1
|
Xu X, Liu Y, Hu H, Wang J, Cai Y, Xie J, Kang M, He F. Relationship between cancer stem cell-related SNPs and survival outcomes in patients with primary lung cancer. World J Surg Oncol 2023; 21:243. [PMID: 37563730 PMCID: PMC10416443 DOI: 10.1186/s12957-023-03064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/04/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Cancer stem cells may be the source of cancer-causing mutant cells and are closely related to the prognosis of cancer. Our study aimed to investigate the potential association between single-nucleotide polymorphisms (SNPs) of cancer stem cell-related genes and the prognosis of lung cancer patients. METHODS The SNP loci were genotyped by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), and the overall survival of subjects was analyzed by log-rank test after stratifying and adjusting their demographic data, clinical data, and genotypes. The correlation between survival time and quality of life of lung cancer under codominant, dominant, recessive, and additive genetic models was analyzed by the Cox regression model. The association between SNP polymorphism and the prognosis of lung cancer was analyzed by Stata16.0 software, and their heterogeneity was tested. Interaction analysis was performed using R software (version 4.2.0). RESULTS Stratified analysis unveiled that rs3740535 had recessive AA genotype and additive GG genotype; Rs3130932 dominant GT + GG genotype, additive TT genotype; Rs13409 additive TT genotype; Rs6815391 recessive CC genotype and additional TT genotype were associated with increased risk of lung cancer death. Rs3130932 recessive GG genotype was associated with a reduced risk of lung cancer death. CONCLUSION Rs3740535, rs3130932, rs13409, and rs6815391 are associated with the overall survival of lung cancer patients and may be valuable for the prognosis of lung cancer patients.
Collapse
Affiliation(s)
- Xinying Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuhang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huiyi Hu
- Department of Labor Health, School of Public Health, China Medical University, Shenyang, China
| | - Jinshen Wang
- Department of Venereal Disease Prevention, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Cai
- Department of Health Toxicology, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Xie
- Sanming Dermatology Hospital, Sanming, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Mahmood S, Khan SG, Rasul A, Christensen JB, Abourehab MAS. Ultrasound Assisted Synthesis and In Silico Modelling of 1,2,4-Triazole Coupled Acetamide Derivatives of 2-(4-Isobutyl phenyl)propanoic acid as Potential Anticancer Agents. Molecules 2022; 27:molecules27227984. [PMID: 36432091 PMCID: PMC9698963 DOI: 10.3390/molecules27227984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The development of an economical method for the synthesis of biologically active compounds was the major goal of this research. In the present study, we have reported the ultrasound-radiation-assisted synthesis of a series of novel N-substituted 1,2,4-triazole-2-thiol derivatives. The target compounds 6a−f were efficiently synthesized in significant yields (75−89%) by coupling 1,2,4-triazole of 2-(4-isobutylphenyl) propanoic acid 1 with different electrophiles using ultrasound radiation under different temperatures. The sonication process accelerated the rate of the reaction as well as yielded all derivatives compared to conventional methods. All derivatives were confirmed by spectroscopic (FTIR, 1HNMR, 13CNMR, HRMS) and physiochemical methods. All derivatives were further screened for their anticancer effects against the HepG2 cell line. Compound 6d containing two electron-donating methyl moieties demonstrated the most significant anti-proliferative activity with an IC50 value of 13.004 µg/mL, while compound 6e showed the lowest potency with an IC50 value of 28.399 µg/mL. The order of anticancer activity was found to be: 6d > 6b > 6f > 6a > 6c > 6e, respectively. The in silico modelling of all derivatives was performed against five different protein targets and the results were consistent with the biological activities. Ligand 6d showed the best binding affinity with the Protein Kinase B (Akt) pocket with the lowest ∆G value of −176.152 kcal/mol. Compound 6d has been identified as a promising candidate for treatment of liver cancer.
Collapse
Affiliation(s)
- Sadaf Mahmood
- Drug Design and Medicinal Chemistry Laboratory, Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Drug Design and Medicinal Chemistry Laboratory, Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (S.G.K.); (M.A.S.A.); Tel.: +92-300-427-0077 (S.G.K.)
