1
|
Bick NR, Dreishpoon MB, Perry A, Rogachevskaya A, Bottomley SS, Fleming MD, Ducamp S, Tsvetkov P. Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency. J Biol Chem 2024; 300:107995. [PMID: 39547509 DOI: 10.1016/j.jbc.2024.107995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Protein lipoylation, a vital lysine post-translational modification, plays a crucial role in the function of key mitochondrial tricarboxylic acid cycle enzymatic complexes. In eukaryotes, lipoyl post-translational modification synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe-S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging because of pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase A (lplA) enzyme, which can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe-S cluster biosynthesis (BOLA3 KO), and specific lipoylation-regulating enzymes (FDX1 [ferredoxin 1], LIAS [lipoyl synthase], and LIPT1 [lipoyl (octanoyl) transferase 1] KOs). Furthermore, we describe a patient with a homozygous c.212C>T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation-deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.
Collapse
Affiliation(s)
- Nolan R Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusets, USA
| | - Margaret B Dreishpoon
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ava Perry
- Broad Institute of MIT and Harvard, Cambridge, Massachusets, USA
| | - Anna Rogachevskaya
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sylvia S Bottomley
- Department of Medicine, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Ducamp
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Tsvetkov
- Broad Institute of MIT and Harvard, Cambridge, Massachusets, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Niihori M, James J, Varghese MV, McClain N, Lawal OS, Philip RC, Baggett BK, Goncharov DA, de Jesus Perez V, Goncharova EA, Rafikov R, Rafikova O. Mitochondria as a primary determinant of angiogenic modality in pulmonary arterial hypertension. J Exp Med 2024; 221:e20231568. [PMID: 39320470 PMCID: PMC11452743 DOI: 10.1084/jem.20231568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/27/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Impaired pulmonary angiogenesis plays a pivotal role in the progression of pulmonary arterial hypertension (PAH) and patient mortality, yet the molecular mechanisms driving this process remain enigmatic. Our study uncovered a striking connection between mitochondrial dysfunction (MD), caused by a humanized mutation in the NFU1 gene, and severely disrupted pulmonary angiogenesis in adult lungs. Restoring the bioavailability of the NFU1 downstream target, lipoic acid (LA), alleviated MD and angiogenic deficiency and rescued the progressive PAH phenotype in the NFU1G206C model. Notably, significant NFU1 expression and signaling insufficiencies were also identified in idiopathic PAH (iPAH) patients' lungs, emphasizing this study's relevance beyond NFU1 mutation cases. The remarkable improvement in mitochondrial function of PAH patient-derived pulmonary artery endothelial cells (PAECs) following LA supplementation introduces LA as a potential therapeutic approach. In conclusion, this study unveils a novel role for MD in dysregulated pulmonary angiogenesis and PAH manifestation, emphasizing the need to correct MD in PAH patients with unrecognized NFU1/LA deficiency.
