1
|
Lee HC, Zhao YJ. Resolving the topological enigma in Ca 2+ signaling by cyclic ADP-ribose and NAADP. J Biol Chem 2019; 294:19831-19843. [PMID: 31672920 PMCID: PMC6937575 DOI: 10.1074/jbc.rev119.009635] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are two structurally distinct messengers that mobilize the endoplasmic and endolysosomal Ca2+ stores, respectively. Both are synthesized by the CD38 molecule (CD38), which has long been thought to be a type II membrane protein whose catalytic domain, intriguingly, faces to the outside of the cell. Accordingly, for more than 20 years, it has remained unresolved how CD38 can use cytosolic substrates such as NAD and NADP to produce messengers that target intracellular Ca2+ stores. The discovery of type III CD38, whose catalytic domain faces the cytosol, has now begun to clarify this topological conundrum. This article reviews the ideas and clues leading to the discovery of the type III CD38; highlights an innovative approach for uncovering its natural existence; and discusses the regulators of its activity, folding, and degradation. We also review the compartmentalization of cADPR and NAADP biogenesis. We further discuss the possible mechanisms that promote type III CD38 expression and appraise a proposal of a Ca2+-signaling mechanism based on substrate limitation and product translocation. The surprising finding of another enzyme that produces cADPR and NAADP, sterile α and TIR motif-containing 1 (SARM1), is described. SARM1 regulates axonal degeneration and has no sequence similarity with CD38 but can catalyze the same set of multireactions and has the same cytosolic orientation as the type III CD38. The intriguing finding that SARM1 is activated by nicotinamide mononucleotide to produce cADPR and NAADP suggests that it may function as a regulated Ca2+-signaling enzyme like CD38.
Collapse
Affiliation(s)
- Hon Cheung Lee
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Yong Juan Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| |
Collapse
|
2
|
Zhao ZY, Xie XJ, Li WH, Liu J, Chen Z, Zhang B, Li T, Li SL, Lu JG, Zhang L, Zhang LH, Xu Z, Lee HC, Zhao YJ. A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-apoptotic Cell Death. iScience 2019; 15:452-466. [PMID: 31128467 PMCID: PMC6531917 DOI: 10.1016/j.isci.2019.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/22/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022] Open
Abstract
SARM1, an NAD-utilizing enzyme, regulates axonal degeneration. We show that CZ-48, a cell-permeant mimetic of NMN, activated SARM1 in vitro and in cellulo to cyclize NAD and produce a Ca2+ messenger, cADPR, with similar efficiency as NMN. Knockout of NMN-adenylyltransferase elevated cellular NMN and activated SARM1 to produce cADPR, confirming NMN was its endogenous activator. Determinants for the activating effects and cell permeability of CZ-48 were identified. CZ-48 activated SARM1 via a conformational change of the auto-inhibitory domain and dimerization of its catalytic domain. SARM1 catalysis was similar to CD38, despite having no sequence similarity. Both catalyzed similar set of reactions, but SARM1 had much higher NAD-cyclizing activity, making it more efficient in elevating cADPR. CZ-48 acted selectively, activating SARM1 but inhibiting CD38. In SARM1-overexpressing cells, CZ-48 elevated cADPR, depleted NAD and ATP, and induced non-apoptotic death. CZ-48 is a specific modulator of SARM1 functions in cells.
