1
|
Fuller KB, Jacobs RQ, Schneider DA, Lucius AL. Reversible Kinetics in Multi-nucleotide Addition Catalyzed by S. cerevisiae RNA polymerase II Reveal Slow Pyrophosphate Release. J Mol Biol 2024; 436:168606. [PMID: 38729258 PMCID: PMC11162919 DOI: 10.1016/j.jmb.2024.168606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Eukaryotes express at least three nuclear DNA dependent RNA polymerases (Pols). Pols I, II, and III synthesize ribosomal (r) RNA, messenger (m) RNA, and transfer (t) RNA, respectively. Pol I and Pol III have intrinsic nuclease activity conferred by the A12.2 and C11 subunits, respectively. In contrast, Pol II requires the transcription factor (TF) IIS to confer robust nuclease activity. We recently reported that in the absence of the A12.2 subunit Pol I reverses bond formation by pyrophosphorolysis in the absence of added PPi, indicating slow PPi release. Thus, we hypothesized that Pol II, naturally lacking TFIIS, would reverse bond formation through pyrophosphorolysis. Here we report the results of transient-state kinetic experiments to examine the addition of nine nucleotides to a growing RNA chain catalyzed by Pol II. Our results indicate that Pol II reverses bond formation by pyrophosphorolysis in the absence of added PPi. We propose that, in the absence of endonuclease activity, this bond reversal may represent kinetic proofreading. Thus, given the hypothesis that Pol I evolved from Pol II through the incorporation of general transcription factors, pyrophosphorolysis may represent a more ancient form of proofreading that has been evolutionarily replaced with nuclease activity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Johnson RS, Strausbauch M, McCloud C. An NTP-driven mechanism for the nucleotide addition cycle of Escherichia coli RNA polymerase during transcription. PLoS One 2022; 17:e0273746. [PMID: 36282801 PMCID: PMC9595533 DOI: 10.1371/journal.pone.0273746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
The elementary steps of transcription as catalyzed by E. coli RNA polymerase during one and two rounds of the nucleotide addition cycle (NAC) were resolved in rapid kinetic studies. Modelling of stopped-flow kinetic data of pyrophosphate release in a coupled enzyme assay during one round of the NAC indicates that the rate of pyrophosphate release is significantly less than that for nucleotide incorporation. Upon modelling of the stopped-flow kinetic data for pyrophosphate release during two rounds of the NAC, it was observed that the presence of the next nucleotide for incorporation increases the rate of release of the first pyrophosphate equivalent; incorrect nucleotides for incorporation had no effect on the rate of pyrophosphate release. Although the next nucleotide for incorporation increases the rate of pyrophosphate release, it is still significantly less than the rate of incorporation of the first nucleotide. The results from the stopped-flow kinetic studies were confirmed by using quench-flow followed by thin-layer chromatography (QF-TLC) with only the first nucleotide for incorporation labeled on the gamma phosphate with 32P to monitor pyrophosphate release. Collectively, the results are consistent with an NTP-driven model for the NAC in which the binding of the next cognate nucleotide for incorporation causes a synergistic conformational change in the enzyme that triggers the more rapid release of pyrophosphate, translocation of the enzyme along the DNA template strand and nucleotide incorporation.
Collapse
Affiliation(s)
- Ronald S. Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| | - Mark Strausbauch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Christopher McCloud
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
3
|
Fagan SP, Mukherjee P, Jaremko WJ, Nelson-Rigg R, Wilson RC, Dangerfield TL, Johnson KA, Lahiri I, Pata JD. Pyrophosphate release acts as a kinetic checkpoint during high-fidelity DNA replication by the Staphylococcus aureus replicative polymerase PolC. Nucleic Acids Res 2021; 49:8324-8338. [PMID: 34302475 PMCID: PMC8373059 DOI: 10.1093/nar/gkab613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial replication is a fast and accurate process, with the bulk of genome duplication being catalyzed by the α subunit of DNA polymerase III within the bacterial replisome. Structural and biochemical studies have elucidated the overall properties of these polymerases, including how they interact with other components of the replisome, but have only begun to define the enzymatic mechanism of nucleotide incorporation. Using transient-state methods, we have determined the kinetic mechanism of accurate replication by PolC, the replicative polymerase from the Gram-positive pathogen Staphylococcus aureus. Remarkably, PolC can recognize the presence of the next correct nucleotide prior to completing the addition of the current nucleotide. By modulating the rate of pyrophosphate byproduct release, PolC can tune the speed of DNA synthesis in response to the concentration of the next incoming nucleotide. The kinetic mechanism described here would allow PolC to perform high fidelity replication in response to diverse cellular environments.