Collapse
Affiliation(s)
- Maki Niihori
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Joel James
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Mathews V. Varghese
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Nolan McClain
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Odunayo Susan Lawal
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Rohit C. Philip
- Department of Electrical and Computer Engineering, University of Arizona College of Engineering, Tucson, AZ, USA
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Brenda K. Baggett
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Dmitry A. Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, University of California, Davis School of Medicine, Davis, CA, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, University of California, Davis School of Medicine, Davis, CA, USA
| | - Ruslan Rafikov
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Olga Rafikova
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
3
|
A Lipoate-Protein Ligase Is Required for De Novo Lipoyl-Protein Biosynthesis in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Appl Environ Microbiol 2022; 88:e0064422. [PMID: 35736229 PMCID: PMC9275244 DOI: 10.1128/aem.00644-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipoic acid is an organosulfur cofactor essential for several key enzyme complexes in oxidative and one-carbon metabolism. It is covalently bound to the lipoyl domain of the E2 subunit in some 2-oxoacid dehydrogenase complexes and the H-protein in the glycine cleavage system. Lipoate-protein ligase (Lpl) is involved in the salvage of exogenous lipoate and attaches free lipoate to the E2 subunit or the H-protein in an ATP-dependent manner. In the hyperthermophilic archaeon Thermococcus kodakarensis, TK1234 and TK1908 are predicted to encode the N- and C-terminal regions of Lpl, respectively. TK1908 and TK1234 recombinant proteins form a heterodimer and together displayed significant ligase activity toward octanoate in addition to lipoate when a chemically synthesized octapeptide was used as the acceptor. The proteins also displayed activity toward other fatty acids, indicating broad fatty acid specificity. On the other hand, lipoyl synthase from T. kodakarensis only recognized octanoyl-peptide as a substrate. Examination of individual proteins indicated that the TK1908 protein alone was able to catalyze the ligase reaction although with a much lower activity. Gene disruption of TK1908 led to lipoate/serine auxotrophy, whereas TK1234 gene deletion did not. Acyl carrier protein homologs are not found on the archaeal genomes, and the TK1908/TK1234 protein complex did not utilize octanoyl-CoA, raising the possibility that the substrate of the ligase reaction is octanoic acid itself. Although Lpl has been considered as an enzyme involved in lipoate salvage, the results imply that in T. kodakarensis, the TK1908 and TK1234 proteins function in de novo lipoyl-protein biosynthesis. IMPORTANCE Based on previous studies in bacteria and eukaryotes, lipoate-protein ligases (Lpls) have been considered to be involved exclusively in lipoate salvage. The genetic analyses in this study on the lipoate-protein ligase in T. kodakarensis, however, suggest otherwise and that the enzyme is additionally involved in de novo protein lipoylation. We also provide biochemical evidence that the lipoate-protein ligase displays broad substrate specificity and is capable of ligating acyl groups of various chain-lengths to the peptide substrate. We show that this apparent ambiguity in Lpl is resolved by the strict substrate specificity of the lipoyl synthase LipS in this organism, which only recognizes octanoyl-peptide. The results provide relevant physiological insight into archaeal protein lipoylation.
Collapse
|
4
|
Scattolini A, Lavatelli A, Vacchina P, Lambruschi DA, Mansilla MC, Uttaro AD. Functional characterization of the first lipoyl-relay pathway from a parasitic protozoan. Mol Microbiol 2022; 117:1352-1365. [PMID: 35484915 DOI: 10.1111/mmi.14913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Lipoic acid (LA) is a sulfur-containing cofactor covalently attached to key enzymes of central metabolism in prokaryotes and eukaryotes. LA can be acquired by scavenging, mediated by a lipoate ligase, or de novo synthesized by a pathway requiring an octanoyltransferase and a lipoate synthase. A more complex pathway, referred to as "lipoyl-relay", requires two additional proteins, GcvH, the glycine cleavage system H subunit, and an amidotransferase. This route was described so far in Bacillus subtilis and related Gram positive bacteria, Saccharomyces cerevisiae, Homo sapiens and Caenorhabditis elegans. Using collections of S. cerevisiae and B. subtilis mutants, defective in LA metabolism, we gathered evidence that allow us to propose for the first time that lipoyl-relay pathways are also present in parasitic protozoa. By a reverse genetic approach, we assigned octanoyltransferase and amidotransferase activity to the products of Tb927.11.9390 (TblipT) and Tb927.8.630 (TblipL) genes of Trypanosoma brucei, respectively. The B. subtilis model allowed us to identify the parasite amidotransferase as the target of lipoate analogues like 8-bromo octanoic acid, explaining the complete loss of protein lipoylation and growth impairment caused by this compound in T. cruzi. This model could be instrumental for the screening of selective and more efficient chemotherapies against trypanosomiases.