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jørn Bolstad Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Frederiksberg C, 1870 Copenhagen, Denmark
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Correspondence: (S.G.K.); (M.A.S.A.); Tel.: +92-300-427-0077 (S.G.K.)
| |
Collapse
|
3
|
Regulatory significance of CULLIN2 in neuronal differentiation and regeneration. Neurochem Int 2022; 159:105386. [PMID: 35803325 DOI: 10.1016/j.neuint.2022.105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/05/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Scaffold proteins coordinate multiple signalling pathways by integrating various proteins but the role of these proteins in neuronal pathways remains to be elucidated. The present study focused to evaluate the expression of the scaffold protein CULLIN2 in neuronal cells. METHODS The neuronal precursor cell line N2A was differentiated to neurons in-vitro with retinoic acid and biochemical assays were used to understand the gene expression profiling of CULLIN2. Moreover, neddylation inhibitor MLN4924 was used to inhibit the activity of CULLIN2 and the downstream substrates were validated. Finally, the role of CULLIN2 in nerve regeneration was evaluated in an in vivo zebrafish model. RESULTS Experimental data showed that the neuronal cells N2A have lower expression of CULLIN2 compared to skin cell lines (HaCaT and A431) and inactivation with the neddylation inhibitor resulted in cell death. Furthermore differentiating the neural precursor cell line into neurons with retinoic acid enhanced the expression of CULLIN2. Examining downstream signalling molecules with the neddylation inhibitor illuminates that MLN4924 treatment influences the cytokine signalling cascade (JAK-STAT) in neuronal cells. Moreover, for the first time, we show that the ubiquitin ligase protein CULLIN2 is perturbed in neural regeneration. Expression profile of CULLIN2 was significantly decreased in response to a nerve injury in Zebra fish and as the nerve regenerates there is corresponding reduction in the mRNA levels. CONCLUSION During differentiation CULLIN2 is upregulated whereas during regeneration there is significant downregulation. Thus, our findings reveal a crucial role of the scaffold protein CULLIN2 in nerve differentiation and regeneration which can be vital for the treatment of nerve injury.
Collapse
|
4
|
Luo H, Li X, Tian GG, Li D, Hou C, Ding X, Hou L, Lyu Q, Yang Y, Cooney AJ, Xie W, Xiong J, Wang H, Zhao X, Wu J. Offspring production of ovarian organoids derived from spermatogonial stem cells by defined factors with chromatin reorganization. J Adv Res 2021; 33:81-98. [PMID: 34603780 PMCID: PMC8463929 DOI: 10.1016/j.jare.2021.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Fate determination of germline stem cells remains poorly understood at the chromatin structure level. Objectives Our research hopes to develop successful offspring production of ovarian organoids derived from spermatogonial stem cells (SSCs) by defined factors. Methods The offspring production from oocytes transdifferentiated from mouse SSCs with tracking of transplanted SSCs in vivo, single cell whole exome sequencing, and in 3D cell culture reconstitution of the process of oogenesis derived from SSCs. The defined factors were screened with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into induced germline stem cells (iGSCs) using high throughput chromosome conformation. Results We demonstrate successful production of offspring from oocytes transdifferentiated from mouse spermatogonial stem cells (SSCs). Furthermore, we demonstrate direct induction of germline stem cells (iGSCs) differentiated into functional oocytes by transduction of H19, Stella, and Zfp57 and inactivation of Plzf in SSCs after screening with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into iGSCs, which was highly similar to female germline stem cells. We observed that although topologically associating domains were stable during SSC conversion, chromatin interactions changed in a striking manner, altering 35% of inactive and active chromosomal compartments throughout the genome. Conclusion We demonstrate successful offspring production of ovarian organoids derived from SSCs by defined factors with chromatin reorganization. These findings have important implications in various areas including mammalian gametogenesis, genetic and epigenetic reprogramming, biotechnology, and medicine.