Collapse
Affiliation(s)
- Sean P Fagan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Purba Mukherjee
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - William J Jaremko
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Rachel Nelson-Rigg
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tyler L Dangerfield
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kenneth A Johnson
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Indrajit Lahiri
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
4
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Abstract
During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.
Collapse
Affiliation(s)
- Yuhong Zuo
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Thomas A Steitz
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Howard Hughes Medical Institute , New Haven , CT , USA.,c Department of Chemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
6
|
Wang B, Feig M, Cukier RI, Burton ZF. Computational simulation strategies for analysis of multisubunit RNA polymerases. Chem Rev 2013; 113:8546-66. [PMID: 23987500 PMCID: PMC3829680 DOI: 10.1021/cr400046x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Beibei Wang
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| | - Michael Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert I. Cukier
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zachary F. Burton
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| |
Collapse
|
7
|
Montgomery JL, Wittwer CT. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments. Clin Chem 2013; 60:334-40. [PMID: 24081987 DOI: 10.1373/clinchem.2013.212829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. METHODS A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. RESULTS The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. CONCLUSIONS Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.
Collapse
Affiliation(s)
- Jesse L Montgomery
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT
| | | |
Collapse
|
8
|
Montgomery JL, Rejali N, Wittwer CT. Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence. Anal Biochem 2013; 441:133-9. [PMID: 23872003 DOI: 10.1016/j.ab.2013.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022]
Abstract
DNA polymerase activity was measured by a stopped-flow assay that monitors polymerase extension using an intercalating dye. Double-stranded DNA formation during extension of a hairpin substrate was monitored at 75°C for 2 min. Rates were determined in nucleotides per second per molecule of polymerase (nt/s) and were linear with time and polymerase concentration from 1 to 50 nM. The concentrations of 15 available polymerases were quantified and their extension rates determined in 50 mM Tris, pH 8.3, 0.5 mg/ml BSA, 2 mM MgCl₂, and 200 μM each dNTP as well as their commercially recommended buffers. Native Taq polymerases had similar extension rates of 10-45 nt/s. Three alternative polymerases showed faster speeds, including KOD (76 nt/s), Klentaq I (101 nt/s), and KAPA2G (155 nt/s). Fusion polymerases including Herculase II and Phusion were relatively slow (3-13 nt/s). The pH optimum for Klentaq extension was between 8.5 and 8.7 with no effect of Tris concentration. Activity was directly correlated to the MgCl2 concentration and inversely correlated to the KCl concentration. This continuous assay is relevant to PCR and provides accurate measurement of polymerase activity using a defined template without the need of radiolabeled substrates.
