemical Characterization of Proteins Involved in the Assembly of Lipopolysaccharide. Int J Microbiol 2018; 2018:5319146. [PMID: 30595696 PMCID: PMC6286764 DOI: 10.1155/2018/5319146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
The lipid component of the outer leaflet of the outer membrane of Gram-negative bacteria is primarily composed of the glycolipid lipopolysaccharide (LPS), which serves to form a protective barrier against hydrophobic toxins and many antibiotics. LPS is comprised of three regions: the lipid A membrane anchor, the nonrepeating core oligosaccharide, and the repeating O-antigen polysaccharide. The lipid A portion is also referred to as endotoxin as its overstimulation of the toll-like receptor 4 during systemic infection precipitates potentially fatal septic shock. Because of the importance of LPS for the viability and virulence of human pathogens, understanding how LPS is synthesized and transported to the outer leaflet of the outer membrane is important for developing novel antibiotics to combat resistant Gram-negative strains. The following review describes the current state of our understanding of the proteins responsible for the synthesis and transport of LPS with an emphasis on the contribution of protein structures to our understanding of their functions. Because the lipid A portion of LPS is relatively well conserved, a detailed description of the biosynthetic enzymes in the Raetz pathway of lipid A synthesis is provided. Conversely, less well-conserved biosynthetic enzymes later in LPS synthesis are described primarily to demonstrate conserved principles of LPS synthesis. Finally, the conserved LPS transport systems are described in detail.
Collapse
|
10
|
González-Bello C. The Inhibition of Lipid A Biosynthesis-The Antidote Against Superbugs? ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
11
|
The ng_ζ1 toxin of the gonococcal epsilon/zeta toxin/antitoxin system drains precursors for cell wall synthesis. Nat Commun 2018; 9:1686. [PMID: 29703974 PMCID: PMC5923241 DOI: 10.1038/s41467-018-03652-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/02/2018] [Indexed: 01/14/2023] Open
Abstract
Bacterial toxin–antitoxin complexes are emerging as key players modulating bacterial physiology as activation of toxins induces stasis or programmed cell death by interference with vital cellular processes. Zeta toxins, which are prevalent in many bacterial genomes, were shown to interfere with cell wall formation by perturbing peptidoglycan synthesis in Gram-positive bacteria. Here, we characterize the epsilon/zeta toxin–antitoxin (TA) homologue from the Gram-negative pathogen Neisseria gonorrhoeae termed ng_ɛ1 / ng_ζ1. Contrary to previously studied streptococcal epsilon/zeta TA systems, ng_ɛ1 has an epsilon-unrelated fold and ng_ζ1 displays broader substrate specificity and phosphorylates multiple UDP-activated sugars that are precursors of peptidoglycan and lipopolysaccharide synthesis. Moreover, the phosphorylation site is different from the streptococcal zeta toxins, resulting in a different interference with cell wall synthesis. This difference most likely reflects adaptation to the individual cell wall composition of Gram-negative and Gram-positive organisms but also the distinct involvement of cell wall components in virulence. Toxin–antitoxin (TA) systems are important modulators of bacterial physiology. Here, the authors structurally characterize the epsilon/zeta TA system from the Gram-negative pathogen Neisseria gonorrhoeae and show that the toxin interferes with peptidoglycan and lipopolysaccharide synthesis by phosphorylating the UDP-activated sugar-precursors.
Collapse
|
12
|
Pratap S, Kesari P, Yadav R, Dev A, Narwal M, Kumar P. Acyl chain preference and inhibitor identification of Moraxella catarrhalis LpxA: Insight through crystal structure and computational studies. Int J Biol Macromol 2017; 96:759-765. [PMID: 28057571 DOI: 10.1016/j.ijbiomac.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/14/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
Abstract
Lipopolysaccharide (LPS) is an important surface component and a potential virulence factor in the pathogenesis of Gram-negative bacteria. UDP-N-acetylglucosamine acyltransferase (LpxA) enzyme catalyzes the first reaction of LPS biosynthesis, reversible transfer of R-3-hydroxy-acyl moiety from donor R-3-hydroxy-acyl-acyl carrier protein to the 3' hydroxyl position of UDP-N-acetyl-glucosamine. LpxA enzyme's essentiality in bacterial survival and absence of any homologous protein in humans makes it a promising target for anti-bacterial drug development. Herein, we present the crystal structure of Moraxella catarrhalis LpxA (McLpxA). We propose that L171 is responsible for limiting the acyl chain length in McLpxA to 10C or 12C. The study reveals the plausible interactions between the highly conserved clusters of basic residues at the C-terminal end of McLpxA and acidic residues of acyl carrier protein (ACP). Furthermore, the crystal structure of McLpxA was used to screen potential inhibitors from NCI open database using various computational approaches viz. pharmacophore mapping, virtual screening and molecular docking. Molecules Mol212032, Mol609399 and Mol152546 showed best binding affinity with McLpxA among all screened molecules. These molecules mimic the substrate-LpxA binding interactions.
