1
|
Son L, Kost V, Maiorov V, Sukhov D, Arkhangelskaya P, Ivanov I, Kudryavtsev D, Siniavin A, Utkin Y, Kasheverov I. Efficient Expression in Leishmania tarentolae (LEXSY) of the Receptor-Binding Domain of the SARS-CoV-2 S-Protein and the Acetylcholine-Binding Protein from Lymnaea stagnalis. Molecules 2024; 29:943. [PMID: 38474455 DOI: 10.3390/molecules29050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Leishmania tarentolae (LEXSY) system is an inexpensive and effective expression approach for various research and medical purposes. The stated advantages of this system are the possibility of obtaining the soluble product in the cytoplasm, a high probability of correct protein folding with a full range of post-translational modifications (including uniform glycosylation), and the possibility of expressing multi-subunit proteins. In this paper, a LEXSY expression system has been employed for obtaining the receptor binding domain (RBD) of the spike-protein of the SARS-CoV-2 virus and the homopentameric acetylcholine-binding protein (AChBP) from Lymnaea stagnalis. RBD is actively used to obtain antibodies against the virus and in various scientific studies on the molecular mechanisms of the interaction of the virus with host cell targets. AChBP represents an excellent structural model of the ligand-binding extracellular domain of all subtypes of nicotinic acetylcholine receptors (nAChRs). Both products were obtained in a soluble glycosylated form, and their structural and functional characteristics were compared with those previously described.
Collapse
Affiliation(s)
- Lina Son
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladimir Kost
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Valery Maiorov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry Sukhov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Polina Arkhangelskaya
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Igor Ivanov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Denis Kudryavtsev
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrei Siniavin
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Yuri Utkin
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Igor Kasheverov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
2
|
Straub CJ, Rusali LE, Kremiller KM, Riley AP. What We Have Gained from Ibogaine: α3β4 Nicotinic Acetylcholine Receptor Inhibitors as Treatments for Substance Use Disorders. J Med Chem 2023; 66:107-121. [PMID: 36440853 PMCID: PMC10034762 DOI: 10.1021/acs.jmedchem.2c01562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For decades, ibogaine─the main psychoactive alkaloid found in Tabernanthe iboga─has been investigated as a possible treatment for substance use disorders (SUDs) due to its purported ability to interrupt the addictive properties of multiple drugs of abuse. Of the numerous pharmacological actions of ibogaine and its derivatives, the inhibition of α3β4 nicotinic acetylcholine receptors (nAChRs), represents a probable mechanism of action for their apparent anti-addictive activity. In this Perspective, we examine several classes of compounds that have been discovered and developed to target α3β4 nAChRs. Specifically, by focusing on compounds that have proven efficacious in pre-clinical models of drug abuse and have been evaluated clinically, we highlight the promising potential of the α3β4 nAChRs as viable targets to treat a wide array of SUDs. Additionally, we discuss the challenges faced by the existing classes of α3β4 nAChR ligands that must be overcome to develop them into therapeutic treatments.
Collapse
Affiliation(s)
- Carolyn J Straub
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lisa E Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Kyle M Kremiller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
3
|
Khodabandeh Z, Valilo M, Velaei K, Pirpour Tazehkand A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer 2022; 29:778-789. [PMID: 35583594 DOI: 10.1007/s12282-022-01369-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
A large body of research studying the relationship between tobacco and cancer has led to the knowledge that smoking cigarettes adversely affects cancer treatment while contributing to the development of various tobacco-related cancers. Nicotine is the main addictive component of tobacco smoke and promotes angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT) while promoting growth and metastasis of tumors. Nicotine generally acts through the induction of the nicotinic acetylcholine receptors (nAChRs), although the contribution of other receptor subunits has also been reported. Nicotine contributes to the pathogenesis of a wide range of cancers including breast cancer through its carcinogens such as (4-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN). Current study aims to review the mechanistic function of nicotine in the initiation, development, angiogenesis, invasion, metastasis, and apoptosis of breast cancer with the main focus on nicotine acetylcholine receptors (nAChRs) and nAChR-mediated signaling pathways as well as on its potential for the development of an effective treatment against breast cancer. Moreover, we will try to demonstrate how nicotine leads to poor treatment response in breast cancer by enhancing the population, proliferation, and self-renewal of cancer stem cells (CSCs) through the activation of α7-nAChR receptors.
Collapse
Affiliation(s)
- Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abbas Pirpour Tazehkand
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Camacho-Hernandez GA, Taylor P. Lessons from nature: Structural studies and drug design driven by a homologous surrogate from invertebrates, AChBP. Neuropharmacology 2020; 179:108108. [DOI: 10.1016/j.neuropharm.2020.108108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023]
|
5
|
Cho Y, Pham Ba VA, Jeong JY, Choi Y, Hong S. Ion-Selective Carbon Nanotube Field-Effect Transistors for Monitoring Drug Effects on Nicotinic Acetylcholine Receptor Activation in Live Cells. SENSORS 2020; 20:s20133680. [PMID: 32630098 PMCID: PMC7374424 DOI: 10.3390/s20133680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
We developed ion-selective field-effect transistor (FET) sensors with floating electrodes for the monitoring of the potassium ion release by the stimulation of nicotinic acetylcholine receptors (nAChRs) on PC12 cells. Here, ion-selective valinomycin-polyvinyl chloride (PVC) membranes were coated on the floating electrode-based carbon nanotube (CNT) FETs to build the sensors. The sensors could selectively measure potassium ions with a minimum detection limit of 1 nM. We utilized the sensor for the real-time monitoring of the potassium ion released from a live cell stimulated by nicotine. Notably, this method also allowed us to quantitatively monitor the cell responses by agonists and antagonists of nAChRs. These results suggest that our ion-selective CNT-FET sensor has potential uses in biological and medical researches such as the monitoring of ion-channel activity and the screening of drugs.
Collapse
Affiliation(s)
- Youngtak Cho
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Viet Anh Pham Ba
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
- Department of Environmental Toxicology and Monitoring, Hanoi University of Natural Resources and Environment, Hanoi 11916, Vietnam
| | - Jin-Young Jeong
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Yoonji Choi
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Seunghun Hong
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
- Correspondence: ; Tel.: +82-2-880-1343
| |
Collapse
|
6
|
Novel Approach for the Search for Chemical Scaffolds with Dual Activity with Acetylcholinesterase and the α7 Nicotinic Acetylcholine Receptor-A Perspective for the Treatment of Neurodegenerative Disorders. Molecules 2019; 24:molecules24030446. [PMID: 30691196 PMCID: PMC6384821 DOI: 10.3390/molecules24030446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/29/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer’s disease, belong to the group of the most difficult and challenging conditions with very limited treatment options. Attempts to find new drugs in most cases fail at the clinical stage. New tactics to develop better drug candidates to manage these diseases are urgently needed. It is evident that better understanding of the neurodegeneration process is required and targeting multiple receptors may be essential. Herein, we present a novel approach, searching for dual active compounds interacting with acetylcholinesterase (AChE) and the α7 nicotinic acetylcholine receptor (nAChR) using computational chemistry methods including homology modelling and high throughput virtual screening. Activities of identified hits were evaluated at the two targets using the colorimetric method of Ellman and two-electrode voltage-clamp electrophysiology, respectively. Out of 87,250 compounds from a ZINC database of natural products and their derivatives, we identified two compounds, 8 and 9, with dual activity and balanced IC50 values of 10 and 5 µM at AChE, and 34 and 14 µM at α7 nAChR, respectively. This is the first report presenting successful use of virtual screening in finding compounds with dual mode of action inhibiting both the AChE enzyme and the α7 nAChR and shows that computational methods can be a valuable tool in the early lead discovery process.
