1
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Šket R, Kotnik P, Bizjan BJ, Kocen V, Mlinarič M, Tesovnik T, Debeljak M, Battelino T, Kovač J. Heterozygous Genetic Variants in Autosomal Recessive Genes of the Leptin-Melanocortin Signalling Pathway Are Associated With the Development of Childhood Obesity. Front Endocrinol (Lausanne) 2022; 13:832911. [PMID: 35574020 PMCID: PMC9105721 DOI: 10.3389/fendo.2022.832911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Monogenic obesity is a severe, genetically determined disorder that affects up to 1/1000 newborns. Recent reports on potential new therapeutics and innovative clinical approaches have highlighted the need for early identification of individuals with rare genetic variants that can alter the functioning of the leptin-melanocortin signalling pathway, in order to speed up clinical intervention and reduce the risk of chronic complications. Therefore, next-generation DNA sequencing of central genes in the leptin-melanocortin pathway was performed in 1508 children and adolescents with and without obesity, aged 2-19 years. The recruited cohort comprised approximately 5% of the national paediatric population with obesity. The model-estimated effect size of rare variants in the leptin-melanocortin signalling pathway on longitudinal weight gain between carriers and non-carriers was derived. In total, 21 (1.4%) participants had known disease-causing heterozygous variants (DCVs) in the genes under investigation, and 62 (4.1%) participants were carriers of rare variants of unknown clinical significance (VUS). The estimated frequency of potential genetic variants associated with obesity (including rare VUS) ranged between 1/150 (VUS and DCV) and 1/850 (DCV) and differed significantly between participants with and without obesity. On average, the variants identified would result in approximately 7.6 kg (7.0-12.9 kg at the 95th percentile of body weight) (girls) and 8.4 kg (8.2-14.4 kg) (boys) of additional weight gain in carriers at age 18 years compared with subjects without obesity. In conclusion, children with a genetic predisposition to obesity can be promptly identified and may account for more than 6% of obesity cases. Early identification of genetic variants in the LEPR, PCSK1, POMC, MC3R and MC4R genes could reduce the societal burden and improve the clinical management of early severe childhood obesity and its implementation should be further investigated.
Collapse
Affiliation(s)
- Robert Šket
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Primož Kotnik
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Valentina Kocen
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Matej Mlinarič
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Tine Tesovnik
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Jernej Kovač,
| |
Collapse
|
3
|
Durek T, Kaas Q, White AM, Weidmann J, Fuaad AA, Cheneval O, Schroeder CI, de Veer SJ, Dellsén A, Österlund T, Larsson N, Knerr L, Bauer U, Plowright AT, Craik DJ. Melanocortin 1 Receptor Agonists Based on a Bivalent, Bicyclic Peptide Framework. J Med Chem 2021; 64:9906-9915. [PMID: 34197114 DOI: 10.1021/acs.jmedchem.1c00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have designed a new class of highly potent bivalent melanocortin receptor ligands based on the nature-derived bicyclic peptide sunflower trypsin inhibitor 1 (SFTI-1). Incorporation of melanotropin pharmacophores in each of the two turn regions of SFTI-1 resulted in substantial gains in agonist activity particularly at human melanocortin receptors 1 and 3 (hMC1R/hMC3R) compared to monovalent analogues. In in vitro binding and functional assays, the most potent molecule, compound 6, displayed low picomolar agonist activity at hMC1R (pEC50 > 10.3; EC50 < 50 pM; pKi: 10.16 ± 0.04; Ki: 69 ± 5 pM) and is at least 30-fold more selective for this receptor than for hMC3R, hMC4R, or hMC5R. The results are discussed in the context of structural homology models of hMCRs in complex with the developed bivalent ligands.