Collapse
Affiliation(s)
- Albertina Scattolini
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| | - Antonela Lavatelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Consejo Superior de Investigaciones Científicas, Centre for Research in Agricultural Genomics
| | - Paola Vacchina
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Daniel A Lambruschi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas
| | - María C Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| |
Collapse
|
5
|
Understanding and Engineering Glycine Cleavage System and Related Metabolic Pathways for C1-Based Biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:273-298. [DOI: 10.1007/10_2021_186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Ni M, Solmonson A, Pan C, Yang C, Li D, Notzon A, Cai L, Guevara G, Zacharias LG, Faubert B, Vu HS, Jiang L, Ko B, Morales NM, Pei J, Vale G, Rakheja D, Grishin NV, McDonald JG, Gotway GK, McNutt MC, Pascual JM, DeBerardinis RJ. Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans. Cell Rep 2020; 27:1376-1386.e6. [PMID: 31042466 PMCID: PMC7351313 DOI: 10.1016/j.celrep.2019.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/21/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proband is a compound heterozygote for variants in LIPT1, which encodes the lipoyltransferase required for 2-ketoacid dehydrogenase (2KDH) function. Metabolomics reveals abnormalities in lipids, amino acids, and 2-hydroxyglutarate consistent with loss of multiple 2KDHs. Homozygous knockin of a LIPT1 mutation reduces 2KDH lipoylation in utero and results in embryonic demise. In patient fibroblasts, defective 2KDH lipoylation and function are corrected by wild-type, but not mutant, LIPT1 alleles. Isotope tracing reveals that LIPT1 supports lipogenesis and balances oxidative and reductive glutamine metabolism. Altogether, the data extend the role of LIPT1 in metabolic regulation and demonstrate how integrating genomics and metabolomics can uncover broader aspects of IEM pathophysiology.
Collapse
Affiliation(s)
- Min Ni
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ashley Solmonson
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dan Li
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Notzon
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Cai
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gerardo Guevara
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noriko Merida Morales
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jimin Pei
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gonçalo Vale
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett K Gotway
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Markey C McNutt
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M Pascual
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Cronan JE. Progress in the Enzymology of the Mitochondrial Diseases of Lipoic Acid Requiring Enzymes. Front Genet 2020; 11:510. [PMID: 32508887 PMCID: PMC7253636 DOI: 10.3389/fgene.2020.00510] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Three human mitochondrial diseases that directly affect lipoic acid metabolism result from heterozygous missense and nonsense mutations in the LIAS, LIPT1, and LIPT2 genes. However, the functions of the proteins encoded by these genes in lipoic acid metabolism remained uncertain due to a lack of biochemical analysis at the enzyme level. An exception was the LIPT1 protein for which a perplexing property had been reported, a ligase lacking the ability to activate its substrate. This led to several models, some contradictory, to accommodate the role of LIPT1 protein activity in explaining the phenotypes of the afflicted neonatal patients. Recent evidence indicates that this LIPT1 protein activity is a misleading evolutionary artifact and that the physiological role of LIPT1 is in transfer of lipoic acid moieties from one protein to another. This and other new biochemical data now define a straightforward pathway that fully explains each of the human disorders specific to the assembly of lipoic acid on its cognate enzyme proteins.