Collapse
|
7
|
Chen D, Gao F, Ma X, Eaton JB, Huang Y, Gao M, Chang Y, Ma Z, Der-Ghazarian T, Neisewander J, Whiteaker P, Wu J, Su Q. Cocaine Directly Inhibits α6-Containing Nicotinic Acetylcholine Receptors in Human SH-EP1 Cells and Mouse VTA DA Neurons. Front Pharmacol 2019; 10:72. [PMID: 30837868 PMCID: PMC6383119 DOI: 10.3389/fphar.2019.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
Alpha6-containing nicotinic acetylcholine receptors are primarily found in neurons of the midbrain dopaminergic (DA) system, suggesting these receptors are potentially involved in drug reward and dependence. Here, we report a novel effect that cocaine directly inhibits α6N/α3Cβ2β3-nAChR (α6*-nAChRs) function. Human α6*-nAChRs were heterologously expressed within cells of the SH-EP1 cell line for functional characterization. Mechanically dissociated DA neurons from mouse ventral tegmental area (VTA) were used as a model of presynaptic α6*-nAChR activation since this method preserves terminal boutons. Patch-clamp recordings in whole-cell configuration were used to measure α6*-nAChR function as well as evaluate the effects of cocaine. In SH-EP1 cells containing heterologously expressed human α6*-nAChRs, cocaine inhibits nicotine-induced inward currents in a concentration-dependent manner with an IC50 value of 30 μM. Interestingly, in the presence of 30 μM cocaine, the maximal current response of the nicotine concentration-response curve is reduced without changing nicotine's EC50 value, suggesting a noncompetitive mechanism. Furthermore, analysis of whole-cell current kinetics demonstrated that cocaine slows nAChR channel activation but accelerates whole-cell current decay time. Our findings demonstrate that cocaine-induced inhibition occurs solely with bath application, but not during intracellular administration, and this inhibition is not use-dependent. Additionally, in Xenopus oocytes, cocaine inhibits both α6N/α3Cβ2β3-nAChRs and α6M211L/α3ICβ2β3-nCAhRs similarly, suggesting that cocaine may not act on the α3 transmembrane domain of chimeric α6N/α3Cβ2β3-nAChR. In mechanically isolated VTA DA neurons, cocaine abolishes α6*-nAChR-mediated enhancement of spontaneous inhibitory postsynaptic currents (sIPSCs). Collectively, these studies provide the first evidence that cocaine directly inhibits the function of both heterologously and naturally expressed α6*-nAChRs. These findings suggest that α6*-nAChRs may provide a novel pharmacological target mediating the effects of cocaine and may underlie a novel mechanism of cocaine reward and dependence.
Collapse
Affiliation(s)
- Dejie Chen
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
| | - Fenfei Gao
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
| | - Xiaokuang Ma
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Zegang Ma
- Department of Physiology, Qingdao University of Medical College, Qingdao, China
| | | | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jie Wu
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Jie Wu, ;
| | - Quanxi Su
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Quanxi Su,
| |
Collapse
|
8
|
Liu W, Li MD. Insights Into Nicotinic Receptor Signaling in Nicotine Addiction: Implications for Prevention and Treatment. Curr Neuropharmacol 2018; 16:350-370. [PMID: 28762314 PMCID: PMC6018190 DOI: 10.2174/1570159x15666170801103009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/18/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop ligandgated ion-channel (LGIC) superfamily, which also includes the GABA, glycine, and serotonin receptors. Many nAChR subunits have been identified and shown to be involved in signal transduction on binding to them of either the neurotransmitter acetylcholine or exogenous ligands such as nicotine. The nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and they are expressed at neuromuscular junctions throughout the nervous system. METHODS AND RESULTS Because different nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes, and different nAChRs are implicated in various physiological functions and pathophysiological conditions, nAChRs represent potential molecular targets for drug addiction and medical therapeutic research. This review intends to provide insights into recent advances in nAChR signaling, considering the subtypes and subunits of nAChRs and their roles in nicotinic cholinergic systems, including structure, diversity, functional allosteric modulation, targeted knockout mutations, and rare variations of specific subunits, and the potency and functional effects of mutations by focusing on their effects on nicotine addiction (NA) and smoking cessation (SC). Furthermore, we review the possible mechanisms of action of nAChRs in NA and SC based on our current knowledge. CONCLUSION Understanding these cellular and molecular mechanisms will lead to better translational and therapeutic operations and outcomes for the prevention and treatment of NA and other drug addictions, as well as chronic diseases, such as Alzheimer's and Parkinson's. Finally, we put forward some suggestions and recommendations for therapy and treatment of NA and other chronic diseases.
Collapse
Affiliation(s)
- Wuyi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,School of Biological Sciences and Food Engineering, Fuyang Normal University, Fuyang, Anuhi 236041, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
9
|
Kowal NM, Ahring PK, Liao VWY, Indurti DC, Harvey BS, O'Connor SM, Chebib M, Olafsdottir ES, Balle T. Galantamine is not a positive allosteric modulator of human α4β2 or α7 nicotinic acetylcholine receptors. Br J Pharmacol 2018; 175:2911-2925. [PMID: 29669164 DOI: 10.1111/bph.14329] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The alkaloid galantamine was originally isolated from the green snowdrop Galanthus woronowii and is currently marketed as a drug for treatment of mild to moderate dementia in patients with Alzheimer's disease. In addition to a well-documented proficiency to inhibit acetylcholinesterase, galantamine has been reported to increase neuronal nicotinic ACh (nACh) receptor function by acting as a positive allosteric modulator. Yet there remains controversy regarding these findings in the literature. To resolve this conundrum, we evaluated galantamine actions at α4β2 and α7, which represent the nACh receptors most commonly associated with mammalian cognitive domains. EXPERIMENTAL APPROACH α4β2 [in (α4)3 (β2)2 and (α4)2 (β2)3 stoichiometries] and α7 nACh receptors were expressed in Xenopus laevis oocytes and subjected to two-electrode voltage-clamp electrophysiological experiments. Galantamine (10 nM to 100 μM) was evaluated for direct agonist effects and for positive modulation by co-application with sub-maximally efficacious concentrations of ACh. In addition, similar experiments were performed with α7 nACh receptors stably expressed in HEK293 cells using patch-clamp electrophysiology. KEY RESULTS In concentrations ranging from 10 nM to 1 μM, galantamine did not display direct agonism nor positive modulatory effects at any receptor combination tested. At concentrations from 10 μM and above, galantamine inhibited the activity with a mechanism of action consistent with open-channel pore blockade at all receptor types. CONCLUSION AND IMPLICATIONS Based on our data, we conclude that galantamine is not a positive allosteric modulator of α7 or α4β2 receptors, which represent the majority of nACh receptors in mammalian brain.