Collapse
Affiliation(s)
- Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joachim Weidmann
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abdullah Ahmad Fuaad
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Torben Österlund
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden.,Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Udo Bauer
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Ericson MD, Haslach EM, Schnell SM, Freeman KT, Xiang ZM, Portillo FP, Speth R, Litherland SA, Haskell-Luevano C. Discovery of Molecular Interactions of the Human Melanocortin-4 Receptor (hMC4R) Asp189 (D189) Amino Acid with the Endogenous G-Protein-Coupled Receptor (GPCR) Antagonist Agouti-Related Protein (AGRP) Provides Insights to AGRP's Inverse Agonist Pharmacology at the hMC4R. ACS Chem Neurosci 2021; 12:542-556. [PMID: 33470098 DOI: 10.1021/acschemneuro.0c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The melanocortin receptors (MCRs) are important for numerous biological pathways, including feeding behavior and energy homeostasis. In addition to endogenous peptide agonists, this receptor family has two naturally occurring endogenous antagonists, agouti and agouti-related protein (AGRP). At the melanocortin-4 receptor (MC4R), the AGRP ligand functions as an endogenous inverse agonist in the absence of agonist and as a competitive antagonist in the presence of agonist. At the melanocortin-3 receptor (MC3R), AGRP functions solely as a competitive antagonist in the presence of agonist. The molecular interactions that differentiate AGRP's inverse agonist activity at the MC4R have remained elusive until the findings reported herein. Upon the basis of homology molecular modeling approaches, we previously postulated a unique interaction between the D189 position of the hMC4R and Asn114 of AGRP. To further test this hypothesis, six D189 mutant hMC4Rs (D189A, D189E, D189N, D189Q, D189S, and D189K) were generated and pharmacologically characterized resulting in the discovery of differences in inverse agonist activity of AGRP and an 11 macrocyclic compound library. These data support the hypothesized interaction between the hMC4R D189 position and Asn114 residue of AGRP and define critical ligand-receptor molecular interactions responsible for the inverse agonist activity of AGRP at the hMC4R.
Collapse
Affiliation(s)
- Mark D. Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Erica M. Haslach
- Departments of Pharmacodynamics and Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Sathya M. Schnell
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Zhimin M. Xiang
- Departments of Pharmacodynamics and Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Frederico P. Portillo
- Departments of Pharmacodynamics and Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Robert Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328, United States
- College of Medicine, Georgetown University, Washington, D.C. 20057, United States
| | - Sally A. Litherland
- Translational Research, Florida Hospital Cancer Institute, Orlando, Florida 32804, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
- Departments of Pharmacodynamics and Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Kalananthan T, Lai F, Gomes AS, Murashita K, Handeland S, Rønnestad I. The Melanocortin System in Atlantic Salmon ( Salmo salar L.) and Its Role in Appetite Control. Front Neuroanat 2020; 14:48. [PMID: 32973463 PMCID: PMC7471746 DOI: 10.3389/fnana.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprises two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or agouti-related protein (AGRP; orexigenic). Both bind to the melanocortin-4 receptor (MC4R) in higher order neurons that control both food intake and energy expenditure. This system is relatively well-conserved among vertebrates. However, in Atlantic salmon (Salmo salar L.), the salmonid-specific fourth round whole-genome duplication led to the presence of several paralog genes which might result in divergent functions of the duplicated genes. In the current study, we report the first comprehensive comparative identification and characterization of Mc4r and extend the knowledge of Pomc and Agrp in appetite control in Atlantic salmon. In silico analysis revealed multiple paralogs for mc4r (a1, a2, b1, and b2) in the Atlantic salmon genome and confirmed the paralogs previously described for pomc (a1, a2, and b) and agrp (1 and 2). All Mc4r paralogs are relatively well-conserved with the human homolog, sharing at least 63% amino acid sequence identity. We analyzed the mRNA expression of mc4r, pomc, and agrp genes in eight brain regions of Atlantic salmon post-smolt under two feeding states: normally fed and fasted for 4 days. The mc4ra2 and b1 mRNAs were predominantly and equally abundant in the hypothalamus and telencephalon, the mc4rb2 in the hypothalamus, and a1 in the telencephalon. All pomc genes were highly expressed in the pituitary, followed by the hypothalamus and saccus vasculosus. The agrp genes showed a completely different expression pattern from each other, with prevalent expression of the agrp1 in the hypothalamus and agrp2 in the telencephalon. Fasting did not induce any significant changes in the mRNA level of mc4r, agrp, or pomc paralogs in the hypothalamus or in other highly expressed regions between fed and fasted states. The identification and wide distribution of multiple paralogs of mc4r, pomc, and agrp in Atlantic salmon brain provide new insights and give rise to new questions of the melanocortin system in the appetite regulation in Atlantic salmon.
Collapse
Affiliation(s)
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Japan
| | - Sigurd Handeland
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Research Center, NORCE Environment, Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21165728. [PMID: 32785054 PMCID: PMC7460885 DOI: 10.3390/ijms21165728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.