Collapse
Affiliation(s)
- Jesse L Montgomery
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
9
|
Abstract
Exonuclease (exo) III was used as a probe of the Escherichia coli RNA polymerase (RNAP) ternary elongation complex (TEC) downstream border. In the absence of NTPs, RNAP appears to stall primarily in a post-translocated state and to return slowly to a pre-translocated state. Exo III mapping, therefore, appears inconsistent with an unrestrained thermal ratchet model for translocation, in which RNAP freely and rapidly oscillates between pre- and post-translocated positions. The forward translocation state is made more stable by lowering the pH and/or by elevating the salt concentration, indicating a probable role of protonated histidine(s) in regulating accurate NTP loading and translocation. Because the post-translocated TEC can be strongly stabilized by NTP addition, NTP analogs were ranked for their ability to preserve the post-translocation state, giving insight into RNAP fidelity. Effects of NTPs (and analogs) and analysis of chemically modified RNA 3′ ends demonstrate that patterns of exo III mapping arise from intrinsic and subtle alterations at the RNAP active site, far from the site of exo III action.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology; Michigan State University; E. Lansing, MI USA
| | | |
Collapse
|
10
|
Nedialkov YA, Opron K, Assaf F, Artsimovitch I, Kireeva ML, Kashlev M, Cukier RI, Nudler E, Burton ZF. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:187-98. [PMID: 23202476 PMCID: PMC3619131 DOI: 10.1016/j.bbagrm.2012.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 01/22/2023]
Abstract
The bridge α-helix in the β' subunit of RNA polymerase (RNAP) borders the active site and may have roles in catalysis and translocation. In Escherichia coli RNAP, a bulky hydrophobic segment near the N-terminal end of the bridge helix is identified (β' 772-YFI-774; the YFI motif). YFI is located at a distance from the active center and adjacent to a glycine hinge (β' 778-GARKG-782) involved in dynamic bending of the bridge helix. Remarkably, amino acid substitutions in YFI significantly alter intrinsic termination, pausing, fidelity and translocation of RNAP. F773V RNAP largely ignores the λ tR2 terminator at 200μM NTPs and is strongly reduced in λ tR2 recognition at 1μM NTPs. F773V alters RNAP pausing and backtracking and favors misincorporation. By contrast, the adjacent Y772A substitution increases fidelity and exhibits other transcriptional defects generally opposite to those of F773V. All atom molecular dynamics simulation revealed two separate functional connections emanating from YFI explaining the distinct effects of substitutions: Y772 communicates with the active site through the link domain in the β subunit, whereas F773 communicates through the fork domain in the β subunit. I774 interacts with the F-loop, which also contacts the glycine hinge of the bridge helix. These results identified negative and positive circuits coupled at YFI and employed for regulation of catalysis, elongation, termination and translocation.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II. J Mol Biol 2012; 425:697-712. [PMID: 23238253 DOI: 10.1016/j.jmb.2012.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022]
Abstract
Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3' end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA-DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIIS(AA)) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3' end of the nascent RNA in the active center of the yeast RNAP II, and TFIIS(AA) promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3' RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.
Collapse
|
12
|
Zhou J, Schweikhard V, Block SM. Single-molecule studies of RNAPII elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:29-38. [PMID: 22982192 DOI: 10.1016/j.bbagrm.2012.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 01/22/2023]
Abstract
Elongation, the transcriptional phase in which RNA polymerase (RNAP) moves processively along a DNA template, occurs via a fundamental enzymatic mechanism that is thought to be universally conserved among multi-subunit polymerases in all kingdoms of life. Beyond this basic mechanism, a multitude of processes are integrated into transcript elongation, among them fidelity control, gene regulatory interactions involving elongation factors, RNA splicing or processing factors, and regulatory mechanisms associated with chromatin structure. Many kinetic and molecular details of the mechanism of the nucleotide addition cycle and its regulation, however, remain elusive and generate continued interest and even controversy. Recently, single-molecule approaches have emerged as powerful tools for the study of transcription in eukaryotic organisms. Here, we review recent progress and discuss some of the unresolved questions and ongoing debates, while anticipating future developments in the field. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
13
|
Malinen AM, Turtola M, Parthiban M, Vainonen L, Johnson MS, Belogurov GA. Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 2012; 40:7442-51. [PMID: 22570421 PMCID: PMC3424550 DOI: 10.1093/nar/gks383] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multisubunit RNA polymerase (RNAP) is the central information-processing enzyme in all cellular life forms, yet its mechanism of translocation along the DNA molecule remains conjectural. Here, we report direct monitoring of bacterial RNAP translocation following the addition of a single nucleotide. Time-resolved measurements demonstrated that translocation is delayed relative to nucleotide incorporation and occurs shortly after or concurrently with pyrophosphate release. An investigation of translocation equilibrium suggested that the strength of interactions between RNA 3′ nucleotide and nucleophilic and substrate sites determines the translocation state of transcription elongation complexes, whereas active site opening and closure modulate the affinity of the substrate site, thereby favoring the post- and pre-translocated states, respectively. The RNAP translocation mechanism is exploited by the antibiotic tagetitoxin, which mimics pyrophosphate and induces backward translocation by closing the active site.