Collapse
Affiliation(s)
- Natalia M Kowal
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.,Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, IS-107, Iceland
| | - Philip K Ahring
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Vivian W Y Liao
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dinesh C Indurti
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | - Mary Chebib
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Elin S Olafsdottir
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, IS-107, Iceland
| | - Thomas Balle
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
10
|
Bouzat C, Sine SM. Nicotinic acetylcholine receptors at the single-channel level. Br J Pharmacol 2018; 175:1789-1804. [PMID: 28261794 PMCID: PMC5979820 DOI: 10.1111/bph.13770] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/28/2023] Open
Abstract
Over the past four decades, the patch clamp technique and nicotinic ACh (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding ACh released from nerves and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique towards understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc/.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, INIBIBB (CONICET‐UNS), Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMN55905USA
- Department of NeurologyMayo Clinic College of MedicineRochesterMN55905USA
- Department of Pharmacology and Experimental TherapeuticsMayo Clinic College of MedicineRochesterMN55905USA
| |
Collapse
|
11
|
Delbart F, Brams M, Gruss F, Noppen S, Peigneur S, Boland S, Chaltin P, Brandao-Neto J, von Delft F, Touw WG, Joosten RP, Liekens S, Tytgat J, Ulens C. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. J Biol Chem 2017; 293:2534-2545. [PMID: 29237730 PMCID: PMC5818190 DOI: 10.1074/jbc.m117.815316] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to the family of pentameric ligand-gated ion channels and mediate fast excitatory transmission in the central and peripheral nervous systems. Among the different existing receptor subtypes, the homomeric α7 nAChR has attracted considerable attention because of its possible implication in several neurological and psychiatric disorders, including cognitive decline associated with Alzheimer's disease or schizophrenia. Allosteric modulators of ligand-gated ion channels are of particular interest as therapeutic agents, as they modulate receptor activity without affecting normal fluctuations of synaptic neurotransmitter release. Here, we used X-ray crystallography and surface plasmon resonance spectroscopy of α7-acetylcholine-binding protein (AChBP), a humanized chimera of a snail AChBP, which has 71% sequence similarity with the extracellular ligand-binding domain of the human α7 nAChR, to investigate the structural determinants of allosteric modulation. We extended previous observations that an allosteric site located in the vestibule of the receptor offers an attractive target for receptor modulation. We introduced seven additional humanizing mutations in the vestibule-located binding site of AChBP to improve its suitability as a model for studying allosteric binding. Using a fragment-based screening approach, we uncovered an allosteric binding site located near the β8-β9 loop, which critically contributes to coupling ligand binding to channel opening in human α7 nAChR. This work expands our understanding of the topology of allosteric binding sites in AChBP and, by extrapolation, in the human α7 nAChR as determined by electrophysiology measurements. Our insights pave the way for drug design strategies targeting nAChRs involved in ion channel-mediated disorders.
Collapse
Affiliation(s)
- Florian Delbart
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marijke Brams
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Fabian Gruss
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sam Noppen
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sandro Boland
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium
| | - Patrick Chaltin
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium.,the Center for Innovation and Stimulation of Drug Discovery Leuven and Center for Drug Design and Discovery, KU Leuven, 3001 Heverlee, Belgium
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Wouter G Touw
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Robbie P Joosten
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sandra Liekens
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chris Ulens
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium,
| |
Collapse
|
12
|
Nemecz Á, Prevost MS, Menny A, Corringer PJ. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels. Neuron 2017; 90:452-70. [PMID: 27151638 DOI: 10.1016/j.neuron.2016.03.032] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
Collapse
Affiliation(s)
- Ákos Nemecz
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France
| | - Marie S Prevost
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Anaïs Menny
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France; Université Pierre et Marie Curie (UPMC), Cellule Pasteur, 75005 Paris, France
| | - Pierre-Jean Corringer
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France.
| |
Collapse
|
13
|
Ma Q, Tae HS, Wu G, Jiang T, Yu R. Exploring the Relationship between Nicotinic Acetylcholine Receptor Ligand Size, Efficiency, Efficacy, and C-Loop Opening. J Chem Inf Model 2017; 57:1947-1956. [PMID: 28718646 DOI: 10.1021/acs.jcim.7b00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels mediating fundamental physiological activities in the nervous system and have become important targets for drug design. For a long time, the acetylcholine binding protein (AChBP) has been used as a surrogate to study the nAChR structure-function. Taking advantage of more than 100 AChBP crystal structures in the Protein DataBank (PDB), we explored the relationship between the size, efficiency, and efficacy of nAChR ligands and the C-loop movement. We found that the size of the ligand is correlated with the opening of the C-loop, which can be used in selecting AChBP crystal structures with appropriate C-loop opening to be used for nAChR ligand docking. Ligand size and C-loop opening are reversely correlated with the ligand efficiency rather than the binding affinity. Ligand efficiency could be accurately predicted using simple computational docking, giving a correlation coefficients (R2) up to 0.73. The efficacy of nAChR ligands might be related to ligand size, C-loop opening, and ligand efficiency. Results from this study are useful for engineering the binding affinity and efficacy of nAChR ligands.
Collapse
Affiliation(s)
- Qianyun Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - Guanzhao Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003, China
| |
Collapse
|
14
|
Fagan P, Kocourková L, Tatarkovič M, Králík F, Kuchař M, Setnička V, Bouř P. Cocaine Hydrochloride Structure in Solution Revealed by Three Chiroptical Methods. Chemphyschem 2017; 18:2258-2265. [DOI: 10.1002/cphc.201700452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/31/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Patrik Fagan
- Departments of Analytical Chemistry and Chemistry of Natural Compounds and Forensic Laboratory of Biologically Active Substances; University of Chemistry and Technology; Technická 5 16628 Prague Czech Republic
| | - Lucie Kocourková
- Departments of Analytical Chemistry and Chemistry of Natural Compounds and Forensic Laboratory of Biologically Active Substances; University of Chemistry and Technology; Technická 5 16628 Prague Czech Republic
| | - Michal Tatarkovič
- Departments of Analytical Chemistry and Chemistry of Natural Compounds and Forensic Laboratory of Biologically Active Substances; University of Chemistry and Technology; Technická 5 16628 Prague Czech Republic
| | - František Králík
- Departments of Analytical Chemistry and Chemistry of Natural Compounds and Forensic Laboratory of Biologically Active Substances; University of Chemistry and Technology; Technická 5 16628 Prague Czech Republic
| | - Martin Kuchař
- Departments of Analytical Chemistry and Chemistry of Natural Compounds and Forensic Laboratory of Biologically Active Substances; University of Chemistry and Technology; Technická 5 16628 Prague Czech Republic
| | - Vladimír Setnička
- Departments of Analytical Chemistry and Chemistry of Natural Compounds and Forensic Laboratory of Biologically Active Substances; University of Chemistry and Technology; Technická 5 16628 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences; Flemingovo náměstí 2 16610 Prague Czech Republic
- Departments of Analytical Chemistry and Chemistry of Natural Compounds and Forensic Laboratory of Biologically Active Substances; University of Chemistry and Technology; Technická 5 16628 Prague Czech Republic
| |
Collapse
|
15
|
Motta S, Bonati L. Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches. J Chem Inf Model 2017; 57:1563-1578. [DOI: 10.1021/acs.jcim.7b00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Stefano Motta
- Department of Earth and Environmental
Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Laura Bonati
- Department of Earth and Environmental
Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
16
|
|
17
|
Boffi JC, Marcovich I, Gill-Thind JK, Corradi J, Collins T, Lipovsek MM, Moglie M, Plazas PV, Craig PO, Millar NS, Bouzat C, Elgoyhen AB. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function. Mol Pharmacol 2017; 91:250-262. [PMID: 28069778 PMCID: PMC5325082 DOI: 10.1124/mol.116.107482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.