Collapse
Affiliation(s)
- Huacheng Luo
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Geng G Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Changliang Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xinbao Ding
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Lin Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Qifeng Lyu
- Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University Schoolof Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunze Yang
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Austin J Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenhai Xie
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ji Xiong
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hu Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao TongUniversity, Shanghai 200240, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
5
|
Shahzadi I, Zahoor AF, Rasul A, Mansha A, Ahmad S, Raza Z. Synthesis, Hemolytic Studies, and In Silico Modeling of Novel Acefylline-1,2,4-Triazole Hybrids as Potential Anti-cancer Agents against MCF-7 and A549. ACS OMEGA 2021; 6:11943-11953. [PMID: 34056349 PMCID: PMC8154016 DOI: 10.1021/acsomega.1c00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
A series of novel theophylline-7-acetic acid (acefylline)-derived 1,2,4-triazole hybrids with N-phenyl acetamide moieties (11a-j) have been synthesized and tested for their inhibitory (in vitro) potential against two cancer cell lines, A549 (lung) and MCF-7 (breast), using MTT assay. Among these derivatives, 11a, 11c, 11d, 11g, and 11h displayed remarkable activity against both cancer cell lines having cell viability values in the 21.74 ± 1.60-55.37 ± 4.60% range compared to acefylline (86.32 ± 1.75%) using 100 μg/μL concentration of compounds. These compounds were further screened against the A549 cancer cell line (lung) to find their half-maximal inhibitory concentration (IC50) by applying various concentrations of these compounds. Compound 11g (2-(5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-4-phenyl-4H-1,2,4-triazol-3-ylthio)-N-p-tolylacetamide) with the least IC50 value (1.25 ± 1.36 μM) was discerned as a strong inhibitor of cancer cell multiplication in both cell lines (A549 and MCF-7). Their hemolytic studies revealed that all of them had very low cytotoxicity. Finally, in silico modeling was carried out to find the mode of binding of the highly active compound (11g), which was according to the results of anti-cancer activity.
Collapse
Affiliation(s)
- Irum Shahzadi
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department
of Zoology, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Asim Mansha
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department
of Chemistry, University of Engineering
and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Zohaib Raza
- Department
of Pharmacology, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Luk ST, Ng KY, Zhou L, Tong M, Wong TL, Yu H, Lo CM, Man K, Guan XY, Lee TK, Ma S. Deficiency in Embryonic Stem Cell Marker Reduced Expression 1 Activates Mitogen-Activated Protein Kinase Kinase 6-Dependent p38 Mitogen-Activated Protein Kinase Signaling to Drive Hepatocarcinogenesis. Hepatology 2020; 72:183-197. [PMID: 31680287 DOI: 10.1002/hep.31020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Embryonic stem-cell-related transcription factors are central to the establishment and maintenance of stemness and pluripotency, and their altered expression plays key roles in tumors, including hepatocellular carcinoma (HCC), a malignancy with no effective treatment. Here, we report on the embryonic stem cell marker, reduced expression 1 (REX1; also known as zinc finger protein 42), to be selectively down-regulated in HCC tumors. APPROACH AND RESULTS Deficiency of REX1 in HCC was attributed to a combination of hypermethylation at its promoter as well as histone modification by methylation and acetylation. Clinically, hypermethylation of REX1 was closely associated with neoplastic transition and advanced tumor stage in humans. Functionally, silencing of REX1 potentiated the tumor-initiating and metastasis potential of HCC cell lines and xenografted tumors. Lentivirus-mediated Rex1 ablation in liver of male immunocompetent mice with HCC, induced by hydrodynamic tail vein injection of proto-oncogenes, enhanced HCC development. Transcriptome profiling studies revealed REX1 deficiency in HCC cells to be enriched with genes implicated in focal adhesion and mitogen-activated protein kinase (MAPK) signaling. From this lead, we subsequently found REX1 to bind to the promoter region of mitogen-activated protein kinase kinase 6 (MKK6), thereby obstructing its transcription, resulting in altered p38 MAPK signaling. CONCLUSIONS Our work describes a critical repressive function of REX1 in maintenance of HCC cells by regulating MKK6 binding and p38 MAPK signaling. REX1 deficiency induced enhancement of p38 MAPK signaling, leading to F-actin reorganization and activation of nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, which collectively contributed to enhanced stemness and metastatic capabilities of HCC cells.