Collapse
|
7
|
Falls BA, Zhang Y. Insights into the Allosteric Mechanism of Setmelanotide (RM-493) as a Potent and First-in-Class Melanocortin-4 Receptor (MC4R) Agonist To Treat Rare Genetic Disorders of Obesity through an in Silico Approach. ACS Chem Neurosci 2019; 10:1055-1065. [PMID: 30048591 DOI: 10.1021/acschemneuro.8b00346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human melanocortin-4 receptor (hMC4R) mutations have been implicated as the cause for about 6-8% of all severe obesity cases. Drug-like molecules that are able to rescue the functional activity of mutated receptors are highly desirable to combat genetic obesity among this population of patients. One such molecule is the selective MC4R agonist RM-493 (setmelanotide). While this molecule has been shown to activate mutated receptors with 20-fold higher potency over the endogenous agonist, little is known about its binding mode and how it effectively interacts with hMC4R despite the presence of mutations. In this study, a MC4R homology model was constructed based on the X-ray crystal structure of the adenosine A2A receptor in the active state. Four MC4R mutations commonly found in genetically obese patients and known to effect ligand binding in vitro were introduced into the constructed model. RM-493 was then docked into the wild-type and mutated models in order to better elucidate the possible binding modes for this promising drug candidate and assess how it may be interacting with MC4R to effectively activate receptor polymorphisms. The results reflected the orthosteric interactions of both the endogenous and synthetic ligands with the MC4R, which is supported by the site-directed mutagenesis studies. Meanwhile it helped explain the decremental affinity and potency of these ligands with the receptor polymorphisms. More significantly, our findings indicated that the structural characteristics of RM-493 may allow for enhanced receptor-ligand interactions, particularly through those with the putative allosteric binding sites, which facilitated the ligand to stabilize the active state of native and mutant MC4Rs to maintain reasonably high affinity and potency.
Collapse
Affiliation(s)
- Bethany A. Falls
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
8
|
Durek T, Cromm PM, White AM, Schroeder CI, Kaas Q, Weidmann J, Ahmad Fuaad A, Cheneval O, Harvey PJ, Daly NL, Zhou Y, Dellsén A, Österlund T, Larsson N, Knerr L, Bauer U, Kessler H, Cai M, Hruby VJ, Plowright AT, Craik DJ. Development of Novel Melanocortin Receptor Agonists Based on the Cyclic Peptide Framework of Sunflower Trypsin Inhibitor-1. J Med Chem 2018; 61:3674-3684. [PMID: 29605997 DOI: 10.1021/acs.jmedchem.8b00170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrastable cyclic peptide frameworks offer great potential for drug design due to their improved bioavailability compared to their linear analogues. Using the sunflower trypsin inhibitor-1 (SFTI-1) peptide scaffold in combination with systematic N-methylation of the grafted pharmacophore led to the identification of novel subtype selective melanocortin receptor (MCR) agonists. Multiple bicyclic peptides were synthesized and tested toward their activity at MC1R and MC3-5R. Double N-methylated compound 18 showed a p Ki of 8.73 ± 0.08 ( Ki = 1.92 ± 0.34 nM) and a pEC50 of 9.13 ± 0.04 (EC50 = 0.75 ± 0.08 nM) at the human MC1R and was over 100 times more selective for MC1R. Nuclear magnetic resonance structural analysis of 18 emphasized the role of peptide bond N-methylation in shaping the conformation of the grafted pharmacophore. More broadly, this study highlights the potential of cyclic peptide scaffolds for epitope grafting in combination with N-methylation to introduce receptor subtype selectivity in the context of peptide-based drug discovery.