Collapse
Affiliation(s)
- Anssi M Malinen
- Department of Biochemistry and Food Chemistry, University of Turku, 20014, Turku, Finland
| | | | | | | | | | | |
Collapse
|
14
|
Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, Block SM. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc Natl Acad Sci U S A 2012; 109:6555-60. [PMID: 22493230 PMCID: PMC3340090 DOI: 10.1073/pnas.1200939109] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During transcription, RNA polymerase II (RNAPII) must select the correct nucleotide, catalyze its addition to the growing RNA transcript, and move stepwise along the DNA until a gene is fully transcribed. In all kingdoms of life, transcription must be finely tuned to ensure an appropriate balance between fidelity and speed. Here, we used an optical-trapping assay with high spatiotemporal resolution to probe directly the motion of individual RNAPII molecules as they pass through each of the enzymatic steps of transcript elongation. We report direct evidence that the RNAPII trigger loop, an evolutionarily conserved protein subdomain, serves as a master regulator of transcription, affecting each of the three main phases of elongation, namely: substrate selection, translocation, and catalysis. Global fits to the force-velocity relationships of RNAPII and its trigger loop mutants support a Brownian ratchet model for elongation, where the incoming NTP is able to bind in either the pre- or posttranslocated state, and movement between these two states is governed by the trigger loop. Comparison of the kinetics of pausing by WT and mutant RNAPII under conditions that promote base misincorporation indicate that the trigger loop governs fidelity in substrate selection and mismatch recognition, and thereby controls aspects of both transcriptional accuracy and rate.
Collapse
Affiliation(s)
| | | | - Craig D. Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; and
| | - Murali Palangat
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Steven M. Block
- Biophysics Program
- Department of Applied Physics
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
15
|
Development of a "modular" scheme to describe the kinetics of transcript elongation by RNA polymerase. Biophys J 2011; 101:1155-65. [PMID: 21889453 DOI: 10.1016/j.bpj.2011.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/20/2011] [Accepted: 07/22/2011] [Indexed: 11/22/2022] Open
Abstract
Transcript elongation by RNA polymerase involves the sequential appearance of several alternative and off-pathway states of the transcript elongation complex (TEC), and this complicates modeling of the kinetics of the transcription elongation process. Based on solutions of the chemical master equation for such transcription systems as a function of time, we here develop a modular scheme for simulating such kinetic transcription data. This scheme deals explicitly with the problem of TEC desynchronization as transcript synthesis proceeds, and develops kinetic modules to permit the various alternative states of the TECs (paused states, backtracked states, arrested states, and terminated states) to be introduced one-by-one as needed. In this way, we can set up a comprehensive kinetic model of appropriate complexity to fit the known transcriptional properties of any given DNA template and set of experimental conditions, including regulatory cofactors. In the companion article, this modular scheme is successfully used to model kinetic transcription elongation data obtained by bulk-gel electrophoresis quenching procedures and real-time surface plasmon resonance methods from a template of known sequence that contains defined pause, stall, and termination sites.