Collapse
Affiliation(s)
- Steve T Luk
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Huajian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Hong Kong
| | - Chung-Mau Lo
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Xin-Yuan Guan
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Clinical Oncology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong.,State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Shahzadi I, Zahoor AF, Rasul A, Rasool N, Raza Z, Faisal S, Parveen B, Kamal S, Zia‐ur‐Rehman M, Zahid FM. Synthesis, anticancer, and computational studies of 1, 3,
4‐oxadiazole‐purine
derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Irum Shahzadi
- Department of ChemistryGovernment College University Faisalabad Faisalabad Pakistan
| | - Ameer F. Zahoor
- Department of ChemistryGovernment College University Faisalabad Faisalabad Pakistan
| | - Azhar Rasul
- Department of ZoologyGovernment College University Faisalabad Faisalabad Pakistan
| | - Nasir Rasool
- Department of ChemistryGovernment College University Faisalabad Faisalabad Pakistan
| | - Zohaib Raza
- Department of PharmacologyGovernment College University Faisalabad Faisalabad Pakistan
| | - Shahla Faisal
- Department of StatisticsGovernment College University Faisalabad Faisalabad Pakistan
| | - Bushra Parveen
- Department of ChemistryGovernment College University Faisalabad Faisalabad Pakistan
| | - Shagufta Kamal
- Department of BiochemistryGovernment College University Faisalabad Faisalabad Pakistan
| | | | - Faisal M. Zahid
- Department of StatisticsGovernment College University Faisalabad Faisalabad Pakistan
| |
Collapse
|
8
|
Association of Single-Nucleotide Polymorphism REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 with Primary Lung Cancer Susceptibility: A Case-Control Study in a Chinese Population. DISEASE MARKERS 2019. [DOI: 10.1155/2019/4150263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of the current study is to explore the contribution of single-nucleotide polymorphisms (SNPs) of REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 to the risk of lung cancer. A questionnaire survey was used to obtain basic information of the included subjects. A case control study was performed in 1121 patients and 1121 controls. All subjects were subjected to blood sampling for genomic DNA extraction and genotyping of the cancer stem cell-associated gene SNPs, including REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 by real-time PCR. The association with the risk of primary lung cancer and interaction with environmental factors were assessed using unconditional logistic regression for the odds ratios and corresponding 95% confidence intervals. The genotype frequency distribution of OCT4 rs13409 loci was statistically significant, but there was no significant difference in the rest of the loci between lung cancer patients and healthy controls. The OCT4 gene was also related with lung cancer susceptibility in the genetic model after adjusting for lung cancer-related factors. Despite the presence of the dominant or recessive model, the four loci polymorphisms were associated with pollution near the place of residence, house type, worse ventilation situation, smoking, passive smoking, cooking oil fumes (COF), and family history of cancer, which increased the risk of lung cancer. Nonmarried status, 18.5≤BMI, COF, smoking, passive smoking, family history of cancer, and history of lung disease were independent risk factors of lung cancer susceptibility. Additionally, college degree or above, no pollution near the place of residence, protective genotype 1 or 2, and well ventilation can reduce the occurrence of lung cancer. There is an interaction between the four loci and environmental factors, and OCT4 rs13409 is a risk factor of primary lung cancer.
Collapse
|
9
|
Hou L, Wang J, Li X, Wang H, Liu G, Xu B, Mei X, Hua X, Wu J. Characteristics of Female Germline Stem Cells from Porcine Ovaries at Sexual Maturity. Cell Transplant 2018; 27:1195-1202. [PMID: 29991280 PMCID: PMC6434470 DOI: 10.1177/0963689718784878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pigs share many anatomical and physiological features with humans, offering a unique and viable model for biomedical research. Although porcine female germline stem cells (FGSCs) were identified in the juvenile ovary, no reports described the isolation and purification of FGSCs from the pig at sexual maturity. Here, we isolated, purified, and cultured FGSCs from porcine ovaries at sexual maturity. Furthermore, we established and characterized the porcine FGSC (pFGSC) lines. In addition, we found that pFGSC lines could differentiate into oocytes when injection into tissue grafts, including human ovarian tissues. The results show that FGSCs exist in ovaries of Banna mini-pigs at juvenile and sexually maturity. These findings have implications in animal biotechnology applications and regeneration medicine.