Collapse
Affiliation(s)
- Zhi Ying Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xu Jie Xie
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wan Hua Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhe Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ben Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ting Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Song Lu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Gang Lu
- Agilent Technologies (China) Co.,Ltd, Guangzhou 510613, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhengshuang Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hon Cheung Lee
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yong Juan Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
NAD binding by human CD38 analyzed by Trp189 fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1189-1196. [PMID: 30472140 DOI: 10.1016/j.bbamcr.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022]
Abstract
The NAD-glycohydrolase/ADP-ribosyl cyclase CD38 catalyzes the metabolism of nicotinamide adenine dinucleotide (NAD) to the Ca2+ mobilizing second messengers ADP-ribose (ADPR), 2'-deoxy-ADPR, and cyclic ADP-ribose (cADPR). In the present study, we investigated binding and metabolism of NAD by a soluble fragment of human CD38, sCD38, and its catalytically inactive mutant by monitoring changes in endogenous tryptophan (Trp) fluorescence. Addition of NAD resulted in a concentration-dependent decrease in sCD38 fluorescence that is mainly caused by the Trp residue W189. Amplitude of the fluorescence decrease was fitted as one-site binding curve revealing a dissociation constant for NAD of 29 μM. A comparable dissociation constant was found with the catalytically inactive sCD38 mutant (KD 37 μM NAD) indicating that binding of NAD is not significantly affected by the mutation. The NAD-induced decrease in Trp fluorescence completely recovered in case of sCD38. Kinetics of recovery was slowed down with decreasing temperature and sCD38 concentration and increasing NAD concentration demonstrating that recovery in fluorescence is proportional to the enzymatic activity of sCD38. Accordingly, recovery in fluorescence was not observed with the catalytically inactive mutant. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
4
|
Watt JM, Thomas MP, Potter BVL. Synthetic cADPR analogues may form only one of two possible conformational diastereoisomers. Sci Rep 2018; 8:15268. [PMID: 30323284 PMCID: PMC6189198 DOI: 10.1038/s41598-018-33484-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/27/2018] [Indexed: 12/03/2022] Open
Abstract
Cyclic adenosine 5′-diphosphate ribose (cADPR) is an emerging Ca2+-mobilising second messenger. cADPR analogues have been generated as chemical biology tools via both chemo-enzymatic and total synthetic routes. Both routes rely on the cyclisation of a linear precursor to close an 18-membered macrocyclic ring. We show here that, after cyclisation, there are two possible macrocyclic product conformers that may be formed, depending on whether cyclisation occurs to the “right” or the “left” of the adenine base (as viewed along the H-8 → C-8 base axis). Molecular modelling demonstrates that these two conformers are distinct and cannot interconvert. The two conformers would present a different spatial layout of binding partners to the cADPR receptor/binding site. For chemo-enzymatically generated analogues Aplysia californica ADP-ribosyl cyclase acts as a template to generate solely the “right-handed” conformer and this corresponds to that of the natural messenger, as originally explored using crystallography. However, for a total synthetic analogue it is theoretically possible to generate either product, or a mixture, from a given linear precursor. Cyclisation on either face of the adenine base is broadly illustrated by the first chemical synthesis of the two enantiomers of a “southern” ribose-simplified cIDPR analogue 8-Br-N9-butyl-cIDPR, a cADPR analogue containing only one chiral sugar in the “northern” ribose, i.e. 8-Br-D- and its mirror image 8-Br-L-N9-butyl-cIDPR. By replacing the D-ribose with the unnatural L-ribose sugar, cyclisation of the linear precursor with pyrophosphate closure generates a cyclised product spectroscopically identical, but displaying equal and opposite specific rotation. These findings have implications for cADPR analogue design, synthesis and activity.
Collapse
Affiliation(s)
- Joanna M Watt
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Mark P Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
5
|
Wang M, Chen B, Fang Y, Tan T. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol Adv 2017; 35:1032-1039. [DOI: 10.1016/j.biotechadv.2017.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023]
|
6
|
Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, Lam CMC, Wang XW, Xin D, Zhang P, Koch-Nolte F, Hao Q, Zhang H, Lee HC, Zhao YJ. Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep 2016; 6:27055. [PMID: 27251573 PMCID: PMC4890012 DOI: 10.1038/srep27055] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022] Open
Abstract
CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10−11 molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma.
Collapse
Affiliation(s)
- Ting Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shali Qi
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mandy Unger
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Yun Nan Hou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qi Wen Deng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Connie M C Lam
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xian Wang Wang
- Functional Laboratory, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Du Xin
- Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518029, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongmin Zhang
- Department of Biology, and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China
| | - Hon Cheung Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yong Juan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
7
|
Ting KY, Leung CFP, Graeff RM, Lee HC, Hao Q, Kotaka M. Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity. Protein Sci 2016; 25:650-61. [PMID: 26660500 DOI: 10.1002/pro.2859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/20/2015] [Indexed: 11/12/2022]
Abstract
Cyclic ADP-ribose (cADPR) mobilizes intracellular Ca(2+) stores and activates Ca(2+) influx to regulate a wide range of physiological processes. It is one of the products produced from the catalysis of NAD(+) by the multifunctional CD38/ADP-ribosyl cyclase superfamily. After elimination of the nicotinamide ring by the enzyme, the reaction intermediate of NAD(+) can either be hydrolyzed to form linear ADPR or cyclized to form cADPR. We have previously shown that human CD38 exhibits a higher preference towards the hydrolysis of NAD(+) to form linear ADPR while Aplysia ADP-ribosyl cyclase prefers cyclizing NAD(+) to form cADPR. In this study, we characterized the enzymatic properties of porcine CD38 and revealed that it has a prominent secondary NAD(+) cyclase activity producing cADPR. We also determined the X-ray crystallographic structures of porcine CD38 and were able to observe conformational flexibility at the base of the active site of the enzyme which allow the NAD(+) reaction intermediate to adopt conformations resulting in both hydrolysis and cyclization forming linear ADPR and cADPR respectively.