Collapse
|
16
|
Johnson RS, Strausbauch M, Carraway JK. Rapid pyrophosphate release from transcriptional elongation complexes appears to be coupled to a nucleotide-induced conformational change in E. coli core polymerase. J Mol Biol 2011; 412:849-61. [PMID: 21624374 DOI: 10.1016/j.jmb.2011.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 10/18/2022]
Abstract
In the nucleotide addition cycle, pyrophosphate is generated upon incorporation of each nucleotide. Rapid release of pyrophosphate is essential for facile transcription elongation. Stopped-flow kinetic studies involving alterations in the intrinsic protein fluorescence of the core polymerase upon the binding of pyrophosphate to well-defined elongation complexes (ECs) indicate that the intrinsic off-rate of pyrophosphate (k=5.7-8.1 s(-1)) is too slow to account for the rapid rate of nucleotide incorporation that occurs during processive transcription elongation. Stopped-flow kinetic studies on UTP binding followed by UMP incorporation into an EC as monitored by alterations in the intrinsic protein fluorescence of the core polymerase resulted in a set of first-order rate constants that varied in a hyperbolic manner as a function of UTP concentration. This is consistent with a binding step (K(UTP)=17±6 μM) followed by a conformational change (k=623±54 s(-1)) in the core polymerase. In comparable studies on ATP binding and AMP incorporation into an EC, the data were also consistent with a binding step (K(ATP)=44±6 μM) followed by a conformational change (k=411±51 s(-1)) in the core polymerase. In stopped-flow kinetic studies with α,β-methyleneadenosine 5' triphosphate, which can bind to the EC but cannot lead to nucleotide incorporation, the analysis of the hyperbolic dependence of the observed first-order rate constant on α,β-methyleneadenosine 5' triphosphate concentration yielded a value of 20±13 μM for the apparent dissociation constant and a value of 221±36 s(-1) for the first-order rate constant for the associated conformational change in the core polymerase. This indicates that the conformational change in the core polymerase precedes chemistry. In conjunction with previously reported results on the increase in the rate of pyrophosphate release in the presence of the next cognate nucleotide for incorporation, the data are consistent with a model in which rapid pyrophosphate release is coupled to a conformational change in the core polymerase that precedes chemistry and that occurs upon the binding of the next cognate nucleotide for incorporation.
Collapse
Affiliation(s)
- Ronald S Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| | | | | |
Collapse
|
17
|
Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription. Proc Natl Acad Sci U S A 2011; 108:6079-84. [PMID: 21447716 DOI: 10.1073/pnas.1011274108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulation of RNA synthesis by RNA polymerase (RNAP) is essential for proper gene expression. Crystal structures of RNAP reveal two channels: the main channel that contains the downstream DNA and a secondary channel that leads directly to the catalytic site. Although nucleoside triphosphates (NTPs) have been seen only in the catalytic site and the secondary channel in these structures, several models of transcription elongation, based on biochemical studies, propose that template-dependent binding of NTPs in the main channel regulates RNA synthesis. These models, however, remain controversial. We used transient state kinetics and a mutant of RNAP to investigate the role of the main channel in regulating nucleotide incorporation. Our data indicate that a NTP specific for the i + 2 template position can bind to a noncatalytic site and increase the rate of RNA synthesis and that the NTP bound to this site can be shuttled directly into the catalytic site. We also identify fork loop 2, which lies across from the downstream DNA, as a functional component of this site. Taken together, our data support the existence of a noncatalytic template-specific NTP binding site in the main channel that is involved in the regulation of nucleotide incorporation. NTP binding to this site could promote high-fidelity processive synthesis under a variety of environmental conditions and allow DNA sequence-mediated regulatory signals to be communicated to the active site.
Collapse
|
18
|
Lyubetsky VA, Zverkov OA, Rubanov LI, Seliverstov AV. Modeling RNA polymerase competition: the effect of σ-subunit knockout and heat shock on gene transcription level. Biol Direct 2011; 6:3. [PMID: 21255416 PMCID: PMC3038987 DOI: 10.1186/1745-6150-6-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background Modeling of a complex biological process can explain the results of experimental studies and help predict its characteristics. Among such processes is transcription in the presence of competing RNA polymerases. This process involves RNA polymerases collision followed by transcription termination. Results A mathematical and computer simulation model is developed to describe the competition of RNA polymerases during genes transcription on complementary DNA strands. E.g., in the barley Hordeum vulgare the polymerase competition occurs in the locus containing plastome genes psbA, rpl23, rpl2 and four bacterial type promoters. In heat shock experiments on isolated chloroplasts, a twofold decrease of psbA transcripts and even larger increase of rpl23-rpl2 transcripts were observed, which is well reproduced in the model. The model predictions are in good agreement with virtually all relevant experimental data (knockout, heat shock, chromatogram data, etc.). The model allows to hypothesize a mechanism of cell response to knockout and heat shock, as well as a mechanism of gene expression regulation in presence of RNA polymerase competition. The model is implemented for multiprocessor platforms with MPI and supported on Linux and MS Windows. The source code written in C++ is available under the GNU General Public License from the laboratory website. A user-friendly GUI version is also provided at http://lab6.iitp.ru/en/rivals. Conclusions The developed model is in good agreement with virtually all relevant experimental data. The model can be applied to estimate intensities of binding of the holoenzyme and phage type RNA polymerase to their promoters using data on gene transcription levels, as well as to predict characteristics of RNA polymerases and the transcription process that are difficult to measure directly, e.g., the intensity (frequency) of holoenzyme binding to the promoter in correlation to its nucleotide composition and the type of σ-subunit, the amount of transcription initiation aborts, etc. The model can be used to make functional predictions, e.g., heat shock response in isolated chloroplasts and changes of gene transcription levels under knockout of different σ-subunits or RNA polymerases or due to gene expression regulation. Reviewers This article was reviewed by Dr. Anthony Almudevar, Dr. Aniko Szabo, Dr. Yuri Wolf (nominated by Dr. Peter Olofsson) and Prof. Marek Kimmel.