Collapse
Affiliation(s)
- Thomas Durek
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Philipp M Cromm
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia.,Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Andrew M White
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Joachim Weidmann
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Abdullah Ahmad Fuaad
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Norelle L Daly
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Yang Zhou
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Torben Österlund
- Discovery Biology, Discovery Sciences, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden.,Drug Safety and Metabolism, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Udo Bauer
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Minying Cai
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Alleyn T Plowright
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
9
|
Yamada-Goto N, Ochi Y, Katsuura G, Yamashita Y, Ebihara K, Noguchi M, Fujikura J, Taura D, Sone M, Hosoda K, Gottschall PE, Nakao K. Neuronal cells derived from human induced pluripotent stem cells as a functional tool of melanocortin system. Neuropeptides 2017; 65:10-20. [PMID: 28434791 DOI: 10.1016/j.npep.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND The preparation of human neurons derived from human induced pluripotent stem (iPS) cells can serve as a potential tool for evaluating the physiological and pathophysiological properties of human neurons and for drug development. METHODS In the present study, the functional activity in neuronal cells differentiated from human iPS cells was observed. RESULTS The differentiated cells expressed mRNAs for classical neuronal markers (microtubule-associated protein 2, β-tubulin III, calbindin 1, synaptophysin and postsynaptic density protein 95) and for subunits of various excitatory and inhibitory transmitters (NR1, NR2A, NR2B, GABAA α1). Moreover, the differentiated cells expressed neuropeptides and receptors which are predominantly present in the hypothalamus. The expression of mRNA for preopiomelanocortin, agouti-related protein (AgRP), melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) increased in culture with a peak on Day 30 which subsequently decreased at Day 45. Immunoreactivities for MC3R and MC4R were also observed in cells differentiated from human iPS cells. Application of a potent agonist for MC3R and MC4R, [Nle4, D-Phe7]-α-melanocyte-stimulating hormone, significantly increased intracellular cAMP levels, but this was suppressed by AgRP (83-132) and SHU9119. CONCLUSIONS These findings offer the possibility for drug developments using neurons differentiated from normal or disease-associated human iPS cells.
Collapse
Affiliation(s)
- Nobuko Yamada-Goto
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yukari Ochi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Goro Katsuura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yui Yamashita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Ebihara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Noguchi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junji Fujikura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Taura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Paul E Gottschall
- Department of Pharmacology and Toxicology, Slot 611, University of Arkansas for Medical Sciences, AR, USA
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan; Kyoto University Graduate School of Medicine Medical Innovation Center, Kyoto, Japan
| |
Collapse
|
10
|
Yang Y, Harmon CM. Molecular signatures of human melanocortin receptors for ligand binding and signaling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2436-2447. [PMID: 28478228 DOI: 10.1016/j.bbadis.2017.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/10/2017] [Accepted: 04/29/2017] [Indexed: 12/29/2022]
Abstract
Human melanocortin receptors (hMCRs) belong to the seven-transmembrane (TM) domain proteins. There are five hMCR subtypes and each of these receptor subtypes has different patterns of tissue expression and physiological function. The endogenous agonists for hMCRs are α-, β-, and γ-MSH and ACTH and endogenous antagonists are Agouti and AGRP which are the only known naturally occurring antagonists for the receptors. These peptides have their own profiles regarding the relative potency for specific hMCR subtype. Extensive studies have been performed to examine the molecular basis of the hMCRs for different ligand binding affinity and potency. Studies indicate that natural ligand α-MSH utilizes conserved amino acid residues for MCR specific binding (orthosteric binding) while synthetic ligands utilize non-conserved amino acid residues for receptor subtype specific binding (allosteric binding). ACTH is the only endogenous agonist for hMC2R and more amino acid residues at hMC2R are required for ACTH binding and signaling. HMCR computer modeling provides the detailed information of ligand and MCR interaction. This review provides the latest understanding of the molecular basis of the hMCRs for ligand binding and signaling. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, State University of New York at Buffalo, Buffalo, NY 14203, United States.
| | - Carroll M Harmon
- Department of Surgery, State University of New York at Buffalo, Buffalo, NY 14203, United States
| |
Collapse
|
11
|
Mizuno A, Kameda T, Kuwahara T, Endoh H, Ito Y, Yamada S, Hasegawa K, Yamano A, Watanabe M, Arisawa M, Shuto S. Cyclopropane-Based Peptidomimetics Mimicking Wide-Ranging Secondary Structures of Peptides: Conformational Analysis and Their Use in Rational Ligand Optimization. Chemistry 2017; 23:3159-3168. [PMID: 28000361 DOI: 10.1002/chem.201605312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Indexed: 12/16/2022]
Abstract
Detailed conformational analyses of our previously reported cyclopropane-based peptidomimetics and conformational analysis-driven ligand optimization are described. Computational calculations and X-ray crystallography showed that the characteristic features of cyclopropane function effectively to constrain the molecular conformation in a three-dimensionally diverse manner. Subsequent principal component analysis revealed that the diversity covers the broad chemical space filled by peptide secondary structures in terms of both main-chain and side-chain conformations. Based on these analyses, a lead stereoisomer targeting melanocortin receptors was identified, and its potency and subtype selectivity were improved by further derivatization. The presented strategy is effective not only for designing non-peptidic ligands from a peptide ligand but also for the rational optimization of these ligands based on the plausible target-binding conformation without requiring the three- dimensional structural information of the target and its peptide ligands.