Collapse
Affiliation(s)
- Kai Yiu Ting
- School of Life Sciences, the Chinese University of Hong Kong, Hong Kong.,The Centre of Novel Biomaterials, the Chinese University of Hong Kong, Hong Kong
| | | | - Richard M Graeff
- Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Hon Cheung Lee
- School of Chemical Biology & Biotechnology, Peking University Campus, Shenzhen, China
| | - Quan Hao
- Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Masayo Kotaka
- School of Life Sciences, the Chinese University of Hong Kong, Hong Kong.,The Centre of Novel Biomaterials, the Chinese University of Hong Kong, Hong Kong.,Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
8
|
Zhao YJ, Zhu WJ, Wang XW, Zhang LH, Lee HC. Determinants of the membrane orientation of a calcium signaling enzyme CD38. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2095-103. [PMID: 25447548 DOI: 10.1016/j.bbamcr.2014.10.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
CD38 catalyzes the synthesis of two structurally distinct messengers for Ca²⁺-mobilization, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), from cytosolic substrates, NAD and NADP, respectively. CD38 is generally thought of as a type II membrane protein with its catalytic site facing outside. We recently showed that CD38 exists, instead, in two opposite membrane orientations. The determinant for the membrane topology is unknown. Here, specific antibodies against type III CD38 were designed and produced. We show that mutating the positively charged residues in the N-terminal tail of CD38 converted its orientation to type III, with the catalytic domain facing the cytosol and it was fully active in producing intracellular cADPR. Changing the serine residues to aspartate, which is functionally equivalent to phosphorylation, had a similar effect. The mutated CD38 was expressed intracellularly and was un-glycosylated. The membrane topology could also be modulated by changing the highly conserved di-cysteine. The results indicate that the net charge of the N-terminal segment is important in determining the membrane topology of CD38 and that the type III orientation can be a functional form of CD38 for Ca²⁺-signaling. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Yong Juan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen, China; Department of Physiology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| | - Wen Jie Zhu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen, China
| | - Xian Wang Wang
- Functional Laboratory, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei China
| | - Li-He Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, China
| | - Hon Cheung Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen, China.
| |
Collapse
|
9
|
Kuhn I, Kellenberger E, Schuber F, Muller-Steffner H. Schistosoma mansoni NAD(+) catabolizing enzyme: identification of key residues in catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2520-7. [PMID: 24035885 DOI: 10.1016/j.bbapap.2013.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/21/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Schistosoma mansoni NAD(+) catabolizing enzyme (SmNACE), a distant homolog of mammalian CD38, shows significant structural and functional analogy to the members of the CD38/ADP-ribosyl cyclase family. The hallmark of SmNACE is the lack of ADP-ribosyl cyclase activity that might be ascribed to subtle changes in its active site. To better characterize the residues of the active site we determined the kinetic parameters of nine mutants encompassing three acidic residues: (i) the putative catalytic residue Glu202 and (ii) two acidic residues within the 'signature' region (the conserved Glu124 and the downstream Asp133), (iii) Ser169, a strictly conserved polar residue and (iv) two aromatic residues (His103 and Trp165). We established the very important role of Glu202 and of the hydrophobic domains overwhelmingly in the efficiency of the nicotinamide-ribosyl bond cleavage step. We also demonstrated that in sharp contrast with mammalian CD38, the 'signature' Glu124 is as critical as Glu202 for catalysis by the parasite enzyme. The different environments of the two Glu residues in the crystal structure of CD38 and in the homology model of SmNACE could explain such functional discrepancies. Mutagenesis data and 3D structures also indicated the importance of aromatic residues, especially His103, in the stabilization of the reaction intermediate as well as in the selection of its conformation suitable for cyclization to cyclic ADP-ribose. Finally, we showed that inhibition of SmNACE by the natural product cyanidin requires the integrity of Glu202 and Glu124, but not of His103 and Trp165, hence suggesting different recognition modes for substrate and inhibitor.