Collapse
Affiliation(s)
- Juan Carlos Boffi
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - JasKiran K Gill-Thind
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Jeremías Corradi
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Toby Collins
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - María Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Marcelo Moglie
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Paola V Plazas
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Patricio O Craig
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Neil S Millar
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Cecilia Bouzat
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B).
| |
Collapse
|
18
|
Ruepp MD, Wei H, Leuenberger M, Lochner M, Thompson AJ. The binding orientations of structurally-related ligands can differ; A cautionary note. Neuropharmacology 2017; 119:48-61. [PMID: 28137449 PMCID: PMC5464333 DOI: 10.1016/j.neuropharm.2017.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 11/19/2022]
Abstract
Crystal structures can identify ligand-receptor interactions and assist the development of novel therapeutics, but experimental challenges sometimes necessitate the use of homologous proteins. Tropisetron is an orthosteric ligand at both 5-HT3 and α7 nACh receptors and its binding orientation has been determined in the structural homologue AChBP (pdbid: 2WNC). Co-crystallisation with a structurally-related ligand, granisetron, reveals an almost identical orientation (pdbid; 2YME). However, there is a >1000-fold difference in the affinity of tropisetron at 5-HT3 versus α7 nACh receptors, and α7 nACh receptors do not bind granisetron. These striking pharmacological differences prompt questions about which receptor the crystal structures most closely represent and whether the ligand orientations are correct. Here we probe the binding orientation of tropisetron and granisetron at 5-HT3 receptors by in silico modelling and docking, radioligand binding on cysteine-substituted 5-HT3 receptor mutants transiently expressed in HEK 293 cells, and synthetic modification of the ligands. For 15 of the 23 cysteine substitutions, the effects on tropisetron and granisetron were different. Structure-activity relationships on synthesised derivatives of both ligands were also consistent with different orientations, revealing that contrary to the crystallographic evidence from AChBP, the two ligands adopt different orientations in the 5-HT3 receptor binding site. Our results show that even quite structurally similar molecules can adopt different orientations in the same binding site, and that caution may be needed when using homologous proteins to predict ligand binding. The drugs granisetron and tropisetron are structurally similar. Crystals of them bound to AChBP suggest they have similar binding orientations. At 5-HT3R, the effects of mutagenesis indicate that their orientations differ. SAR on both of these drugs also supports different orientations.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Michele Leuenberger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
19
|
Post-Munson DJ, Pieschl RL, Molski TF, Graef JD, Hendricson AW, Knox RJ, McDonald IM, Olson RE, Macor JE, Weed MR, Bristow LJ, Kiss L, Ahlijanian MK, Herrington J. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Eur J Pharmacol 2017; 799:16-25. [PMID: 28132910 DOI: 10.1016/j.ejphar.2017.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [3H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation.
Collapse
Affiliation(s)
- Debra J Post-Munson
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Rick L Pieschl
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Thaddeus F Molski
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John D Graef
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Adam W Hendricson
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ronald J Knox
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ivar M McDonald
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Richard E Olson
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John E Macor
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael R Weed
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Linda J Bristow
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Laszlo Kiss
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael K Ahlijanian
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - James Herrington
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA.
| |
Collapse
|
20
|
Corradi J, Bouzat C. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol 2016; 90:288-99. [PMID: 27190210 DOI: 10.1124/mol.116.104240] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| |
Collapse
|
21
|
Remya C, Dileep KV, Variayr EJ, Sadasivan C. An in silico guided identification of nAChR agonists from Withania somnifera. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1207569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C. Remya
- Department of Biotechnology and Microbiology and Inter-University Centre for Bioscience, Kannur University, Palayad, India
| | - K. V. Dileep
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - E. J. Variayr
- Department of Biotechnology and Microbiology and Inter-University Centre for Bioscience, Kannur University, Palayad, India
| | - C. Sadasivan
- Department of Biotechnology and Microbiology and Inter-University Centre for Bioscience, Kannur University, Palayad, India
| |
Collapse
|
22
|
Krivoshein AV. Anticonvulsants Based on the α-Substituted Amide Group Pharmacophore Bind to and Inhibit Function of Neuronal Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2016; 7:316-26. [PMID: 26741746 DOI: 10.1021/acschemneuro.5b00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although the antiepileptic properties of α-substituted lactams, acetamides, and cyclic imides have been known for over 60 years, the mechanism by which they act remains unclear. I report here that these compounds bind to the nicotinic acetylcholine receptor (nAChR) and inhibit its function. Using transient kinetic measurements with functionally active, nondesensitized receptors, I have discovered that (i) α-substituted lactams and cyclic imides are noncompetitive inhibitors of heteromeric subtypes (such as α4β2 and α3β4) of neuronal nAChRs and (ii) the binding affinity of these compounds toward the nAChR correlates with their potency in preventing maximal electroshock (MES)-induced convulsions in mice. Based on the hypothesis that α-substituted amide group is the essential pharmacophore of these drugs, I found and tested a simple compound, 2-phenylbutyramide. This compound indeed inhibits nAChR and shows good anticonvulsant activity in mice. Molecular docking simulations suggest that α-substituted lactams, acetamides, and cyclic imides bind to the same sites on the extracellular domain of the receptor. These new findings indicate that inhibition of brain nAChRs may play an important role in the action of these antiepileptic drugs, a role that has not been previously recognized.
Collapse
Affiliation(s)
- Arcadius V. Krivoshein
- Department of Basic and Social
Sciences, Albany College of Pharmacy and Health Sciences, 106
New Scotland Avenue, Albany, New York 12208, United States
| |
Collapse
|
23
|
Johnston AJ, Busch S, Pardo LC, Callear SK, Biggin PC, McLain SE. On the atomic structure of cocaine in solution. Phys Chem Chem Phys 2016; 18:991-9. [DOI: 10.1039/c5cp06090g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A combination of neutron diffraction and computation has been used to investigate the atomic scale structure of cocaine in aqueous solutions.
Collapse
Affiliation(s)
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ)
- Helmholtz-Zentrum Geesthacht GmbH
- 85747 Garching bei München
- Germany
| | - Luis Carlos Pardo
- Departament de Física i Enginyeria Nuclear
- Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB)
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | | | | | | |
Collapse
|
24
|
Barelier S, Sterling T, O’Meara MJ, Shoichet BK. The Recognition of Identical Ligands by Unrelated Proteins. ACS Chem Biol 2015; 10:2772-84. [PMID: 26421501 DOI: 10.1021/acschembio.5b00683] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of drugs and reagents to off-targets is well-known. Whereas many off-targets are related to the primary target by sequence and fold, many ligands bind to unrelated pairs of proteins, and these are harder to anticipate. If the binding site in the off-target can be related to that of the primary target, this challenge resolves into aligning the two pockets. However, other cases are possible: the ligand might interact with entirely different residues and environments in the off-target, or wholly different ligand atoms may be implicated in the two complexes. To investigate these scenarios at atomic resolution, the structures of 59 ligands in 116 complexes (62 pairs in total), where the protein pairs were unrelated by fold but bound an identical ligand, were examined. In almost half of the pairs, the ligand interacted with unrelated residues in the two proteins (29 pairs), and in 14 of the pairs wholly different ligand moieties were implicated in each complex. Even in those 19 pairs of complexes that presented similar environments to the ligand, ligand superposition rarely resulted in the overlap of related residues. There appears to be no single pattern-matching "code" for identifying binding sites in unrelated proteins that bind identical ligands, though modeling suggests that there might be a limited number of different patterns that suffice to recognize different ligand functional groups.
Collapse
Affiliation(s)
- Sarah Barelier
- Department of Pharmaceutical
Chemistry, University of California San Francisco, 1700 Fourth
Street, Byers Hall, San Francisco, California 94158, United States
| | - Teague Sterling
- Department of Pharmaceutical
Chemistry, University of California San Francisco, 1700 Fourth
Street, Byers Hall, San Francisco, California 94158, United States
| | - Matthew J. O’Meara
- Department of Pharmaceutical
Chemistry, University of California San Francisco, 1700 Fourth
Street, Byers Hall, San Francisco, California 94158, United States
| | - Brian K. Shoichet
- Department of Pharmaceutical
Chemistry, University of California San Francisco, 1700 Fourth
Street, Byers Hall, San Francisco, California 94158, United States
| |
Collapse
|
25
|
Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Pharmacol Res 2015; 101:9-17. [PMID: 26318763 DOI: 10.1016/j.phrs.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.