Collapse
Affiliation(s)
- Akira Mizuno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Tomoshi Kameda
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7, Aomi, Koutou-ku, Tokyo, 135-0064, Japan
| | - Tomoki Kuwahara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hideyuki Endoh
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoshihiko Ito
- School of Pharmaceutical Sciences, University of Shizuoka, Yata, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Shizuo Yamada
- School of Pharmaceutical Sciences, University of Shizuoka, Yata, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Kimiko Hasegawa
- Rigaku Corporation, Application Laboratories, 3-9-12, Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Akihito Yamano
- Rigaku Corporation, Application Laboratories, 3-9-12, Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Mitsuhiro Arisawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
12
|
Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep 2016; 6:27002. [PMID: 27243589 PMCID: PMC4886680 DOI: 10.1038/srep27002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/12/2016] [Indexed: 01/06/2023] Open
Abstract
Type 2 diabetes is a chronic metabolic disorder primarily caused by insulin resistance to which obesity is a major contributor. Expression levels of an orphan G protein-coupled receptor (GPCR), GPR21, demonstrated a trend towards a significant increase in the epididymal fat pads of wild type high fat high sugar (HFHS)-fed mice. To gain further insight into the potential role this novel target may play in the development of obesity-associated type 2 diabetes, the signalling capabilities of the receptor were investigated. Overexpression studies in HEK293T cells revealed GPR21 to be a constitutively active receptor, which couples to Gαq type G proteins leading to the activation of mitogen activated protein kinases (MAPKs). Overexpression of GPR21 in vitro also markedly attenuated insulin signalling. Interestingly, the effect of GPR21 on the MAPKs and insulin signalling was reduced in the presence of serum, inferring the possibility of a native inhibitory ligand. Homology modelling and ligand docking studies led to the identification of a novel compound that inhibited GPR21 activity. Its effects offer potential as an anti-diabetic pharmacological strategy as it was found to counteract the influence of GPR21 on the insulin signalling pathway.
Collapse
|
13
|
Yun JH, Kim M, Kim K, Lee D, Jung Y, Oh D, Ko YJ, Cho AE, Cho HS, Lee W. Solution structure of the transmembrane 2 domain of the human melanocortin-4 receptor in sodium dodecyl sulfate (SDS) micelles and the functional implication of the D90N mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1294-302. [PMID: 25753114 DOI: 10.1016/j.bbamem.2015.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/03/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The melanocortin receptors (MCRs) are members of the G protein-coupled receptor (GPCR) 1 superfamily with seven transmembrane (TM) domains. Among them, the melanocortin-4 receptor (MC4R) subtype has been highlighted recently by genetic studies in obese humans. In particular, in a patient with severe early-onset obesity, a novel heterozygous mutation in the MC4R gene was found in an exchange of Asp to Asn in the 90th amino acid residue located in the TM 2 domain (MC4RD90N). Mutations in the MC4R gene are the most frequent monogenic causes of severe obesity and are described as heterozygous with loss of function. We determine solution structures of the TM 2 domain of MC4R (MC4RTM2) and compared secondary structure of Asp90 mutant (MC4RTM2-D90N) in a micelle environment by nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that MC4RTM2 forms a long α-helix with a kink at Gly98. Interestingly, the structure of MC4RTM2-D90N is similar to that of MC4RTM2 based on data from CD and NMR spectrum. However, the thermal stability and homogeneity of MC4RD90N is quite different from those of MC4R. The structure from molecular modeling suggests that Asp90(2.50) plays a key role in allosteric sodium ion binding. Our data suggest that the sodium ion interaction of Asp90(2.50) in the allosteric pocket of MC4R is essential to its function, explaining the loss of function of the MC4RD90N mutant.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Minsup Kim
- Department of Bioinformatics, Korea University, Sejong 136-701, Republic of Korea
| | - Kuglae Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Dongju Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Youngjin Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Daeseok Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities, Seoul National University, Seoul 151-747, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 136-701, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
14
|