Collapse
Affiliation(s)
- Isabelle Kuhn
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Medalis Drug Discovery Center, 74 route du Rhin, 67400 Illkirch, France
| | | | | | | |
Collapse
|
10
|
Lee HC. Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 2012; 287:31633-40. [PMID: 22822066 DOI: 10.1074/jbc.r112.349464] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate were discovered >2 decades ago. That they are second messengers for mobilizing Ca(2+) stores has since been firmly established. Separate stores and distinct Ca(2+) channels are targeted, with cyclic ADP-ribose acting on the ryanodine receptors in the endoplasmic reticulum, whereas nicotinic acid adenine dinucleotide phosphate mobilizes the endolysosomes via the two-pore channels. Despite the structural and functional differences, both messengers are synthesized by a ubiquitous enzyme, CD38, whose crystal structure and catalytic mechanism have now been well elucidated. How this novel signaling enzyme is regulated remains largely unknown and is the focus of this minireview.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Egea PF, Muller-Steffner H, Kuhn I, Cakir-Kiefer C, Oppenheimer NJ, Stroud RM, Kellenberger E, Schuber F. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates. PLoS One 2012; 7:e34918. [PMID: 22529956 PMCID: PMC3329556 DOI: 10.1371/journal.pone.0034918] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/06/2012] [Indexed: 01/02/2023] Open
Abstract
Bovine CD38/NAD+glycohydrolase (bCD38) catalyses the hydrolysis of NAD+ into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2′-fluorinated analogs of NAD+. Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1′ of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2′-OH of the substrate NAD+. Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (PFE); (FS)
| | - Hélène Muller-Steffner
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Isabelle Kuhn
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Céline Cakir-Kiefer
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux, UR AFPA, Nancy Université, Vandoeuvre-les-Nancy, France
| | - Norman J. Oppenheimer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Francis Schuber
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (PFE); (FS)
| |
Collapse
|
12
|
Kwong AKY, Chen Z, Zhang H, Leung FP, Lam CMC, Ting KY, Zhang L, Hao Q, Zhang LH, Lee HC. Catalysis-based inhibitors of the calcium signaling function of CD38. Biochemistry 2011; 51:555-64. [PMID: 22142305 DOI: 10.1021/bi201509f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD38 is a signaling enzyme responsible for catalyzing the synthesis of cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate; both are universal Ca(2+) messenger molecules. Ablation of the CD38 gene in mice causes multiple physiological defects, including impaired oxytocin release, that result in altered social behavior. A series of catalysis-based inhibitors of CD38 were designed and synthesized, starting with arabinosyl-2'-fluoro-2'-deoxynicotinamide mononucleotide. Structure-function relationships were analyzed to assess the structural determinants important for inhibiting the NADase activity of CD38. X-ray crystallography was used to reveal the covalent intermediates that were formed with the catalytic residue, Glu226. Metabolically stable analogues that were resistant to inactivation by phosphatase and esterase were synthesized and shown to be effective in inhibiting intracellular cADPR production in human HL-60 cells during induction of differentiation by retinoic acid. The inhibition was species-independent, and the analogues were similarly effective in blocking the cyclization reaction of CD38 in rat ventricular tissue extracts, as well as inhibiting the α-agonist-induced constriction in rat mesentery arteries. These compounds thus represent the first generally applicable and catalysis-based inhibitors of the Ca(2+) signaling function of CD38.
Collapse
Affiliation(s)
- Anna Ka Yee Kwong
- Department of Physiology, 4/F Lab Block, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kotaka M, Graeff R, Chen Z, Zhang LH, Lee HC, Hao Q. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase. J Mol Biol 2011; 415:514-26. [PMID: 22138343 DOI: 10.1016/j.jmb.2011.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022]
Abstract
Cyclic ADP-ribose (cADPR) is a calcium messenger that can mobilize intracellular Ca²⁺ stores and activate Ca²⁺ influx to regulate a wide range of physiological processes. Aplysia cyclase is the first member of the ADP-ribosyl cyclases identified to catalyze the cyclization of NAD⁺ into cADPR. The catalysis involves a two-step reaction, the elimination of the nicotinamide ring and the cyclization of the intermediate resulting in the covalent attachment of the purine ring to the terminal ribose. Aplysia cyclase exhibits a high degree of leniency towards the purine base of its substrate, and the cyclization reaction takes place at either the N1- or the N7-position of the purine ring. To decipher the mechanism of cyclization in Aplysia cyclase, we used a crystallization setup with multiple Aplysia cyclase molecules present in the asymmetric unit. With the use of natural substrates and analogs, not only were we able to capture multiple snapshots during enzyme catalysis resulting in either N1 or N7 linkage of the purine ring to the terminal ribose, we were also able to observe, for the first time, the cyclized products of both N1 and N7 cyclization bound in the active site of Aplysia cyclase.