Collapse
Affiliation(s)
- Lin Hou
- 1 Key Laboratory for the Genetics of Developmental, Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- 1 Key Laboratory for the Genetics of Developmental, Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyue Li
- 1 Key Laboratory for the Genetics of Developmental, Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Hu Wang
- 1 Key Laboratory for the Genetics of Developmental, Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Guishu Liu
- 2 The First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Bo Xu
- 1 Key Laboratory for the Genetics of Developmental, Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xingxing Mei
- 1 Key Laboratory for the Genetics of Developmental, Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuguo Hua
- 3 Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- 1 Key Laboratory for the Genetics of Developmental, Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,4 Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,5 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Sanford T, Meng MV, Railkar R, Agarwal PK, Porten SP. Integrative analysis of the epigenetic basis of muscle-invasive urothelial carcinoma. Clin Epigenetics 2018; 10:19. [PMID: 29456764 PMCID: PMC5809922 DOI: 10.1186/s13148-018-0451-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Elucidation of epigenetic alterations in bladder cancer will lead to further understanding of the biology of the disease and hopefully improved therapies. Our aim was to perform an integrative epigenetic analysis of invasive urothelial carcinoma of the bladder to identify the epigenetic abnormalities involved in the development and progression of this cancer. Methods Pre-processed methylation data and RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA) and processed using the R package TCGA-Assembler. An R package MethylMix was used to perform an analysis incorporating both methylation and gene expression data on all samples, as well as a subset analysis comparing patients surviving less than 2 years and patients surviving more than 2 years. Genes associated with poor prognosis were individually queried. Pathway analysis was performed on statistically significant genes identified by MethylMix criteria using ConsensusPathDB. Validation was performed using flow cytometry on bladder cancer cell lines. Results A total of 408 patients met all inclusion criteria. There were a total of 240 genes differentially methylated by MethylMix criteria. Review of individual genes specific to poor-prognosis patients revealed the majority to be candidate tumor suppressors in other cancer types. Pathway analysis showed increase in methylation of genes involved in antioxidant pathways including glutathione and NRF2. Genes involved in estrogen metabolism were also hypermethylated while genes involved in the EGFR pathway were found to be hypomethylated. EGFR expression was confirmed to be elevated in six bladder cancer cell lines. Conclusions In patients with invasive urothelial carcinoma, we found differential methylation in patients with better and worse prognosis after cystectomy. Differentially methylated genes are involved in many relevant oncologic pathways, including EGFR and antioxidant pathways, that may be a target for therapy or chemoprevention.
Collapse
Affiliation(s)
- Thomas Sanford
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Maxwell V. Meng
- Department of Urology, University of California, Mail code 1695, 550 16th Street, 6th Floor, San Francisco, CA 94143 USA
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Piyush K. Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Sima P. Porten
- Department of Urology, University of California, Mail code 1695, 550 16th Street, 6th Floor, San Francisco, CA 94143 USA
| |
Collapse
|
11
|
Laursen KB, Mongan NP, Zhuang Y, Ng MM, Benoit YD, Gudas LJ. Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Res 2013; 41:6430-43. [PMID: 23666625 PMCID: PMC3905905 DOI: 10.1093/nar/gkt367] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polycomb proteins play key roles in mediating epigenetic modifications that occur during cell differentiation. The Polycomb repressive complex 2 (PRC2) mediates the tri-methylation of histone H3 lysine 27 (H3K27me3). In this study, we identify a distinguishing feature of two classes of PRC2 target genes, represented by the Nr2F1 (Coup-TF1) and the Hoxa5 gene, respectively. Both genes are transcriptionally activated by all-trans retinoic acid (RA) and display increased levels of the permissive H3K9/K14ac and tri-methylated histone H3 lysine 4 epigenetic marks in response to RA. However, while in response to RA the PRC2 and H3K27me3 marks are greatly decreased at the Hoxa5 promoter, these marks are initially increased at the Nr2F1 promoter. Functional depletion of the essential PRC2 protein Suz12 by short hairpin RNA (shRNA) technology enhanced the RA-associated transcription of Nr2F1, Nr2F2, Meis1, Sox9 and BMP2, but had no effect on the Hoxa5, Hoxa1, Cyp26a1, Cyp26b1 and RARβ2 transcript levels in wild-type embryonic stem cells. We propose that PRC2 recruitment attenuates the RA-associated transcriptional activation of a subset of genes. Such a mechanism would permit the fine-tuning of transcriptional networks during differentiation.