Yun JH, Kim K, Jung Y, Park JH, Cho HS, Lee W. Co-expression of human agouti-related protein enhances expression and stability of human melanocortin-4 receptor. Biochem Biophys Res Commun 2015; 456:116-21. [PMID: 25446108 DOI: 10.1016/j.bbrc.2014.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins, and they are considered major targets of approximately half of all therapeutic agents. Human melanocortin-4 receptor (hMC4R) plays an important role in the control of energy homeostasis, and its mutants are directly related to severe human obesity. Here, we describe optimized protocols for the high-yield expression and purification of hMC4R that will accelerate structural study. Truncations of the N- and C-termini of hMC4R with T4 lysozyme (T4L) insertion increase the solubility as well as stability of the protein. Strikingly, co-expression of human mini-agouti-related protein (mini-AgRP) in Spodoptera frugiperda (Sf9) cells enables excellent stability of hMC4R. The protein yield in the human mini-AgRP co-expression system is increased by about 3-4 times compared to that of hMC4R alone. Data from analytical size exclusion chromatography (aSEC) and thermostability assay show that hMC4R becomes homogeneous and stable with a melting temperature of 58°C in the presence of human mini-AgRP.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kuglae Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Youngjin Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jae-Hyun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
15
|
Shpakova EA, Derkach KV, Shpakov AO. Effect of Peptides Corresponding to Extracellular Domains of Serotonin 1B/1D Receptors and Melanocortin 3 and 4 Receptors on Hormonal Regulation of Adenylate Cyclase in Rat Brain. Bull Exp Biol Med 2014; 156:658-62. [DOI: 10.1007/s10517-014-2419-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 11/24/2022]
|
16
|
Exposure of MC4R to agonist in the endoplasmic reticulum stabilizes an active conformation of the receptor that does not desensitize. Proc Natl Acad Sci U S A 2013; 110:E4733-42. [PMID: 24248383 DOI: 10.1073/pnas.1219808110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in neurons of the hypothalamus where it regulates food intake. MC4R responds to an agonist, α-melanocyte-stimulating hormone (α-MSH) and to an antagonist/inverse agonist, agouti-related peptide (AgRP), which are released by upstream neurons. Binding to α-MSH leads to stimulation of receptor activity and suppression of food intake, whereas AgRP has opposite effects. MC4R cycles constantly between the plasma membrane and endosomes and undergoes agonist-mediated desensitization by being routed to lysosomes. MC4R desensitization and increased AgRP expression are thought to decrease the effectiveness of MC4R agonists as an antiobesity treatment. In this study, α-MSH, instead of being delivered extracellularly, is targeted to the endoplasmic reticulum (ER) of neuronal cells and cultured hypothalamic neurons. We find that the ER-targeted agonist associates with MC4R at this location, is transported to the cell surface, induces constant cAMP and AMP kinase signaling at maximal amplitude, abolishes desensitization of the receptor, and promotes both cell-surface expression and constant signaling by an obesity-linked MC4R variant, I316S, that otherwise is retained in the ER. Formation of the MC4R/agonist complex in the ER stabilizes the receptor in an active conformation that at the cell surface is insensitive to antagonism by AgRP and at the endosomes is refractory to routing to the lysosomes. The data indicate that targeting agonists to the ER can stabilize an active conformation of a G protein-coupled receptor that does not become desensitized, suggesting a target for therapy.
Collapse
|
17
|
Nijmeijer S, Engelhardt H, Schultes S, van de Stolpe AC, Lusink V, de Graaf C, Wijtmans M, Haaksma EEJ, de Esch IJP, Stachurski K, Vischer HF, Leurs R. Design and pharmacological characterization of VUF14480, a covalent partial agonist that interacts with cysteine 98(3.36) of the human histamine H₄ receptor. Br J Pharmacol 2013; 170:89-100. [PMID: 23347159 PMCID: PMC3764852 DOI: 10.1111/bph.12113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/23/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE The recently proposed binding mode of 2-aminopyrimidines to the human (h) histamine H₄ receptor suggests that the 2-amino group of these ligands interacts with glutamic acid residue E182(5.46) in the transmembrane (TM) helix 5 of this receptor. Interestingly, substituents at the 2-position of this pyrimidine are also in close proximity to the cysteine residue C98(3.36) in TM3. We hypothesized that an ethenyl group at this position will form a covalent bond with C98(3.36) by functioning as a Michael acceptor. A covalent pyrimidine analogue will not only prove this proposed binding mode, but will also provide a valuable tool for H4 receptor research. EXPERIMENTAL APPROACH We designed and synthesized VUF14480, and pharmacologically characterized this compound in hH4 receptor radioligand binding, G protein activation and β-arrestin2 recruitment experiments. The ability of VUF14480 to act as a covalent binder was assessed both chemically and pharmacologically. KEY RESULTS VUF14480 was shown to be a partial agonist of hH4 receptor-mediated G protein signalling and β-arrestin2 recruitment. VUF14480 bound covalently to the hH₄ receptor with submicromolar affinity. Serine substitution of C98(3.36) prevented this covalent interaction. CONCLUSION AND IMPLICATIONS VUF14480 is thought to bind covalently to the hH₄ receptor-C98(3.36) residue and partially induce hH₄ receptor-mediated G protein activation and β-arrestin2 recruitment. Moreover, these observations confirm our previously proposed binding mode of 2-aminopyrimidines. VUF14480 will be a useful tool to stabilize the receptor into an active confirmation and further investigate the structure of the active hH₄ receptor.