Collapse
Affiliation(s)
- Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ravi Yadav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Aditya Dev
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Manju Narwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
13
|
Smith EW, Zhang X, Behzadi C, Andrews LD, Cohen F, Chen Y. Structures of Pseudomonas aeruginosa LpxA Reveal the Basis for Its Substrate Selectivity. Biochemistry 2015; 54:5937-48. [PMID: 26352800 DOI: 10.1021/acs.biochem.5b00720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Gram-negative bacteria, the first step of lipid A biosynthesis is catalyzed by UDP-N-acetylglucosamine acyltransferase (LpxA) through the transfer of a R-3-hydroxyacyl chain from the acyl carrier protein (ACP) to the 3-hydroxyl group of UDP-GlcNAc. Previous studies suggest that LpxA is a critical determinant of the acyl chain length found in lipid A, which varies among species of bacteria. In Escherichia coli and Leptospira interrogans, LpxA prefers to incorporate longer R-3-hydroxyacyl chains (C14 and C12, respectively), whereas in Pseudomonas aeruginosa, the enzyme is selective for R-3-hydroxydecanoyl, a 10-hydrocarbon long acyl chain. We now report three P. aeruginosa LpxA crystal structures: apo protein, substrate complex with UDP-GlcNAc, and product complex with UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc. A comparison between the apo form and complexes identifies key residues that position UDP-GlcNAc appropriately for catalysis and supports the role of catalytic His121 in activating the UDP-GlcNAc 3-hydroxyl group for nucleophilic attack during the reaction. The product-complex structure, for the first time, offers structural insights into how Met169 serves to constrain the length of the acyl chain and thus functions as the so-called hydrocarbon ruler. Furthermore, compared with ortholog LpxA structures, the purported oxyanion hole, formed by the backbone amide group of Gly139, displays a different conformation in P. aeruginosa LpxA, which suggests flexibility of this structural feature important for catalysis and the potential need for substrate-induced conformational change in catalysis. Taken together, the three structures provide valuable insights into P. aeruginosa LpxA catalysis and substrate specificity as well as templates for future inhibitor discovery.
Collapse
Affiliation(s)
- Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - XiuJun Zhang
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Cyrus Behzadi
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Logan D Andrews
- ACHAOGEN Inc. , 7000 Shoreline Court, South San Francisco, California 94080, United States
| | - Frederick Cohen
- ACHAOGEN Inc. , 7000 Shoreline Court, South San Francisco, California 94080, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
14
|
Chen S, He N, Yu J, Li L, Sun F, Hu Y, Deng R, Zhong S, Shen L. Inhibitory effect of 2‑mercaptoethane sulfonate on the formation of Escherichia coli biofilms in vitro. Mol Med Rep 2015; 12:5223-30. [PMID: 26238522 DOI: 10.3892/mmr.2015.4112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
The biofilms (BF) formed by Escherichia coli (E. coli) is an important cause of chronic and recurrent infections due to its capacity to persist on medical surfaces and indwelling devices, demonstrating the importance of inhibiting the formation of E. coli BF and reducing BF infection. Although 2‑mercaptoethane sulfonate (MESNA) exhibits a marked mucolytic effect clinically, the effect of MESNA on the inhibition of E. coli BF formation remains to be elucidated. The present study investigated whether MESNA inhibits the formation of E. coli BF in vitro. The minimum inhibitory concentration of MESNA on E. coli was determined to be 10 mg/ml. Subsequently, the effect of MESNA on BF early adhesion, extracellular polysaccharide (EPS) and extracellular protein were detected. The effect of a subinhibitory concentration of MESNA on BF formation was evaluated, and the inhibitory potency of MESNA against matured BF was assayed. The results revealed that MESNA inhibited early stage adhesion and formation of the E. coli BF, destroyed the mature BF membrane and reduced the EPS and extracellular proteins levels of the BF. In addition, the present study investigated the effects of MESNA on the expression of EPS‑ and adhesion protein‑associated genes using quantitative polymerase chain reaction analysis, which demonstrated that MESNA effectively inhibited the expression of these genes. These results suggested that MESNA possesses anti‑BF formation capability on E. coli in vitro and may be used as a potential reagent for the clinical treatment of E. coli BF‑associated infections.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Nianhai He
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Luquan Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Ying Hu
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Rui Deng
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Shiming Zhong