Collapse
|
26
|
Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 2015; 97:408-417. [PMID: 26231943 DOI: 10.1016/j.bcp.2015.07.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are receptors for the neurotransmitter acetylcholine and are members of the 'Cys-loop' family of pentameric ligand-gated ion channels (LGICs). Acetylcholine binds in the receptor extracellular domain at the interface between two subunits and research has identified a large number of nAChR-selective ligands, including agonists and competitive antagonists, that bind at the same site as acetylcholine (commonly referred to as the orthosteric binding site). In addition, more recent research has identified ligands that are able to modulate nAChR function by binding to sites that are distinct from the binding site for acetylcholine, including sites located in the transmembrane domain. These include positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent allosteric modulators (SAMs) and compounds that are able to activate nAChRs via an allosteric binding site (allosteric agonists). Our aim in this article is to review important aspects of the pharmacological diversity of nAChR allosteric modulators and to describe recent evidence aimed at identifying binding sites for allosteric modulators on nAChRs.
Collapse
|
27
|
Chiodo L, Malliavin TE, Maragliano L, Cottone G, Ciccotti G. A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation. PLoS One 2015; 10:e0133011. [PMID: 26208301 PMCID: PMC4514475 DOI: 10.1371/journal.pone.0133011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) are ligand-gated ion channels that regulate chemical transmission at the neuromuscular junction. Structural information is available at low resolution from open and closed forms of an eukaryotic receptor, and at high resolution from other members of the same structural family, two prokaryotic orthologs and an eukaryotic GluCl channel. Structures of human channels however are still lacking. Homology modeling and Molecular Dynamics simulations are valuable tools to predict structures of unknown proteins, however, for the case of human nAchRs, they have been unsuccessful in providing a stable open structure so far. This is due to different problems with the template structures: on one side the homology with prokaryotic species is too low, while on the other the open eukaryotic GluCl proved itself unstable in several MD studies and collapsed to a dehydrated, non-conductive conformation, even when bound to an agonist. Aim of this work is to obtain, by a mixing of state-of-the-art homology and simulation techniques, a plausible prediction of the structure (still unknown) of the open state of human α7 nAChR complexed with epibatidine, from which it is possible to start structural and functional test studies. To prevent channel closure we employ a restraint that keeps the transmembrane pore open, and obtain in this way a stable, hydrated conformation. To further validate this conformation, we run four long, unbiased simulations starting from configurations chosen at random along the restrained trajectory. The channel remains stable and hydrated over the whole runs. This allows to assess the stability of the putative open conformation over a cumulative time of 1 μs, 800 ns of which are of unbiased simulation. Mostly based on the analysis of pore hydration and size, we suggest that the obtained structure has reasonable chances to be (at least one of the possible) structures of the channel in the open conformation.
Collapse
Affiliation(s)
- Letizia Chiodo
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Thérèse E. Malliavin
- Institut Pasteur and CNRS UMR 3528, Unité de Bioinformatique Structurale, Paris, France
| | - Luca Maragliano
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Grazia Cottone
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
- School of Physics, University College Dublin, Dublin, Ireland
| | - Giovanni Ciccotti
- School of Physics, University College Dublin, Dublin, Ireland
- Department of Physics, University of Roma “La Sapienza”, Rome, Italy
| |
Collapse
|
28
|
Gallagher R, Chebib M, Balle T, McLeod MD. Thiol-Reactive Analogues of Galanthamine, Codeine, and Morphine as Potential Probes to Interrogate Allosteric Binding within Nicotinic Acetylcholine Receptors. Aust J Chem 2015. [DOI: 10.1071/ch15475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alkaloids including galanthamine (1) and codeine (2) are reported to be positive allosteric modulators of nicotinic acetylcholine receptors (nAChRs), but the binding sites responsible for this activity are not known with certainty. Analogues of galanthamine (1), codeine (2), and morphine (3) with reactivity towards cysteine thiols were synthesized including conjugated enone derivatives of the three alkaloids 4–6 and two chloro-alkane derivatives of codeine 7 and 8. The stability of the enones was deemed sufficient for use in buffered aqueous solutions, and their reactivity towards thiols was assessed by determining the kinetics of reaction with a cysteine derivative. All three enone derivatives were of sufficient reactivity and stability to be used in covalent trapping, an extension of the substituted cysteine accessibility method, to elucidate the allosteric binding sites of galanthamine and codeine at nAChRs.
Collapse
|
29
|
Grupe M, Grunnet M, Bastlund JF, Jensen AA. Targeting α4β2 Nicotinic Acetylcholine Receptors in Central Nervous System Disorders: Perspectives on Positive Allosteric Modulation as a Therapeutic Approach. Basic Clin Pharmacol Toxicol 2014; 116:187-200. [DOI: 10.1111/bcpt.12361] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Morten Grupe
- Synaptic Transmission; H. Lundbeck A/S; Valby Denmark
| | - Morten Grunnet
- Synaptic Transmission; H. Lundbeck A/S; Valby Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Anders A. Jensen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
30
|
Cecchini M, Changeux JP. The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation. Neuropharmacology 2014; 96:137-49. [PMID: 25529272 DOI: 10.1016/j.neuropharm.2014.12.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger - a neurotransmitter - into an ion flux through the postsynaptic membrane. Here, we present an overview of the most recent advances on the signal transduction mechanism boosted by X-ray crystallography of both prokaryotic and eukaryotic homologues of the nicotinic acetylcholine receptor (nAChR) in conjunction with time-resolved analyses based on single-channel electrophysiology and Molecular Dynamics simulations. The available data consistently point to a global mechanism of gating that involves a large reorganization of the receptor mediated by two distinct quaternary transitions: a global twisting and a radial expansion/contraction of the extracellular domain. These transitions profoundly modify the organization of the interface between subunits, which host several sites for orthosteric and allosteric modulatory ligands. The same mechanism may thus mediate both positive and negative allosteric modulations of pLGICs ligand binding at topographically distinct sites. The emerging picture of signal transduction is expected to pave the way to new pharmacological strategies for the development of allosteric modulators of nAChR and pLGICs in general. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Marco Cecchini
- ISIS, UMR 7006 CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France.
| | - Jean-Pierre Changeux
- CNRS, URA 2182, F-75015 Paris, France; Collège de France, F-75005 Paris, France; Kavli Institute for Brain & Mind University of California, San Diego La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older persons. Pathognomonic hallmarks of the disease include the development of amyloid senile plaques and deposits of neurofibrillary tangles. These changes occur in the brain long before the clinical manifestations of AD (cognitive impairment in particular) become apparent. Nicotinic acetylcholine receptors (AChRs), particularly the α7 subtype, are highly expressed in brain regions relevant to cognitive and memory functions and involved in the processing of sensory information. There is strong evidence that implicates the participation of AChRs in AD. This review briefly introduces current strategies addressing the pathophysiologic findings (amyloid-β-peptide plaques, neurofibrillary tangles) and then focuses on more recent efforts of pharmacologic intervention in AD, specifically targeted to the α7 AChR. Whereas cholinesterase inhibitors such as donepezil, galantamine, or rivastigmine, together with the non-competitive N-methyl-D-aspartate receptor antagonist memantine are at the forefront of present-day clinical intervention for AD, new insights into AChR molecular pharmacology are bringing other drugs, directed at AChRs, to center stage. Among these are the positive allosteric modulators that selectively target α7 AChRs and are aimed at unleashing the factors that hinder agonist-mediated, α7 AChR channel activation. This calls for more detailed knowledge of the distribution, functional properties, and involvement of AChRs in various signaling cascades-together with the corresponding abnormalities in all these properties-to be able to engineer strategies in drug design and evaluate the therapeutic possibilities of new compounds targeting this class of neurotransmitter receptors.
Collapse
|
32
|
Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev 2014; 66:918-47. [PMID: 25026896 PMCID: PMC11060431 DOI: 10.1124/pr.114.008862] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.