Collapse
Affiliation(s)
- John E Cronan
- B103 Chemical and Life Sciences Laboratory, Departments of Microbiology and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
Zhu K, Chen H, Jin J, Wang N, Ma G, Huang J, Feng Y, Xin J, Zhang H, Liu H. Functional Identification and Structural Analysis of a New Lipoate Protein Ligase in Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2020; 10:156. [PMID: 32373550 PMCID: PMC7186572 DOI: 10.3389/fcimb.2020.00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the causative agent of pandemic pneumonia among pigs, namely, swine enzootic pneumonia. Although M. hyopneumoniae was first identified in 1965, little is known regarding its metabolic pathways, which might play a pivotal role during disease pathogenesis. Lipoate is an essential cofactor for enzymes important for central metabolism. However, the lipoate metabolism pathway in M. hyopneumoniae is definitely unclear. Here, we identified a novel gene, lpl, encoding a lipoate protein ligase in the genome of M. hyopneumoniae (Mhp-Lpl). This gene contains 1,032 base pairs and encodes a protein of 343 amino acids, which is between 7.5 and 36.09% identical to lipoate protein ligases (Lpls) of other species. Similar to its homologs in other species, Mhp-Lpl catalyzes the ATP-dependent activation of lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of M. hyopneumoniae GcvH (Mhp H) in vitro. Enzymatic and mutagenesis analysis indicate that residue K56 within the SKT sequence of Mhp H protein is the lipoyl moiety acceptor site. The three-dimensional structure showed typical lipoate protein ligase folding, with a large N-terminal domain and a small C-terminal domain. The large N-terminal domain is responsible for the full enzymatic activity of Mhp-Lpl. The identification and characterization of Mhp-Lpl will be beneficial to our understanding of M. hyopneumoniae metabolism. Summary Lipoic acid is an essential cofactor for the activation of some enzyme complexes involved in key metabolic processes. Lipoate protein ligases (Lpls) are responsible for the metabolism of lipoic acid. To date, little is known regarding the Lpls in M. hyopneumoniae. In this study, we identified a lipoate protein ligase of M. hyopneumoniae. We further analyzed the function, overall structure and ligand-binding site of this protein. The lipoate acceptor site on M. hyopneumoniae GcvH was also identified. Together, these findings reveal that Lpl exists in M. hyopneumoniae and will provide a basis for further exploration of the pathway of lipoic acid metabolism in M. hyopneumoniae.
Collapse
Affiliation(s)
- Kemeng Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huan Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Jin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ning Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guixing Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China
| | - Henggui Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Reply to Bailey et al.: New perspectives on the novel role of the Poldip2/ACSM1 axis in a functional mammalian lipoylation salvage pathway. Proc Natl Acad Sci U S A 2018; 115:E7460-E7461. [PMID: 30042216 DOI: 10.1073/pnas.1807968115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Protein moonlighting elucidates the essential human pathway catalyzing lipoic acid assembly on its cognate enzymes. Proc Natl Acad Sci U S A 2018; 115:E7063-E7072. [PMID: 29987032 DOI: 10.1073/pnas.1805862115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lack of attachment of lipoic acid to its cognate enzyme proteins results in devastating human metabolic disorders. These mitochondrial disorders are evident soon after birth and generally result in early death. The mutations causing specific defects in lipoyl assembly map in three genes, LIAS, LIPT1, and LIPT2 Although physiological roles have been proposed for the encoded proteins, only the LIPT1 protein had been studied at the enzyme level. LIPT1 was reported to catalyze only the second partial reaction of the classical lipoate ligase mechanism. We report that the physiologically relevant LIPT1 enzyme activity is transfer of lipoyl moieties from the H protein of the glycine cleavage system to the E2 subunits of the 2-oxoacid dehydrogenases required for respiration (e.g., pyruvate dehydrogenase) and amino acid degradation. We also report that LIPT2 encodes an octanoyl transferase that initiates lipoyl group assembly. The human pathway is now biochemically defined.