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Leilei Shen
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
15
|
Ngo A, Fong KT, Cox DL, Chen X, Fisher AJ. Structures of Bacteroides fragilis uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (BfLpxA). ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1068-76. [PMID: 25945572 PMCID: PMC4427197 DOI: 10.1107/s1399004715003326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Abstract
Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes a reversible reaction for adding an O-acyl group to the GlcNAc in UDP-GlcNAc in the first step of lipid A biosynthesis. Lipid A constitutes a major component of lipopolysaccharides, also referred to as endotoxins, which form the outer monolayer of the outer membrane of Gram-negative bacteria. Ligand-free and UDP-GlcNAc-bound crystal structures of LpxA from Bacteroides fragilis NCTC 9343, the most common pathogenic bacteria found in abdominal abscesses, have been determined and are presented here. The enzyme crystallizes in a cubic space group, with the crystallographic threefold axis generating the biological functional homotrimer and with each monomer forming a nine-rung left-handed β-helical (LβH) fold in the N-terminus followed by an α-helical motif in the C-terminus. The structure is highly similar to LpxA from other organisms. Yet, despite sharing a similar LβH structure with LpxAs from Escherichia coli and others, previously unseen calcium ions are observed on the threefold axis in B. fragilis LpxA to help stabilize the trimeric assembly.
Collapse
Affiliation(s)
- Alice Ngo
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Kai T. Fong
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Daniel L. Cox
- Department of Physics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Andrew J. Fisher
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
16
|
Jenkins RJ, Heslip KA, Meagher JL, Stuckey JA, Dotson GD. Structural basis for the recognition of peptide RJPXD33 by acyltransferases in lipid A biosynthesis. J Biol Chem 2014; 289:15527-35. [PMID: 24742680 PMCID: PMC4140908 DOI: 10.1074/jbc.m114.564278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/15/2014] [Indexed: 01/28/2023] Open
Abstract
UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3-O-(acyl)-glucosamine acyltransferase (LpxD) constitute the essential, early acyltransferases of lipid A biosynthesis. Recently, an antimicrobial peptide inhibitor, RJPXD33, was identified with dual affinity for LpxA and LpxD. To gain a fundamental understanding of the molecular basis of inhibitor binding, we determined the crystal structure of LpxA from Escherichia coli in complex with RJPXD33 at 1.9 Å resolutions. Our results suggest that the peptide binds in a unique modality that mimics (R)-β-hydroxyacyl pantetheine binding to LpxA and displays how the peptide binds exclusive of the native substrate, acyl-acyl carrier protein. Acyltransferase binding studies with photo-labile RJPXD33 probes and truncations of RJPXD33 validated the structure and provided fundamental insights for future design of small molecule inhibitors. Overlay of the LpxA-RJPXD33 structure with E. coli LpxD identified a complementary peptide binding pocket within LpxD and serves as a model for further biochemical characterization of RJPXD33 binding to LpxD.
Collapse
Affiliation(s)
- Ronald J Jenkins
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| | - Kyle A Heslip
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Garry D Dotson
- From the Department of Medicinal Chemistry, College of Pharmacy, and
| |
Collapse
|
17
|
Badger J, Chie-Leon B, Logan C, Sridhar V, Sankaran B, Zwart PH, Nienaber V. Structure determination of LpxA from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1477-81. [PMID: 23192027 PMCID: PMC3509968 DOI: 10.1107/s174430911204571x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/05/2012] [Indexed: 05/18/2024]
Abstract
Acinetobacter baumannii is a Gram-negative pathogenic bacterium which is resistant to most currently available antibiotics and that poses a significant health threat to hospital patients. LpxA is a key enzyme in the biosynthetic pathway of the lipopolysaccharides that are components of the bacterial outer membrane. It is a potential target for antibacterial agents that might be used to fight A. baumannii infections. This paper describes the structure determination of the apo form of LpxA in space groups P2(1)2(1)2(1) and P6(3). These crystal forms contained three and one protein molecules in the asymmetric unit and diffracted to 1.8 and 1.4 Å resolution, respectively. A comparison of the conformations of the independent protein monomers within and between the two crystal asymmetric units revealed very little structural variation across this set of structures. In the P6(3) crystal form the enzymatic site is exposed and is available for the introduction of small molecules of the type used in fragment-based drug discovery and structure-based lead optimization.