Collapse
Affiliation(s)
- Vassily A Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Bolshoy Karetny per,, Moscow, Russia.
| | | | | | | |
Collapse
|
19
|
Pupov DV, Kulbachinskiy AV. Structural dynamics of the active center of multisubunit RNA polymerases during RNA synthesis and proofreading. Mol Biol 2010. [DOI: 10.1134/s0026893310040023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Seibold SA, Singh BN, Zhang C, Kireeva M, Domecq C, Bouchard A, Nazione AM, Feig M, Cukier RI, Coulombe B, Kashlev M, Hampsey M, Burton ZF. Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:575-87. [PMID: 20478425 PMCID: PMC2922424 DOI: 10.1016/j.bbagrm.2010.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/21/2010] [Accepted: 05/07/2010] [Indexed: 01/22/2023]
Abstract
Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP-NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant beta R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge alpha-helix, the extended fork loop, the active site, and the trigger loop-trigger helix is apparent and adversely affected in beta R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site "latch" assembly that includes a key trigger helix residue Tt beta' H1242 and highly conserved active site residues beta E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.
Collapse
Affiliation(s)
- Steve A. Seibold
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319
- Department of Chemistry, Michigan State University, E. Lansing, MI 48824
| | - Badri Nath Singh
- Department of Biochemistry, Robert Wood Johnson Medical School, School of Public Health Bldg.-Room 285, 683 Hoes Lane West, Piscataway, NJ 08854-0009
| | - Chunfen Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319
| | - Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute—Frederick, Bldg. 539, Room 222, Frederick, MD 21702-1201
| | - Céline Domecq
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, Québec, CANADA H2W 1R7
| | - Annie Bouchard
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, Québec, CANADA H2W 1R7
| | - Anthony M. Nazione
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319
- Department of Chemistry, Michigan State University, E. Lansing, MI 48824
| | - Robert I. Cukier
- Department of Chemistry, Michigan State University, E. Lansing, MI 48824
| | - Benoit Coulombe
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, Québec, CANADA H2W 1R7
| | - Mikhail Kashlev
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute—Frederick, Bldg. 539, Room 222, Frederick, MD 21702-1201
| | - Michael Hampsey
- Department of Biochemistry, Robert Wood Johnson Medical School, School of Public Health Bldg.-Room 285, 683 Hoes Lane West, Piscataway, NJ 08854-0009
| | - Zachary F. Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319
| |
Collapse
|
21
|
Kireeva M, Kashlev M, Burton ZF. Translocation by multi-subunit RNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:389-401. [PMID: 20097318 DOI: 10.1016/j.bbagrm.2010.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/30/2022]
Abstract
DNA template and RNA/DNA hybrid movement through RNA polymerase (RNAP) is referred to as "translocation". Because nucleic acid movement is coupled to NTP loading, pyrophosphate release, and conformational changes, the precise ordering of events during bond addition is consequential. Moreover, based on several lines of experimental evidence, translocation, pyrophosphate release or an associated conformational change may determine the transcription elongation rate. In this review we discuss various models of translocation, the data supporting the hypothesis that translocation rate determines transcription elongation rate and also data that may be inconsistent with this point of view. A model of the nucleotide addition cycle accommodating available experimental data is proposed. On the basis of this model, the molecular mechanisms regulating translocation and potential routes for NTP entry are discussed.