Collapse
Affiliation(s)
- Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Jean-Pierre Changeux
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - William A Catterall
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Doriano Fabbro
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Thomas P Burris
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - John A Cidlowski
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Richard W Olsen
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - John A Peters
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Richard R Neubig
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Jean-Philippe Pin
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Terry P Kenakin
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Frederick J Ehlert
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Michael Spedding
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Christopher J Langmead
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| |
Collapse
|
33
|
Olsen JA, Ahring PK, Kastrup JS, Gajhede M, Balle T. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors. J Biol Chem 2014; 289:24911-21. [PMID: 24982426 DOI: 10.1074/jbc.m114.568097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive modulator that targets the α4-α4 interface of α4β2 nicotinic acetylcholine receptors (nAChRs). Together with homology modeling, mutational data, quantum mechanical calculations, and pharmacological studies on α4β2 nAChRs, the structure reveals a modulator binding mode that overlaps the α4-α4 interface agonist (acetylcholine)-binding site. Analysis of contacts to residues known to govern agonist binding and function suggests that modulation occurs by an agonist-like mechanism. Selectivity for α4-α4 over α4-β2 interfaces is determined mainly by steric restrictions from Val-136 on the β2-subunit and favorable interactions between NS9283 and His-142 at the complementary side of α4. In the concentration ranges where modulation is observed, its selectivity prevents NS9283 from directly activating nAChRs because activation requires coordinated action from more than one interface. However, we demonstrate that in a mutant receptor with one natural and two engineered α4-α4 interfaces, NS9283 is an agonist. Modulation via extracellular binding sites is well known for benzodiazepines acting at γ-aminobutyric acid type A receptors. Like NS9283, benzodiazepines increase the apparent agonist potency with a minimal effect on efficacy. The shared modulatory profile along with a binding site located in an extracellular subunit interface suggest that modulation via an agonist-like mechanism may be a common mechanism of action that potentially could apply to Cys loop receptors beyond the α4β2 nAChRs.
Collapse
Affiliation(s)
- Jeppe A Olsen
- From NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark, the Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark, the Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Philip K Ahring
- the Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia, and Saniona AB, Baltorpvej 54, 2750 Ballerup, Denmark
| | - Jette S Kastrup
- the Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Michael Gajhede
- the Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Balle
- the Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia, and
| |
Collapse
|
34
|
Mohammad Hosseini Naveh Z, Malliavin TE, Maragliano L, Cottone G, Ciccotti G. Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics. PLoS One 2014; 9:e88555. [PMID: 24551117 PMCID: PMC3923797 DOI: 10.1371/journal.pone.0088555] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit.
Collapse
Affiliation(s)
| | - Therese E. Malliavin
- Institut Pasteur and CNRS UMR 3528, Unité de Bioinformatique Structurale, Paris, France
| | - Luca Maragliano
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Grazia Cottone
- School of Physics, University College Dublin, Dublin, Ireland
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
- * E-mail:
| | - Giovanni Ciccotti
- School of Physics, University College Dublin, Dublin, Ireland
- Department of Physics, University of Roma “La Sapienza”, Rome, Italy
| |
Collapse
|
35
|
Taly A, Hénin J, Changeux JP, Cecchini M. Allosteric regulation of pentameric ligand-gated ion channels: an emerging mechanistic perspective. Channels (Austin) 2014; 8:350-60. [PMID: 25478624 PMCID: PMC4203737 DOI: 10.4161/chan.29444] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies.
Collapse
Affiliation(s)
- Antoine Taly
- Laboratoire de Biochimie Théorique; IBPC; CNRS and Université Paris Diderot; Paris, France
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique; IBPC; CNRS and Université Paris Diderot; Paris, France
| | - Jean-Pierre Changeux
- CNRS; URA 2182; F-75015 & Collège de France; Paris, France
- Kavli Institute for Brain & Mind University of California; San Diego La Jolla, CA USA
| | - Marco Cecchini
- ISIS; UMR 7006 CNRS; Université de Strasbourg; F-67083 Strasbourg Cedex, France
| |
Collapse
|
36
|
|
37
|
Olsen JA, Kastrup JS, Peters D, Gajhede M, Balle T, Ahring PK. Two distinct allosteric binding sites at α4β2 nicotinic acetylcholine receptors revealed by NS206 and NS9283 give unique insights to binding activity-associated linkage at Cys-loop receptors. J Biol Chem 2013; 288:35997-6006. [PMID: 24169695 DOI: 10.1074/jbc.m113.498618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Positive allosteric modulators (PAMs) of α4β2 nicotinic acetylcholine receptors have the potential to improve cognitive function and alleviate pain. However, only a few selective PAMs of α4β2 receptors have been described limiting both pharmacological understanding and drug-discovery efforts. Here, we describe a novel selective PAM of α4β2 receptors, NS206, and compare with a previously reported PAM, NS9283. Using two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, NS206 was observed to positively modulate acetylcholine (ACh)-evoked currents at both known α4β2 stoichiometries (2α:3β and 3α:2β). In the presence of NS206, peak current amplitudes surpassed those of maximal efficacious ACh stimulations (Emax(ACh)) with no or limited effects at potencies and current waveforms (as inspected visually). This pharmacological action contrasted with that of NS9283, which only modulated the 3α:2β receptor and acted by left shifting the ACh concentration-response relationship. Interestingly, the two modulators can act simultaneously in an additive manner at 3α:2β receptors, which results in current levels exceeding Emax(ACh) and a left-shifted ACh concentration-response relationship. Through use of chimeric and point-mutated receptors, the binding site of NS206 was linked to the α4-subunit transmembrane domain, whereas binding of NS9283 was shown to be associated with the αα-interface in 3α:2β receptors. Collectively, these data demonstrate the existence of two distinct modulatory sites in α4β2 receptors with unique pharmacological attributes that can act additively. Several allosteric sites have been identified within the family of Cys-loop receptors and with the present data, a detailed picture of allosteric modulatory mechanisms of these important receptors is emerging.
Collapse
Affiliation(s)
- Jeppe A Olsen
- From NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark
| | | | | | | | | | | |
Collapse
|
38
|
Grishin AA, Cuny H, Hung A, Clark RJ, Brust A, Akondi K, Alewood PF, Craik DJ, Adams DJ. Identifying key amino acid residues that affect α-conotoxin AuIB inhibition of α3β4 nicotinic acetylcholine receptors. J Biol Chem 2013; 288:34428-42. [PMID: 24100032 DOI: 10.1074/jbc.m113.512582] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
α-Conotoxin AuIB is a selective α3β4 nicotinic acetylcholine receptor (nAChR) subtype inhibitor. Its analgesic properties are believed to result from it activating GABAB receptors and subsequently inhibiting CaV2.2 voltage-gated calcium channels. The structural determinants that mediate diverging AuIB activity at these targets are unknown. We performed alanine scanning mutagenesis of AuIB and α3β4 nAChR, homology modeling, and molecular dynamics simulations to identify the structural determinants of the AuIB·α3β4 nAChR interaction. Two alanine-substituted AuIB analogues, [P6A]AuIB and [F9A]AuIB, did not inhibit the α3β4 nAChR. NMR and CD spectroscopy studies demonstrated that [F9A]AuIB retains its native globular structure, so its activity loss is probably due to loss of specific toxin-receptor residue pairwise contacts. Compared with AuIB, the concentration-response curve for inhibition of α3β4 by [F9A]AuIB shifted rightward more than 10-fold, and its subtype selectivity profile changed. Homology modeling and molecular dynamics simulations suggest that Phe-9 of AuIB interacts with a two-residue binding pocket on the β4 nAChR subunit. This hypothesis was confirmed by site-directed mutagenesis of the β4-Trp-59 and β4-Lys-61 residues of loop D, which form a putative binding pocket. AuIB analogues with Phe-9 substitutions corroborated the finding of a binding pocket on the β4 subunit and gave further insight into how AuIB Phe-9 interacts with the β4 subunit. In summary, we identified critical residues that mediate interactions between AuIB and its cognate nAChR subtype. These findings might help improve the design of analgesic conopeptides that selectively "avoid" nAChR receptors while targeting receptors involved with nociception.