Collapse
Affiliation(s)
- John Badger
- Zenobia Therapeutics Inc., 505 Coast Boulevard South, Suite 111, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Shapiro AB, Ross PL, Gao N, Livchak S, Kern G, Yang W, Andrews B, Thresher J. A high-throughput-compatible fluorescence anisotropy-based assay for competitive inhibitors of Escherichia coli UDP-N-acetylglucosamine acyltransferase (LpxA). ACTA ACUST UNITED AC 2012; 18:341-7. [PMID: 23015018 DOI: 10.1177/1087057112462062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LpxA, the first enzyme in the biosynthetic pathway for the Lipid A component of the outer membrane lipopolysaccharide in Gram-negative bacteria, is a potential target for novel antibacterial drug discovery. A fluorescence polarization assay was developed to facilitate high-throughput screening for competitive inhibitors of LpxA. The assay detects displacement of a fluorescently labeled peptide inhibitor, based on the previously reported inhibitor peptide 920, by active site ligands. The affinity of the fluorescent ligand was increased ~10-fold by acyl carrier protein (ACP). Competition with peptide binding was observed with UDP-N-acetylglucosamine (IC(50) ~6 mM), UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine (IC(50) ~200 nM), and DL-3-hydroxymyristic acid (IC(50) ~50 µM) and peptide 920 (IC(50) ~600 nM). The IC(50)s were not significantly affected by the presence of ACP.
Collapse
|
19
|
Page MGP. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel? Handb Exp Pharmacol 2012:67-86. [PMID: 23090596 DOI: 10.1007/978-3-642-28951-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist.
Collapse
|
20
|
Genetic replacement of tesB with PTE1 affects chain-length proportions of 3-hydroxyalkanoic acids produced through β-oxidation of oleic acid in Escherichia coli. J Biosci Bioeng 2010; 110:392-6. [DOI: 10.1016/j.jbiosc.2010.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/04/2010] [Accepted: 05/12/2010] [Indexed: 11/17/2022]
|
21
|
Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 2010; 54:4971-7. [PMID: 20855724 DOI: 10.1128/aac.00834-10] [Citation(s) in RCA: 612] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) Gram-negative bacteria represent a major global health problem. Polymyxin antibiotics such as colistin have resurfaced as effective last-resort antimicrobials for use against MDR Gram-negative pathogens, including Acinetobacter baumannii. Here we show that A. baumannii can rapidly develop resistance to polymyxin antibiotics by complete loss of the initial binding target, the lipid A component of lipopolysaccharide (LPS), which has long been considered to be essential for the viability of Gram-negative bacteria. We characterized 13 independent colistin-resistant derivatives of A. baumannii type strain ATCC 19606 and showed that all contained mutations within one of the first three genes of the lipid A biosynthesis pathway: lpxA, lpxC, and lpxD. All of these mutations resulted in the complete loss of LPS production. Furthermore, we showed that loss of LPS occurs in a colistin-resistant clinical isolate of A. baumannii. This is the first report of a spontaneously occurring, lipopolysaccharide-deficient, Gram-negative bacterium.