Collapse
|
11
|
Guo L, Tian J, Du H. Mitochondrial Dysfunction and Synaptic Transmission Failure in Alzheimer's Disease. J Alzheimers Dis 2018; 57:1071-1086. [PMID: 27662318 DOI: 10.3233/jad-160702] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder, in which multiple risk factors converge. Despite the complexity of the etiology of the disease, synaptic failure is the pathological basis of cognitive impairment, the cardinal sign of AD. Decreased synaptic density, compromised synaptic transmission, and defected synaptic plasticity are hallmark synaptic pathologies accompanying AD. However, the mechanisms by which synapses are injured in AD-related conditions have not been fully elucidated. Mitochondria are a critical organelle in neurons. The pivotal role of mitochondria in supporting synaptic function and the concomitant occurrence of mitochondrial dysfunction with synaptic stress in postmortem AD brains as well as AD animal models seem to lend the credibility to the hypothesis that mitochondrial defects underlie synaptic failure in AD. This concept is further strengthened by the protective effect of mitochondrial medicine on synaptic function against the toxicity of amyloid-β, a key player in the pathogenesis of AD. In this review, we focus on the association between mitochondrial dysfunction and synaptic transmission deficits in AD. Impaired mitochondrial energy production, deregulated mitochondrial calcium handling, excess mitochondrial reactive oxygen species generation and release play a crucial role in mediating synaptic transmission deregulation in AD. The understanding of the role of mitochondrial dysfunction in synaptic stress may lead to novel therapeutic strategies for the treatment of AD through the protection of synaptic transmission by targeting to mitochondrial deficits.
Collapse
Affiliation(s)
- Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Afanador GA, Guerra AJ, Swift RP, Rodriguez RE, Bartee D, Matthews KA, Schön A, Freire E, Freel Meyers CL, Prigge ST. A novel lipoate attachment enzyme is shared by Plasmodium and Chlamydia species. Mol Microbiol 2017; 106:439-451. [PMID: 28836704 DOI: 10.1111/mmi.13776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox-gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox-dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways.
Collapse
Affiliation(s)
- Gustavo A Afanador
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alfredo J Guerra
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ryan E Rodriguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Bartee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Krista A Matthews
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Kastaniotis AJ, Autio KJ, Kerätär JM, Monteuuis G, Mäkelä AM, Nair RR, Pietikäinen LP, Shvetsova A, Chen Z, Hiltunen JK. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:39-48. [PMID: 27553474 DOI: 10.1016/j.bbalip.2016.08.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/20/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Juha M Kerätär
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anne M Mäkelä
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Remya R Nair
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Laura P Pietikäinen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials and Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; State Key Laboratory of Supramolecular Structure and Materials and Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
14
|
Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway. Microbiol Mol Biol Rev 2016; 80:429-50. [PMID: 27074917 DOI: 10.1128/mmbr.00073-15] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism.
Collapse
|
15
|
Cao X, Cronan JE. The Streptomyces coelicolor lipoate-protein ligase is a circularly permuted version of the Escherichia coli enzyme composed of discrete interacting domains. J Biol Chem 2015; 290:7280-90. [PMID: 25631049 DOI: 10.1074/jbc.m114.626879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lipoate-protein ligases are used to scavenge lipoic acid from the environment and attach the coenzyme to its cognate proteins, which are generally the E2 components of the 2-oxoacid dehydrogenases. The enzymes use ATP to activate lipoate to its adenylate, lipoyl-AMP, which remains tightly bound in the active site. This mixed anhydride is attacked by the ϵ-amino group of a specific lysine present on a highly conserved acceptor protein domain, resulting in the amide-linked coenzyme. The Streptomyces coelicolor genome encodes only a single putative lipoate ligase. However, this protein had only low sequence identity (<25%) to the lipoate ligases of demonstrated activity and appears to be a circularly permuted version of the known lipoate ligase proteins in that the canonical C-terminal domain seems to have been transposed to the N terminus. We tested the activity of this protein both by in vivo complementation of an Escherichia coli ligase-deficient strain and by in vitro assays. Moreover, when the domains were rearranged into a protein that mimicked the arrangement found in the canonical lipoate ligases, the enzyme retained complementation activity. Finally, when the two domains were separated into two proteins, both domain-containing proteins were required for complementation and catalysis of the overall ligase reaction in vitro. However, only the large domain-containing protein was required for transfer of lipoate from the lipoyl-AMP intermediate to the acceptor proteins, whereas both domain-containing proteins were required to form lipoyl-AMP.