Collapse
Affiliation(s)
- Kristian B Laursen
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
12
|
Rezende NC, Lee MY, Monette S, Mark W, Lu A, Gudas LJ. Rex1 (Zfp42) null mice show impaired testicular function, abnormal testis morphology, and aberrant gene expression. Dev Biol 2011; 356:370-82. [PMID: 21641340 DOI: 10.1016/j.ydbio.2011.05.664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 12/27/2022]
Abstract
Rex1 (Zfp42), GeneID 132625, is a gene whose expression is closely associated with pluripotency/multipotency in both mouse and human embryonic stem cells. To study the function of the murine Rex1 gene in vivo, we have used cre/lox technology to create Rex1(floxed) mice and mice deficient in Rex1 gene function. Rex1(-/-)males are characterized by an age-associated decrease in sperm counts, abnormal sperm morphology, and mild testicular atrophy. We characterized global patterns of gene expression in primary germ cells by microarray and identified the growth hormone responsive gene, GRTP1, as a transcript present at a 4.5 fold higher level in wild type (WT) compared to Rex1(-/-) mice. We analyzed immature germ cell (Dazl), proliferating (PCNA), and Sertoli cell populations, and quantitated levels of apoptosis in Rex1(-/-) as compared to WT testes. We evaluated the expression of proteins previously reported to correlate with Rex1 expression, such as STAT3, phospho-STAT3, p38, and phospho-p38 in the testis. We report a distinct cellular localization of total STAT3 protein in Rex1(-/-) affected testes. Our data suggest that loss of Rex1 leads to impaired testicular function.
Collapse
Affiliation(s)
- Naira C Rezende
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
13
|
Reinisch CM, Mildner M, Petzelbauer P, Pammer J. Embryonic stem cell factors undifferentiated transcription factor-1 (UFT-1) and reduced expression protein-1 (REX-1) are widely expressed in human skin and may be involved in cutaneous differentiation but not in stem cell fate determination. Int J Exp Pathol 2011; 92:326-32. [PMID: 21446939 DOI: 10.1111/j.1365-2613.2011.00769.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Undifferentiated transcription factor-1 (UTF-1) and reduced expression protein-1 (REX-1) are used as markers for the undifferentiated state of pluripotent stem cells. Because no highly specific cytochemical marker for epidermal stem cells has yet been identified, we investigated the expression pattern of these markers in human epidermis and skin tumours by immunohistochemistry and in keratinocyte cell cultures. Both presumed stem cell markers were widely expressed in the epidermis and skin appendages. Distinct expression was found in the matrix cells of the hair shaft. Differentiation of human primary keratinocytes (KC) in vitro strongly downregulated UTF-1 and REX-1 expression. In addition, REX-1 was upregulated in squamous cell carcinomas, indicating a possible role of this transcription factor in malignant tumour formation. Our data point to a role for these proteins not only in maintaining KC stem cell populations, but also in proliferation and differentiation of matrix cells of the shaft and also suprabasal KC.
Collapse
|
14
|
Garcia-Tuñon I, Guallar D, Alonso-Martin S, Benito AA, Benítez-Lázaro A, Pérez-Palacios R, Muniesa P, Climent M, Sánchez M, Vidal M, Schoorlemmer J. Association of Rex-1 to target genes supports its interaction with Polycomb function. Stem Cell Res 2011; 7:1-16. [PMID: 21530438 DOI: 10.1016/j.scr.2011.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/31/2022] Open
Abstract
Rex-1/Zfp42 displays a remarkably restricted pattern of expression in preimplantation embryos, primary spermatocytes, and undifferentiated mouse embryonic stem (ES) cells and is frequently used as a marker gene for pluripotent stem cells. To understand the role of Rex-1 in selfrenewal and pluripotency, we used Rex-1 association as a measure to identify potential target genes, and carried out chromatin-immunoprecipitation assays in combination with gene specific primers to identify genomic targets Rex-1 associates with. We find association of Rex-1 to several genes described previously as bivalently marked regulators of differentiation and development, whose repression in mouse embryonic stem (ES) cells is Polycomb Group-mediated, and controlled directly by Ring1A/B. To substantiate the hypothesis that Rex-1 contributes to gene regulation by PcG, we demonstrate interactions of Rex-1 and YY2 (a close relative of YY1) with Ring1 proteins and the PcG-associated proteins RYBP and YAF2, in line with interactions reported previously for YY1. We also demonstrate the presence of Rex-1 protein in both trophectoderm and Inner Cell Mass of the mouse blastocyst and in both ES and in trophectoderm stem (TS) cells. In TS cells, we were unable to demonstrate association of Rex-1 to the genes it associates with in ES cells, suggesting that association may be cell-type specific. Rex-1 might fine-tune pluripotency in ES cells by modulating Polycomb-mediated gene regulation.