Collapse
|
22
|
Bartling CM, Raetz CRH. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 2009; 48:8672-83. [PMID: 19655786 PMCID: PMC2748855 DOI: 10.1021/bi901025v] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LpxD catalyzes the third step of lipid A biosynthesis, the R-3-hydroxyacyl-ACP-dependent N-acylation of UDP-3-O-(acyl)-alpha-D-glucosamine, and is a target for new antibiotic development. Here we report the 2.6 A crystal structure of the Escherichia coli LpxD homotrimer (EcLpxD). As is the case in Chlamydia trachomatis LpxD (CtLxpD), each EcLpxD chain consists of an N-terminal uridine-binding region, a left-handed parallel beta-helix (LbetaH), and a C-terminal alpha-helical domain. The backbones of the LbetaH domains of the two enzymes are similar, as are the positions of key active site residues. The N-terminal nucleotide binding domains are oriented differently relative to the LbetaH regions, but are similar when overlaid on each other. The orientation of the EcLpxD tripeptide (residues 303-305), connecting the distal end of the LbetaH and the proximal end of the C-terminal helical domains, differs from its counterpart in CtLpxD (residues 311-312); this results in a 120 degrees rotation of the C-terminal domain relative to the LbetaH region in EcLpxD versus CtLpxD. M290 of EcLpxD appears to cap the distal end of a hydrophobic cleft that binds the acyl chain of the R-3-hydroxyacyl-ACP donor substrate. Under standard assay conditions, wild-type EcLpxD prefers R,S-3-hydroxymyristoyl-ACP over R,S-3-hydroxypalmitoyl-ACP by a factor of 3, whereas the M290A mutant has the opposite selectivity. Both wild-type and M290A EcLpxD rescue the conditional lethality of E. coli RL25, a temperature-sensitive strain harboring point mutations in lpxD. Complementation with wild-type EcLpxD restores normal lipid A containing only N-linked hydroxymyristate to RL25 at 42 degrees C, as judged by mass spectrometry, whereas the M290A mutant generates multiple lipid A species containing one or two longer hydroxy fatty acids in place of the usual R-3-hydroxymyristate at positions 2 and 2'.
Collapse
Affiliation(s)
- Craig M. Bartling
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
23
|
Yang S, Park S, Makowski L, Roux B. A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Biophys J 2009; 96:4449-63. [PMID: 19486669 PMCID: PMC2711486 DOI: 10.1016/j.bpj.2009.03.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 02/17/2009] [Accepted: 03/04/2009] [Indexed: 02/03/2023] Open
Abstract
We present a coarse residue-based computational method to rapidly compute the solution scattering profile from a protein with dynamical fluctuations. The method is built upon a coarse-grained (CG) representation of the protein. This CG representation takes advantage of the intrinsic low-resolution and CG nature of solution scattering data. It allows rapid scattering determination from a large number of conformations that can be extracted from CG simulations to obtain scattering characterization of protein conformations. The method includes several important elements, effective residue structure factors derived from the Protein Data Bank, explicit treatment of water molecules in the hydration layer at the surface of the protein, and an ensemble average of scattering from a variety of appropriate conformations to account for macromolecular flexibility. This simplified method is calibrated and illustrated to accurately reproduce the experimental scattering curve of Hen egg white lysozyme. We then illustrated the applications of this CG method by computing the solution scattering patterns of several representative protein folds and multiple conformational states. The results suggest that solution scattering data, when combined with the reliable computational method that we developed, show great potential for a better structural description of multidomain complexes in different functional states, and for recognizing structural folds when sequence similarity to a protein of known structure is low.
Collapse
Affiliation(s)
- Sichun Yang
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois
| | - Sanghyun Park
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Lee Makowski
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois
| |
Collapse
|
24
|
Schuldt L, Weyand S, Kefala G, Weiss MS. The three-dimensional Structure of a mycobacterial DapD provides insights into DapD diversity and reveals unexpected particulars about the enzymatic mechanism. J Mol Biol 2009; 389:863-79. [PMID: 19394346 DOI: 10.1016/j.jmb.2009.04.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 11/25/2022]
Abstract
The enzyme tetrahydrodipicolinate N-succinyltransferase (DapD) is part of the L-lysine biosynthetic pathway. This pathway is crucial for the survival of the pathogen Mycobacterium tuberculosis (Mtb) and, consequently, the enzymes of the pathway are potential drug targets. We report here the crystal structures of Mtb-DapD and of Mtb-DapD in complex with the co-factor succinyl-CoA (SCoA) at 2.15 A and 1.97 A resolution, respectively. Each subunit of the trimeric enzyme consists of three domains, of which the second, a left-handed, parallel beta-helix (LbetaH domain), is the common structural motif of enzymes belonging to the hexapeptide repeat superfamily. The trimeric quaternary structure is stabilized by Mg(2+) and Na(+) located on the 3-fold axis. The binary complex of Mtb-DapD and SCoA reveals the binding mode(s) of the co-factor and a possible covalent reaction intermediate. The N-terminal domain of Mtb-DapD exhibits a unique architecture, including an interior water-filled channel, which allows access to a magnesium ion located at the 3-fold symmetry axis.