Collapse
Affiliation(s)
- Maria Kireeva
- National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
22
|
Erie DA, Kennedy SR. Forks, pincers, and triggers: the tools for nucleotide incorporation and translocation in multi-subunit RNA polymerases. Curr Opin Struct Biol 2009; 19:708-14. [PMID: 19913407 PMCID: PMC3979713 DOI: 10.1016/j.sbi.2009.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 01/22/2023]
Abstract
The central role of RNA polymerase (RNAP) is to catalyze the processive synthesis of a growing RNA transcript. Recent structural and biophysical data have led to a deeper understanding of the nucleotide addition cycle and insight into the structure-function relationships that govern transcription elongation. In this review, we discuss kinetic data on nucleotide incorporation in the context of crystal structures, which show RNAP in multiple conformations. We present a facilitated Brownian ratchet model of nucleotide incorporation, in which templated NTP binding to a non-catalytic site in the main channel promotes the conformational changes that lead to opening of the catalytic site and translocation.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States.
| | | |
Collapse
|
23
|
Kireeva M, Nedialkov YA, Gong XQ, Zhang C, Xiong Y, Moon W, Burton ZF, Kashlev M. Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase. Methods 2009; 48:333-45. [PMID: 19398005 PMCID: PMC2721912 DOI: 10.1016/j.ymeth.2009.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/05/2009] [Accepted: 04/06/2009] [Indexed: 11/16/2022] Open
Abstract
Strategies for assembly and analysis of human, yeast, and bacterial RNA polymerase elongation complexes are described, and methods are shown for millisecond phase kinetic analyses of elongation using rapid chemical quench flow. Human, yeast, and bacterial RNA polymerases function very similarly in NTP-Mg2+ commitment and phosphodiester bond formation. A "running start, two-bond, double-quench" protocol is described and its advantages discussed. These studies provide information about stable NTP-Mg2+ loading, phosphodiester bond synthesis, the processive transition between bonds, and sequence-specific effects on transcription elongation dynamics.
Collapse
Affiliation(s)
- Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, Bldg. 539, Room 222, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gong P, Campagnola G, Peersen OB. A quantitative stopped-flow fluorescence assay for measuring polymerase elongation rates. Anal Biochem 2009; 391:45-55. [PMID: 19406094 PMCID: PMC2713312 DOI: 10.1016/j.ab.2009.04.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/16/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022]
Abstract
The measurement of nucleic acid polymerase elongation rates is often done via a lengthy experimental process involving radiolabeled substrates, quenched elongation experiments, electrophoretic product separation, and band quantitation. In this work, we describe an alternative real-time stopped-flow assay for obtaining kinetic parameters for elongation of extended sequences. The assay builds on our earlier PETE (polymerase elongation template element) assay designed for high-throughput screening purposes [S.P. Mestas, A.J. Sholders, O.B. Peersen, A fluorescence polarization-based screening assay for nucleic acid polymerase elongation activity, Anal. Biochem. 365 (2007) 194-200] and relies on measuring how long it takes a polymerase to reach the end of a defined length template. Using poliovirus polymerase and self-priming hairpin RNA substrates with 6- to 26-nt-long templating regions, we demonstrate that the assay can be used to determine V(max) rates for elongation and apparent K(m) values for nucleotide triphosphate (NTP) use. Modeling the reaction kinetics as a series of irreversible steps allows us to numerically fit the entire time-based dataset by properly accounting for the temporal distribution of intermediate species. This enables us to determine average elongation rates over heterogeneous templating regions that mimic viral genome substrates. The assay is easily extendable to other RNA and DNA polymerases, can accommodate secondary structures in the template, and can in principle be used for any enzyme traversing along an extended substrate.
Collapse
Affiliation(s)
- Peng Gong
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|