Collapse
Affiliation(s)
- I Garcia-Tuñon
- Regenerative Medicine Programme, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Avda. Gómez Laguna, 25, Pl. 11, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Retinoids are ubiquitous signaling molecules that influence nearly every cell type, exert profound effects on development, and complement cancer chemotherapeutic regimens. All-trans retinoic acid (RA) and other active retinoids are generated from vitamin A (retinol), but key aspects of the signaling pathways required to produce active retinoids remain unclear. Retinoids generated by one cell type can affect nearby cells, so retinoids also function in intercellular communication. RA induces differentiation primarily by binding to RARs, transcription factors that associate with RXRs and bind RAREs in the nucleus. Binding of RA: (1) initiates changes in interactions of RAR/RXRs with co-repressor and co-activator proteins, activating transcription of primary target genes; (2) alters interactions with proteins that induce epigenetic changes; (3) induces transcription of genes encoding transcription factors and signaling proteins that further modify gene expression (e.g., FOX03A, Hoxa1, Sox9, TRAIL, UBE2D3); and (4) results in alterations in estrogen receptor α signaling. Proteins that bind at or near RAREs include Sin3a, N-CoR1, PRAME, Trim24, NRIP1, Ajuba, Zfp423, and MN1/TEL. Interactions among retinoids, RARs/RXRs, and these proteins explain in part the powerful effects of retinoids on stem cell differentiation. Studies of this retinol signaling cascade enhance our ability to understand and regulate stem cell differentiation for therapeutic and scientific purposes. In cancer chemotherapeutic regimens retinoids can promote tumor cell differentiation and/or induce proteins that sensitize tumors to drug combinations. Mechanistic studies of retinoid signaling continue to suggest novel drug targets and will improve therapeutic strategies for cancer and other diseases, such as immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York 10065, USA.
| | | |
Collapse
|
16
|
Schaeferhoff K, Michalakis S, Tanimoto N, Fischer MD, Becirovic E, Beck SC, Huber G, Rieger N, Riess O, Wissinger B, Biel M, Seeliger MW, Bonin M. Induction of STAT3-related genes in fast degenerating cone photoreceptors of cpfl1 mice. Cell Mol Life Sci 2010; 67:3173-86. [PMID: 20467778 PMCID: PMC11115765 DOI: 10.1007/s00018-010-0376-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/25/2010] [Accepted: 04/16/2010] [Indexed: 11/30/2022]
Abstract
Cone dystrophies are genetic diseases characterized by loss of cone photoreceptor function and severe impairment of daylight vision. Loss of function is accompanied by a progressive degeneration of cones limiting potential therapeutic interventions. In this study we combined microarray-based gene-expression analysis with electroretinography and immunohistochemistry to characterize the pathological processes in the cone photoreceptor function loss 1 (cpfl1) mouse model. The cpfl1-mouse is a naturally arising mouse mutant with a loss-of-function mutation in the cone-specific Pde6c gene. Cpfl1-mice displayed normal rod-specific light responses while cone-specific responses were strongly diminished. Despite the lack of a general retinal degeneration, the cone-specific functional defect resulted in a marked activation of GFAP, a hallmark of Müller-cell gliosis. Microarray-based network-analysis confirmed activation of Müller-glia-specific transcripts. Unexpectedly, we found up-regulation of the cytokine LIF and the anti-apoptotic transcription factor STAT3 in cpfl1 cone photoreceptors. We postulate that STAT3-related pathways are induced in cpfl1 cone photoreceptors to counteract degeneration.