Collapse
Affiliation(s)
- Xinyun Cao
- From the Departments of Biochemistry and
| | - John E Cronan
- From the Departments of Biochemistry and Microbiology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
16
|
Tort F, Ferrer-Cortès X, Thió M, Navarro-Sastre A, Matalonga L, Quintana E, Bujan N, Arias A, García-Villoria J, Acquaviva C, Vianey-Saban C, Artuch R, García-Cazorla À, Briones P, Ribes A. Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum Mol Genet 2013; 23:1907-15. [PMID: 24256811 DOI: 10.1093/hmg/ddt585] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cofactor disorders of mitochondrial energy metabolism are a heterogeneous group of diseases with a wide variety of clinical symptoms, particular metabolic profiles and variable enzymatic defects. Mutations in NFU1, BOLA3, LIAS and IBA57 have been identified in patients with deficient lipoic acid-dependent enzymatic activities and defects in the assembly and activity of the mitochondrial respiratory chain complexes. Here, we report a patient with an early onset fatal lactic acidosis presenting a biochemical phenotype compatible with a combined defect of pyruvate dehydrogenase (PDHC) and 2-ketoglutarate dehydrogenase (2-KGDH) activities, which suggested a deficiency in lipoic acid metabolism. Immunostaining analysis showed that lipoylated E2-PDH and E2-KGDH were extremely reduced in this patient. However, the absence of glycine elevation, the normal activity of the glycine cleavage system and the normal lipoylation of the H protein suggested a defect of lipoic acid transfer to particular proteins rather than a general impairment of lipoic acid biosynthesis as the potential cause of the disease. By analogy with yeast metabolism, we postulated LIPT1 as the altered candidate gene causing the disease. Sequence analysis of the human LIPT1 identified two heterozygous missense mutations (c.212C>T and c.292C>G), segregating in different alleles. Functional complementation experiments in patient's fibroblasts demonstrated that these mutations are disease-causing and that LIPT1 protein is required for lipoylation and activation of 2-ketoacid dehydrogenases in humans. These findings expand the spectrum of genetic defects associated with lipoic acid metabolism and provide the first evidence of a lipoic acid transfer defect in humans.
Collapse
Affiliation(s)
- Frederic Tort
- Secció d'Errors Congènits del Metabolisme, Servei de Bioquímica i Genètica Molecular, Hospital Clinic, IDIBAPS, C/Mejía Lequerica s/n, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation. Biochem J 2013; 449:415-25. [PMID: 23116157 DOI: 10.1042/bj20121150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multi-enzyme complexes, is essential for metabolism in aerobic bacteria and eukarya. In Escherichia coli, lipoylation is catalysed by LplA (lipoate protein ligase) or by LipA (lipoic acid synthetase) and LipB [lipoyl(octanoyl) transferase] combined. Whereas bacterial and eukaryotic LplAs comprise a single two-domain protein, archaeal LplA function typically involves two proteins, LplA-N and LplA-C. In the thermophilic archaeon Thermoplasma acidophilum, LplA-N and LplA-C are encoded by overlapping genes in inverted orientation (lpla-c is upstream of lpla-n). The T. acidophilum LplA-N structure is known, but the LplA-C structure is unknown and LplA-C's role in lipoylation is unclear. In the present study, we have determined the structures of the substrate-free LplA-N-LplA-C complex and E2lipD (dihydrolipoyl acyltransferase lipoyl domain) that is lipoylated by LplA-N-LplA-C, and carried out biochemical analyses of this archaeal lipoylation system. Our data reveal the following: (i) LplA-C is disordered but folds upon association with LplA-N; (ii) LplA-C induces a conformational change in LplA-N involving substantial shortening of a loop that could repress catalytic activity of isolated LplA-N; (iii) the adenylate-binding region of LplA-N-LplA-C includes two helices rather than the purely loop structure of varying order observed in other LplA structures; (iv) LplAN-LplA-C and E2lipD do not interact in the absence of substrate; (v) LplA-N-LplA-C undergoes a conformational change (the details of which are currently undetermined) during lipoylation; and (vi) LplA-N-LplA-C can utilize octanoic acid as well as lipoic acid as substrate. The elucidated functional inter-dependence of LplA-N and LplA-C is consistent with their evolutionary co-retention in archaeal genomes.