Collapse
Affiliation(s)
- Anton A Grishin
- From the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia and
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Absalom NL, Quek G, Lewis TM, Qudah T, von Arenstorff I, Ambrus JI, Harpsøe K, Karim N, Balle T, McLeod MD, Chebib M. Covalent trapping of methyllycaconitine at the α4-α4 interface of the α4β2 nicotinic acetylcholine receptor: antagonist binding site and mode of receptor inhibition revealed. J Biol Chem 2013; 288:26521-32. [PMID: 23893416 DOI: 10.1074/jbc.m113.475053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh), but their pharmacological profiles are not fully understood. Methyllycaconitine (MLA) is known to be an antagonist of nAChRs. Using the two-electrode voltage clamp technique and α4β2 nAChRs in the Xenopus oocyte expression system, we demonstrate that inhibition by MLA occurs via two different mechanisms; that is, a direct competitive antagonism and an apparently insurmountable mechanism that only occurs after preincubation with MLA. We hypothesized an additional MLA binding site in the α4-α4 interface that is unique to this stoichiometry. To prove this, we covalently trapped a cysteine-reactive MLA analog at an α4β2 receptor containing an α4(D204C) mutation predicted by homology modeling to be within reach of the reactive probe. We demonstrate that covalent trapping results in irreversible reduction of ACh-elicited currents in the (α4)3(β2)2 stoichiometry, indicating that MLA binds to the α4-α4 interface of the (α4)3(β2)2 and providing direct evidence of ligand binding to the α4-α4 interface. Consistent with other studies, we propose that the α4-α4 interface is a structural target for potential therapeutics that modulate (α4)3(β2)2 nAChRs.
Collapse
Affiliation(s)
- Nathan L Absalom
- From the Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Changeux JP. The concept of allosteric interaction and its consequences for the chemistry of the brain. J Biol Chem 2013; 288:26969-26986. [PMID: 23878193 DOI: 10.1074/jbc.x113.503375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Throughout this Reflections article, I have tried to follow up on the genesis in the 1960s and subsequent evolution of the concept of allosteric interaction and to examine its consequences within the past decades, essentially in the field of the neuroscience. The main conclusion is that allosteric mechanisms built on similar structural principles operate in bacterial regulatory enzymes, gene repressors (and the related nuclear receptors), rhodopsin, G-protein-coupled receptors, neurotransmitter receptors, ion channels, and so on from prokaryotes up to the human brain yet with important features of their own. Thus, future research on these basic cybernetic sensors is expected to develop in two major directions: at the elementary level, toward the atomic structure and molecular dynamics of the conformational changes involved in signal recognition and transduction, but also at a higher level of organization, the contribution of allosteric mechanisms to the modulation of brain functions.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Collège de France, 75005 Paris and the Institut Pasteur, 75724 Paris Cedex 15, France.
| |
Collapse
|
41
|
Mascini M, Montesano C, Sergi M, Perez G, De Cicco M, Curini R, Compagnone D. Peptides trapping cocaine: docking simulation and experimental screening by solid phase extraction followed by liquid chromatography mass spectrometry in plasma samples. Anal Chim Acta 2013; 772:40-6. [DOI: 10.1016/j.aca.2013.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
|
42
|
Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J Neurosci 2013; 33:485-94. [PMID: 23303929 DOI: 10.1523/jneurosci.3483-12.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Galanthamine and physostigmine are clinically used cholinomimetics that both inhibit acetylcholinesterase and also interact directly with and potentiate nAChRs. As with most nAChR-positive allosteric modulators, the location and number of their binding site(s) within nAChRs are unknown. In this study, we use the intrinsic photoreactivities of [(3)H]physostigmine and [(3)H]galanthamine upon irradiation at 312 nm to directly identify amino acids contributing to their binding sites in the Torpedo californica nAChR. Protein sequencing of fragments isolated from proteolytic digests of [(3)H]physostigmine- or [(3)H]galanthamine-photolabeled nAChR establish that, in the presence of agonist (carbamylcholine), both drugs photolabeled amino acids on the complementary (non-α) surface of the transmitter binding sites (γTyr-111/γTyr-117/δTyr172). They also photolabeled δTyr-212 at the δ-β subunit interface and γTyr-105 in the vestibule of the ion channel, with photolabeling of both residues enhanced in the presence of agonist. Furthermore, [(3)H]physostigmine photolabeling of γTyr-111, γTyr-117, δTyr-212, and γTyr-105 was inhibited in the presence of nonradioactive galanthamine. The locations of the photolabeled amino acids in the nAChR structure and the results of computational docking studies provide evidence that, in the presence of agonist, physostigmine and galanthamine bind to at least three distinct sites in the nAChR extracellular domain: at the α-γ interface (1) in the entry to the transmitter binding site and (2) in the vestibule of the ion channel near the level of the transmitter binding site, and at the δ-β interface (3) in a location equivalent to the benzodiazepine binding site in GABA(A) receptors.
Collapse
|
43
|
Miwa JM, Lester HA, Walz A. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction. Physiology (Bethesda) 2012; 27:187-99. [PMID: 22875450 DOI: 10.1152/physiol.00002.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cholinergic system underlies both adaptive (learning and memory) and nonadaptive (addiction and dependency) behavioral changes through its ability to shape and regulate plasticity. Protein modulators such as lynx family members can fine tune the activity of the cholinergic system and contribute to the graded response of the cholinergic system, stabilizing neural circuitry through direct interaction with nicotinic receptors. Release of this molecular brake can unmask cholinergic-dependent mechanisms in the brain. Lynx proteins have the potential to provide top-down control over plasticity mechanisms, including addictive propensity. If this is indeed the case, then, what regulates the regulator? Transcriptional changes of lynx genes in response to pharmacological, physiological, and pathological alterations are explored in this review.
Collapse
Affiliation(s)
- Julie M Miwa
- California Institute of Technology, Pasadena, California, USA.
| | | | | |
Collapse
|
44
|
Harpsøe K, Hald H, Timmermann DB, Jensen ML, Dyhring T, Nielsen EØ, Peters D, Balle T, Gajhede M, Kastrup JS, Ahring PK. Molecular determinants of subtype-selective efficacies of cytisine and the novel compound NS3861 at heteromeric nicotinic acetylcholine receptors. J Biol Chem 2012; 288:2559-70. [PMID: 23229547 DOI: 10.1074/jbc.m112.436337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Deciphering which specific agonist-receptor interactions affect efficacy levels is of high importance, because this will ultimately aid in designing selective drugs. The novel compound NS3861 and cytisine are agonists of nicotinic acetylcholine receptors (nAChRs) and both bind with high affinity to heteromeric α3β4 and α4β2 nAChRs. However, initial data revealed that the activation patterns of the two compounds show very distinct maximal efficacy readouts at various heteromeric nAChRs. To investigate the molecular determinants behind these observations, we performed in-depth patch clamp electrophysiological measurements of efficacy levels at heteromeric combinations of α3- and α4-, with β2- and β4-subunits, and various chimeric constructs thereof. Compared with cytisine, which selectively activates receptors containing β4- but not β2-subunits, NS3861 displays the opposite β-subunit preference and a complete lack of activation at α4-containing receptors. The maximal efficacy of NS3861 appeared solely dependent on the nature of the ligand-binding domain, whereas efficacy of cytisine was additionally affected by the nature of the β-subunit transmembrane domain. Molecular docking to nAChR subtype homology models suggests agonist specific interactions to two different residues on the complementary subunits as responsible for the β-subunit preference of both compounds. Furthermore, a principal subunit serine to threonine substitution may explain the lack of NS3861 activation at α4-containing receptors. In conclusion, our results are consistent with a hypothesis where agonist interactions with the principal subunit (α) primarily determine binding affinity, whereas interactions with key amino acids at the complementary subunit (β) affect agonist efficacy.