Collapse
Affiliation(s)
- Masayo Kotaka
- Department of Physiology, University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
14
|
Lee HC. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. SCIENCE CHINA-LIFE SCIENCES 2011; 54:699-711. [PMID: 21786193 DOI: 10.1007/s11427-011-4197-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/10/2011] [Indexed: 12/17/2022]
Abstract
The concept advanced by Berridge and colleagues that intracellular Ca(2+)-stores can be mobilized in an agonist-dependent and messenger (IP(3))-mediated manner has put Ca(2+)-mobilization at the center stage of signal transduction mechanisms. During the late 1980s, we showed that Ca(2+)-stores can be mobilized by two other messengers unrelated to inositol trisphosphate (IP(3)) and identified them as cyclic ADP-ribose (cADPR), a novel cyclic nucleotide from NAD, and nicotinic acid adenine dinucleotide phosphate (NAADP), a linear metabolite of NADP. Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms. Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum, while that of NAADP is the two pore channel in endolysosomes.As cADPR and NAADP are structurally and functionally distinct, it is remarkable that they are synthesized by the same enzyme. They are thus fraternal twin messengers. We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and, through homology, found its mammalian homolog, CD38. Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion, susceptibility to bacterial infection, to social behavior of mice through modulating neuronal oxytocin secretion. We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis. This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Vaisitti T, Audrito V, Serra S, Bologna C, Brusa D, Malavasi F, Deaglio S. NAD+-metabolizing ecto-enzymes shape tumor-host interactions: the chronic lymphocytic leukemia model. FEBS Lett 2011; 585:1514-20. [PMID: 21514298 DOI: 10.1016/j.febslet.2011.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/28/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an essential co-enzyme that can be released in the extracellular milieu. Here, it may elicit signals through binding purinergic receptors. Alternatively, NAD(+) may be dismantled to adenosine, up-taken by cells and transformed to reconstitute the intracellular nucleotide pool. An articulated ecto-enzyme network is responsible for the nucleotide-nucleoside conversion. CD38 is the main mammalian enzyme that hydrolyzes NAD(+), generating Ca(2+)-active metabolites. Evidence suggests that this extracellular network may be altered or used by tumor cells to (i) nestle in protected areas, and (ii) evade the immune response. We have exploited chronic lymphocytic leukemia as a model to test the role of the ecto-enzyme network, starting by analyzing the individual elements that make up the whole picture.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Koch-Nolte F, Fischer S, Haag F, Ziegler M. Compartmentation of NAD+-dependent signalling. FEBS Lett 2011; 585:1651-6. [PMID: 21443875 DOI: 10.1016/j.febslet.2011.03.045] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/24/2023]
Abstract
NAD(+) plays central roles in energy metabolism as redox carrier. Recent research has identified important signalling functions of NAD(+) that involve its consumption. Although NAD(+) is synthesized mainly in the cytosol, nucleus and mitochondria, it has been detected also in vesicular and extracellular compartments. Three protein families that consume NAD(+) in signalling reactions have been characterized on a molecular level: ADP-ribosyltransferases (ARTs), Sirtuins (SIRTs), and NAD(+) glycohydrolases (NADases). Members of these families serve important regulatory functions in various cellular compartments, e.g., by linking the cellular energy state to gene expression in the nucleus, by regulating nitrogen metabolism in mitochondria, and by sensing tissue damage in the extracellular compartment. Distinct NAD(+) pools may be crucial for these processes. Here, we review the current knowledge about the compartmentation and biochemistry of NAD(+)-converting enzymes that control NAD(+) signalling.
Collapse
|
17
|
Zhang L, Ka Yee Kwong A, Yang Z, Chen Z, Cheung Lee H, Zhang L. Studies on the Synthesis of Nicotinamide Nucleoside and Nucleotide Analogues and Their Inhibitions towards CD38 NADase. HETEROCYCLES 2011. [DOI: 10.3987/com-11-12361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|