Collapse
Affiliation(s)
- S Nijmeijer
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
| | - H Engelhardt
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KGVienna, Austria
| | - S Schultes
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KGVienna, Austria
| | - A C van de Stolpe
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
| | - V Lusink
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
| | - C de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
| | - M Wijtmans
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
| | - E E J Haaksma
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KGVienna, Austria
| | - I J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
| | - K Stachurski
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KGVienna, Austria
| | - H F Vischer
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
| | - R Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University AmsterdamAmsterdam, The Netherlands
| |
Collapse
|
18
|
Chapman KL, Findlay JBC. The melanocortin 4 receptor: oligomer formation, interaction sites and functional significance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:535-42. [PMID: 23088915 DOI: 10.1016/j.bbamem.2012.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/14/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
This study involves the structural and functional properties of the recombinant melanocortin 4 receptor (MC(4)R) expressed in the HEK-293 cell line. Using co-immuno-purification approaches, the receptor appears to be an oligomer, which can be crosslinked through disulphide bonds involving a native cysteine residue (84) to give a dimeric species. This position is located near the cytosolic region of transmembrane segment 2 and it is suggested that this is an interacting interface between MC(4)R monomers. Using co-expression of the native protein and a C84A mutant, it appears that the receptor also forms higher order oligomers via alternative interfaces. Interestingly, disulphide crosslink formation does not occur if the receptor is uncoupled from its G-protein, even though the oligomeric state is preserved. This suggests that the conformational changes, which occur on activation, affect the TM2 interface. The pharmacology of the agonist, NDP-MSH, indicates that the MC(4)R retains high affinity for the ligand in the absence of the G-protein but occupancy for the ligand is increased. The data can be interpreted to suggest that the G-protein exerts a negative allosteric effect on the receptor. Co-expression of one receptor lacking the ability to signal with another, which cannot bind the agonist, restored ligand-dependent activation of the G-protein to situations in which neither receptor on its own could activate the G-protein. Such transactivation suggests meaningful cross talk between the receptor subunits in the oligomeric complex. These studies demonstrate further unique features of the MC(4)R.
Collapse
Affiliation(s)
- Kathryn L Chapman
- Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
19
|
Grieco P, Brancaccio D, Novellino E, Hruby VJ, Carotenuto A. Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor. Eur J Med Chem 2011; 46:3721-33. [PMID: 21652123 DOI: 10.1016/j.ejmech.2011.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/12/2011] [Accepted: 05/14/2011] [Indexed: 11/30/2022]
Abstract
The melanocortin receptors are involved in many physiological functions, including pigmentation, sexual function, feeding behavior, and energy homeostasis, making them potential targets to treat obesity, sexual dysfunction, etc. Understanding the basis of the ligand-receptor interactions is crucial for the design of potent and selective ligands for these receptors. The conformational preferences of the cyclic melanocortin ligands MTII (Ac-Nle(4)-c[Asp(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)) and SHU9119 (Ac-Nle(4)-c[Asp(5)-His(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)), which show agonist and antagonist activity at the h-MC4R, respectively, were comprehensively investigated by solution NMR spectroscopy in different environments. In particular, water and water/DMSO (8:2) solutions were used as isotropic solutions and an aqueous solution of DPC (dodecylphosphocholine) micelles was used as a membrane mimetic environment. NMR-derived conformations of these two ligands were docked within h-MC4R models. NMR and docking studies revealed intriguing differences which can help explain the different activities of these two ligands.
Collapse
Affiliation(s)
- Paolo Grieco
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, I-80131 Naples, Italy
| | | | | | | | | |
Collapse
|