Collapse
Affiliation(s)
- Kasper Harpsøe
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Corringer PJ, Poitevin F, Prevost MS, Sauguet L, Delarue M, Changeux JP. Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure 2012; 20:941-56. [PMID: 22681900 DOI: 10.1016/j.str.2012.05.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 01/21/2023]
Abstract
Orthologs of the pentameric receptor channels that mediate fast synaptic transmission in the central and peripheral nervous systems have been found in several bacterial species and in a single archaea genus. Recent X-ray structures of bacterial and invertebrate pentameric receptors point to a striking conservation of the structural features within the whole family, even between distant prokaryotic and eukaryotic members. These structural data reveal general principles of molecular organization that allow allosteric membrane proteins to mediate chemoelectric transduction. Notably, several conformations have been solved, including open and closed channels with distinct global tertiary and quaternary structure. The data reveal features of the ion channel architecture and of diverse categories of binding sites, such as those that bind orthosteric ligands, including neurotransmitters, and those that bind allosteric modulators, such as general anesthetics, ivermectin, or lipids. In this review, we summarize the most recent data, discuss insights into the mechanism of action in these systems, and elaborate on newly opened avenues for drug design.
Collapse
|
46
|
Pan J, Chen Q, Willenbring D, Mowrey D, Kong XP, Cohen A, Divito CB, Xu Y, Tang P. Structure of the pentameric ligand-gated ion channel GLIC bound with anesthetic ketamine. Structure 2012; 20:1463-9. [PMID: 22958642 PMCID: PMC3446250 DOI: 10.1016/j.str.2012.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 11/21/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are targets of general anesthetics, but a structural understanding of anesthetic action on pLGICs remains elusive. GLIC, a prokaryotic pLGIC, can be inhibited by anesthetics, including ketamine. The ketamine concentration leading to half-maximal inhibition of GLIC (58 μM) is comparable to that on neuronal nicotinic acetylcholine receptors. A 2.99 Å resolution X-ray structure of GLIC bound with ketamine revealed ketamine binding to an intersubunit cavity that partially overlaps with the homologous antagonist-binding site in pLGICs. The functional relevance of the identified ketamine site was highlighted by profound changes in GLIC activation upon cysteine substitution of the cavity-lining residue N152. The relevance is also evidenced by changes in ketamine inhibition upon the subsequent chemical labeling of N152C. The results provide structural insight into the molecular recognition of ketamine and are valuable for understanding the actions of anesthetics and other allosteric modulators on pLGICs.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Anesthesiology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - Qiang Chen
- Department of Anesthesiology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - Dan Willenbring
- Department of Anesthesiology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - David Mowrey
- Department of Anesthesiology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
- Department of Computational and System Biology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - Xiang-Peng Kong
- Department of Biochemistry, 550 First Avenue, MSB 329, New York University School of Medicine, New York, NY 10016
| | - Aina Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Rd., MS: 99, Menlo Park, CA, 94025
| | - Christopher B. Divito
- Department of Neurobiology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - Yan Xu
- Department of Anesthesiology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
- Department of Structural Biology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
- Department of Pharmacology and Chemical Biology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - Pei Tang
- Department of Anesthesiology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
- Department of Computational and System Biology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
- Department of Pharmacology and Chemical Biology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| |
Collapse
|
47
|
Stober ST, Abrams CF. Enhanced meta-analysis of acetylcholine binding protein structures reveals conformational signatures of agonism in nicotinic receptors. Protein Sci 2012; 21:307-17. [PMID: 22170867 DOI: 10.1002/pro.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The soluble acetylcholine binding protein (AChBP) is the default structural proxy for pentameric ligand-gated ion channels (LGICs). Unfortunately, it is difficult to recognize conformational signatures of LGIC agonism and antagonism within the large set of AChBP crystal structures in both apo and ligand-bound states, primarily because AChBP conformations in this set are nearly superimposable (root mean square deviation < 1.5 Å). We have undertaken a systematic, alignment-free approach to elucidate conformational differences displayed by AChBP that cleanly differentiate apo/antagonist-bound from agonist-bound states. Our approach uses statistical inference based on both crystallographic states and conformations sampled during long molecular dynamics simulations to select important inter-C(α) distances and map their collective values onto functional states. We observe that binding of (nAChR) agonists to AChBP elicits clockwise rotation of the inner β-sheet with respect to the outer β-sheet, causing tilting of the cys-loop away from the five-fold axis, in a manner quite similar to that speculated for α-subunits of the heteromeric nAChR structure (Unwin, J Mol Biol 2005;346:967), making this motion potentially important in transmission of the gating signal to the transmembrane domain of a LGIC. The method is also successful at discriminating partial from full agonists and supports the hypothesis that a particularly controversial ligand, lobeline, is in fact an LGIC antagonist.
Collapse
Affiliation(s)
- Spencer T Stober
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
48
|
Henderson BJ, Carper DJ, González-Cestari TF, Yi B, Mahasenan K, Pavlovicz RE, Dalefield ML, Coleman RS, Li C, McKay DB. Structure-activity relationship studies of sulfonylpiperazine analogues as novel negative allosteric modulators of human neuronal nicotinic receptors. J Med Chem 2011; 54:8681-92. [PMID: 22060139 DOI: 10.1021/jm201294r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuronal nicotinic receptors have been implicated in several diseases and disorders such as autism, Alzheimer's disease, Parkinson's disease, epilepsy, and various forms of addiction. To understand the role of nicotinic receptors in these conditions, it would be beneficial to have selective molecules that target specific nicotinic receptors in vitro and in vivo. Our laboratory has previously identified novel negative allosteric modulators of human α4β2 (Hα4β2) and human α3β4 (Hα3β4) nicotinic receptors. The effects of novel sulfonylpiperazine analogues that act as negative allosteric modulators on both Hα4β2 nAChRs and Hα3β4 nAChRs were investigated. This work, through structure-activity relationship (SAR) studies, describes the chemical features of these molecules that are important for both potency and selectivity on Hα4β2 nAChRs.
Collapse
Affiliation(s)
- Brandon J Henderson
- Division of Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nemecz Á, Taylor P. Creating an α7 nicotinic acetylcholine recognition domain from the acetylcholine-binding protein: crystallographic and ligand selectivity analyses. J Biol Chem 2011; 286:42555-42565. [PMID: 22009746 DOI: 10.1074/jbc.m111.286583] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Determining the structure of the ligand-binding domain of the nicotinic acetylcholine receptor (nAChR) has been a long standing goal in the design of selective drugs useful in implicated diseases for this prevalent receptor family. Acetylcholine-binding proteins have proven to be valuable surrogates with structural similarity and sequence identity to the extracellular domain of the nicotinic receptor, yet these soluble proteins have their unique features and do not serve as exact replicates of the nAChRs of interest. Here we systematically modify the sequence of these proteins toward the homomeric human α7 nAChR. These chimeric proteins exhibit a shift in affinities to reflect α7 binding characteristics yet maintain expression levels and stability conducive for crystallization. We also present a pentameric humanoid nAChR extracellular domain with the structural determination of the α7 nAChR glycosylation site.
Collapse
Affiliation(s)
- Ákos Nemecz
- Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0650; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650.
| |
Collapse
|
50
|
Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 2011; 82:915-30. [PMID: 21575610 PMCID: PMC3162128 DOI: 10.1016/j.bcp.2011.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/16/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.
Collapse
Affiliation(s)
- Dustin K. Williams
- Dept. of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Jingyi Wang
- Dept. of Chemistry, University of Florida, Gainesville, Florida
| | - Roger L. Papke
- Dept. of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|