Collapse
|
18
|
Storm J, Müller S. Lipoic acid metabolism of Plasmodium--a suitable drug target. Curr Pharm Des 2012; 18:3480-9. [PMID: 22607141 PMCID: PMC3426790 DOI: 10.2174/138161212801327266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 11/22/2022]
Abstract
α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria.
Collapse
Affiliation(s)
- Janet Storm
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | |
Collapse
|
19
|
Christensen QH, Hagar JA, O'Riordan MXD, Cronan JE. A complex lipoate utilization pathway in Listeria monocytogenes. J Biol Chem 2011; 286:31447-56. [PMID: 21768091 DOI: 10.1074/jbc.m111.273607] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although a complete pathway of lipoic acid metabolism has been established in Escherichia coli, lipoic acid metabolism in other bacteria is more complex and incompletely understood. Listeria monocytogenes has been shown to utilize two lipoate-protein ligases for lipoic acid scavenging, whereas only one of the ligases can function in utilization of host-derived lipoic acid-modified peptides. We report that lipoic acid scavenging requires not only ligation of lipoic acid but also a lipoyl relay pathway in which an amidotransferase transfers lipoyl groups to the enzyme complexes that require the cofactor for activity. In addition, we provide evidence for a new lipoamidase activity that could allow utilization of lipoyl peptides by lipoate-protein ligase. These data support a model of an expanded, three-enzyme pathway for lipoic acid scavenging that seems widespread in the Firmicutes phylum of bacteria.
Collapse
Affiliation(s)
- Quin H Christensen
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments.
Collapse
|
21
|
Fujiwara K, Maita N, Hosaka H, Okamura-Ikeda K, Nakagawa A, Taniguchi H. Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. J Biol Chem 2010; 285:9971-9980. [PMID: 20089862 PMCID: PMC2843243 DOI: 10.1074/jbc.m109.078717] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/28/2009] [Indexed: 11/06/2022] Open
Abstract
Lipoate-protein ligase A (LplA) catalyzes the attachment of lipoic acid to lipoate-dependent enzymes by a two-step reaction: first the lipoate adenylation reaction and, second, the lipoate transfer reaction. We previously determined the crystal structure of Escherichia coli LplA in its unliganded form and a binary complex with lipoic acid (Fujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. (2005) J Biol. Chem. 280, 33645-33651). Here, we report two new LplA structures, LplA.lipoyl-5'-AMP and LplA.octyl-5'-AMP.apoH-protein complexes, which represent the post-lipoate adenylation intermediate state and the pre-lipoate transfer intermediate state, respectively. These structures demonstrate three large scale conformational changes upon completion of the lipoate adenylation reaction: movements of the adenylate-binding and lipoate-binding loops to maintain the lipoyl-5'-AMP reaction intermediate and rotation of the C-terminal domain by about 180 degrees . These changes are prerequisites for LplA to accommodate apoprotein for the second reaction. The Lys(133) residue plays essential roles in both lipoate adenylation and lipoate transfer reactions. Based on structural and kinetic data, we propose a reaction mechanism driven by conformational changes.
Collapse
Affiliation(s)
- Kazuko Fujiwara
- Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503.