Collapse
Affiliation(s)
- K Schaeferhoff
- Microarray Facility, Department of Medical Genetics, University of Tuebingen, Calwerstr. 7, 72076, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee MY, Lu A, Gudas LJ. Transcriptional regulation of Rex1 (zfp42) in normal prostate epithelial cells and prostate cancer cells. J Cell Physiol 2010; 224:17-27. [PMID: 20232320 DOI: 10.1002/jcp.22071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rex1 (zfp42) was identified by our laboratory because of its reduced expression in F9 teratocarcinoma stem cells after retinoic acid (RA) treatment. The Rex1 (Zfp42) gene is currently widely used as a marker of embryonic stem cells. We compared the transcriptional regulation of the human Rex1 gene in NTera-2 (NT-2) human teratocarcinoma, normal human prostate epithelial cells (PrEC), and prostate cancer cells (PC-3) by promoter/luciferase analyses. Oct4, Sox2, Nanog, and Dax1 transcripts are expressed at higher levels in NT-2 and PrEC cells than in PC-3 cells. Co-transfection analyses showed that YY1 and Rex1 are positive regulators of hRex1 transcription in NT-2 and PrEC cells, whereas Nanog is not. Serial deletion constructs of the hRex1 promoter were created and analyzed, by which we identified a potential negative regulatory site that is located between -1 and -0.4 kb of the hRex1 promoter. We also delineated regions of the hRex1 promoter between -0.4 kb and the TSS that, when mutated, reduced transcriptional activation; these are putative Rex1 binding sites. Mutation of a putative Rex1 binding site in electrophoretic mobility shift assays (EMSA) resulted in reduced protein binding. Taken together, our results indicate that hRex1 binds to the hRex1 promoter region at -298 bp and positively regulates hRex1 transcription, but that this regulation is lost in PC-3 human prostate cancer cells. This lack of positive transcriptional regulation by the hRex1 protein may be responsible for the lack of Rex1 expression in PC-3 prostate cancer cells.
Collapse
Affiliation(s)
- Mi-Young Lee
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
18
|
Bhandari DR, Seo KW, Roh KH, Jung JW, Kang SK, Kang KS. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells. PLoS One 2010; 5:e10493. [PMID: 20463961 PMCID: PMC2864743 DOI: 10.1371/journal.pone.0010493] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 04/13/2010] [Indexed: 11/19/2022] Open
Abstract
Background REX1/ZFP42 is a well-known embryonic stem cell (ESC) marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs) isolated from young tissues and cancer cells express REX1. Methodology/Principal Finding Human umbilical cord blood-derived MSCs (hUCB-MSCs) and adipose tissue-derived MSCs (hAD-MSCs) strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs) have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA). After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP) assay. Conclusions/Significance These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs). These results were the first to show the role of REX1 in the proliferation/differentiation of ASCs.
Collapse
Affiliation(s)
- Dilli Ram Bhandari
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kwang-Won Seo
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyoung-Hwan Roh
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Ji-Won Jung
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Soo-Kyung Kang
- Laboratory of Veterinary Biotechnology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
19
|
Inoue A, Nagafuchi A, Kikuchi A. Retinoic acid induces discrete Wnt-signaling-dependent differentiation in F9 cells. Biochem Biophys Res Commun 2009; 390:564-9. [DOI: 10.1016/j.bbrc.2009.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/02/2009] [Indexed: 02/01/2023]
|
20
|
Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 2009; 11:631-6. [PMID: 19363485 DOI: 10.1038/ncb1869] [Citation(s) in RCA: 412] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/05/2009] [Indexed: 01/31/2023]
Abstract
The idea that females of most mammalian species have lost the capacity for oocyte production at birth has been challenged recently by the finding that juvenile and adult mouse ovaries possess mitotically active germ cells. However, the existence of female germline stem cells (FGSCs) in postnatal mammalian ovaries still remains a controversial issue among reproductive biologists and stem cell researchers. We have now established a neonatal mouse FGSC line, with normal karyotype and high telomerase activity, by immunomagnetic isolation and culture for more than 15 months. FGSCs from adult mice were isolated and cultured for more than 6 months. These FGSCs were infected with GFP virus and transplanted into ovaries of infertile mice. Transplanted cells underwent oogenesis and the mice produced offspring that had the GFP transgene. These findings contribute to basic research into oogenesis and stem cell self-renewal and open up new possibilities for use of FGSCs in biotechnology and medicine.
Collapse
Affiliation(s)
- Kang Zou
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|