Collapse
|
25
|
Bartling CM, Raetz CRH. Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 2008; 47:5290-302. [PMID: 18422345 PMCID: PMC2435086 DOI: 10.1021/bi800240r] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LpxD catalyzes the third step of lipid A biosynthesis, the (R)-3-hydroxymyristoyl-acyl carrier protein ( R-3-OHC14-ACP)-dependent N-acylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-alpha-D-glucosamine [UDP-3-O-(R-3-OHC14)-GlcN]. We have now overexpressed and purified Escherichia coli LpxD to homogeneity. Steady-state kinetics suggest a compulsory ordered mechanism in which R-3-OHC14-ACP binds prior to UDP-3-O-(R-3-OHC14)-GlcN. The product, UDP-2,3-diacylglucosamine, dissociates prior to ACP; the latter is a competitive inhibitor against R-3-OHC14-ACP and a noncompetitive inhibitor against UDP-3-O-(R-3-OHC14)-GlcN. UDP-2-N-[(R)-3-Hydroxymyristoyl]-alpha-D-glucosamine, obtained by mild base hydrolysis of UDP-2,3-diacylglucosamine, is a noncompetitive inhibitor against both substrates. Synthetic (R)-3-hydroxylauroyl-methylphosphopantetheine is an uncompetitive inhibitor against R-3-OHC14-ACP and a competitive inhibitor against UDP-3-O-(R-3-OHC14)-GlcN, but (R)-3-hydroxylauroyl-methylphosphopantetheine is also a very poor substrate. A compulsory ordered mechanism is consistent with the fact that R-3-OHC14-ACP has a high binding affinity for free LpxD whereas UDP-3-O-(R-3-OHC14)-GlcN does not. Divalent cations inhibit R-3-OHC14-ACP-dependent acylation but not (R)-3-hydroxylauroyl-methylphosphopantetheine-dependent acylation, indicating that the acidic recognition helix of R-3-OHC14-ACP contributes to binding. The F41A mutation increases the K(M) for UDP-3-O-(R-3-OHC14)-GlcN 30-fold, consistent with aromatic stacking of the corresponding F43 side chain against the uracil moiety of bound UDP-GlcNAc in the X-ray structure of Chlamydia trachomatis LpxD. Mutagenesis implicates E. coli H239 but excludes H276 as the catalytic base, and neither residue is likely to stabilize the oxyanion intermediate.
Collapse
Affiliation(s)
- Craig M. Bartling
- Department of Biochemistry, Duke University Medical Center, P. O. Box 3711, Durham, NC 27710
| | - Christian R. H. Raetz
- Department of Biochemistry, Duke University Medical Center, P. O. Box 3711, Durham, NC 27710
| |
Collapse
|
26
|
Williams AH, Raetz CRH. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc Natl Acad Sci U S A 2007; 104:13543-50. [PMID: 17698807 PMCID: PMC1959417 DOI: 10.1073/pnas.0705833104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the first step of lipid A biosynthesis, the reversible transfer of the R-3-hydroxyacyl chain from R-3-hydroxyacyl acyl carrier protein to the glucosamine 3-OH group of UDP-GlcNAc. Escherichia coli LpxA is highly selective for R-3-hydroxymyristate. The crystal structure of the E. coli LpxA homotrimer, determined previously in the absence of lipid substrates or products, revealed that LpxA contains an unusual, left-handed parallel beta-helix fold. We have now solved the crystal structures of E. coli LpxA with the bound product UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc at a resolution of 1.74 A and with bound UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc at 1.85 A. The structures of these complexes are consistent with the catalytic mechanism deduced by mutagenesis and with a recent 3.0-A structure of LpxA with bound UDP-GlcNAc. Our structures show how LpxA selects for 14-carbon R-3-hydroxyacyl chains and reveal two modes of UDP binding.
Collapse
Affiliation(s)
- Allison H. Williams
- Department of Biochemistry, Duke University Medical Center, Box 3711 DUMC, Durham, NC 27710
| | - Christian R. H. Raetz
- Department of Biochemistry, Duke University Medical Center, Box 3711 DUMC, Durham, NC 27710
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|