| | - Nobuo Maita
- Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503
| | - Harumi Hosaka
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Kazuko Okamura-Ikeda
- Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503
| |
Collapse
|
22
|
Schonauer MS, Kastaniotis AJ, Kursu VAS, Hiltunen JK, Dieckmann CL. Lipoic acid synthesis and attachment in yeast mitochondria. J Biol Chem 2009; 284:23234-42. [PMID: 19570983 DOI: 10.1074/jbc.m109.015594] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid is a sulfur-containing cofactor required for the function of several multienzyme complexes involved in the oxidative decarboxylation of alpha-keto acids and glycine. Mechanistic details of lipoic acid metabolism are unclear in eukaryotes, despite two well defined pathways for synthesis and covalent attachment of lipoic acid in prokaryotes. We report here the involvement of four genes in the synthesis and attachment of lipoic acid in Saccharomyces cerevisiae. LIP2 and LIP5 are required for lipoylation of all three mitochondrial target proteins: Lat1 and Kgd2, the respective E2 subunits of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, and Gcv3, the H protein of the glycine cleavage enzyme. LIP3, which encodes a lipoate-protein ligase homolog, is necessary for lipoylation of Lat1 and Kgd2, and the enzymatic activity of Lip3 is essential for this function. Finally, GCV3, encoding the H protein target of lipoylation, is itself absolutely required for lipoylation of Lat1 and Kgd2. We show that lipoylated Gcv3, and not glycine cleavage activity per se, is responsible for this function. Demonstration that a target of lipoylation is required for lipoylation is a novel result. Through analysis of the role of these genes in protein lipoylation, we conclude that only one pathway for de novo synthesis and attachment of lipoic acid exists in yeast. We propose a model for protein lipoylation in which Lip2, Lip3, Lip5, and Gcv3 function in a complex, which may be regulated by the availability of acetyl-CoA, and which in turn may regulate mitochondrial gene expression.
Collapse
Affiliation(s)
- Melissa S Schonauer
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
23
|
Christensen QH, Cronan JE. The Thermoplasma acidophilum LplA-LplB complex defines a new class of bipartite lipoate-protein ligases. J Biol Chem 2009; 284:21317-26. [PMID: 19520844 DOI: 10.1074/jbc.m109.015016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid is a covalently bound cofactor found throughout the domains of life that is required for aerobic metabolism of 2-oxoacids and for C(1) metabolism. Utilization of exogenous lipoate is catalyzed by a ligation reaction that proceeds via a lipoyl-adenylate intermediate to attach the cofactor to the epsilon-amino group of a conserved lysine residue of protein lipoyl domains. The lipoyl ligases of demonstrated function have a large N-terminal catalytic domain and a small C-terminal accessory domain. Half of the members of the LplA family detected in silico have only the large catalytic domain. Two x-ray structures of the Thermoplasma acidophilum LplA structure have been reported, although the protein was reported to lack ligase activity. McManus et al. (McManus, E., Luisi, B. F., and Perham, R. N. (2006) J. Mol. Biol. 356, 625-637) hypothesized that the product of an adjacent gene was also required for ligase activity. We have shown this to be the case and have named the second protein, LplB. We found that complementation of Escherichia coli strains lacking lipoate ligase with T. acidophilum LplA was possible only when LplB was also present. LplA had no detectable ligase activity in vitro in the absence of LplB. Moreover LplA and LplB were shown to interact and were purified as a heterodimer. LplB was required for lipoyl-adenylate formation but was not required for transfer of the lipoyl moiety of lipoyl-adenylate to acceptor proteins. Surveys of sequenced genomes show that most lipoyl ligases of the kingdom Archaea are heterodimeric. We propose that the presence of an accessory domain provides a diagnostic to distinguish lipoyl ligase homologues from other members of the lipoate/biotin attachment enzyme family.
Collapse
|
24
|
Günther S, Storm J, Müller S. Plasmodium falciparum: Organelle-specific acquisition of lipoic acid. Int J Biochem Cell Biol 2009; 41:748-52. [DOI: 10.1016/j.biocel.2008.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
|
25
|
Hiltunen JK, Schonauer MS, Autio KJ, Mittelmeier TM, Kastaniotis AJ, Dieckmann CL. Mitochondrial fatty acid synthesis type II: more than just fatty acids. J Biol Chem 2008; 284:9011-5. [PMID: 19028688 DOI: 10.1074/jbc.r800068200] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Department of Biochemistry and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|