1
|
Collignon J, Naeimi W, Serio TR, Sindi S. [PSI]-CIC: A Deep-Learning Pipeline for the Annotation of Sectored Saccharomyces cerevisiae Colonies. Bull Math Biol 2024; 87:12. [PMID: 39641894 PMCID: PMC11624247 DOI: 10.1007/s11538-024-01379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
The [ P S I + ] prion phenotype in yeast manifests as a white, pink, or red color pigment. Experimental manipulations destabilize prion phenotypes, and allow colonies to exhibit [ p s i - ] (red) sectored phenotypes within otherwise completely white colonies. Further investigation of the size and frequency of sectors that emerge as a result of experimental manipulation is capable of providing critical information on mechanisms of prion curing, but we lack a way to reliably extract this information. Images of experimental colonies exhibiting sectored phenotypes offer an abundance of data to help uncover molecular mechanisms of sectoring, yet the structure of sectored colonies is ignored in traditional biological pipelines. In this study, we present [PSI]-CIC, the first computational pipeline designed to identify and characterize features of sectored yeast colonies. To overcome the barrier of a lack of manually annotated data of colonies, we develop a neural network architecture that we train on synthetic images of colonies and apply to real images of [ P S I + ] , [ p s i - ] , and sectored colonies. In hand-annotated experimental images, our pipeline correctly predicts the state of approximately 95% of colonies detected and frequency of sectors in approximately 89.5% of colonies detected. The scope of our pipeline could be extended to categorizing colonies grown under different experimental conditions, allowing for more meaningful and detailed comparisons between experiments. Our approach streamlines the analysis of sectored yeast colonies providing a rich set of quantitative metrics and provides insight into mechanisms driving the curing of prion phenotypes.
Collapse
Affiliation(s)
- Jordan Collignon
- Department of Applied Mathematics, University of California, Merced, 5200 N Lake Drive, Merced, CA, 95343, USA
| | - Wesley Naeimi
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, 240 Thatcher Rd, Amherst, MA, 01003, USA
| | - Tricia R Serio
- Department of Chemistry and Biochemistry, University of Washington, 109 Bagley Hall, Seattle, WA, 98195, USA
| | - Suzanne Sindi
- Department of Applied Mathematics, University of California, Merced, 5200 N Lake Drive, Merced, CA, 95343, USA.
| |
Collapse
|
2
|
Buchholz HE, Dorweiler JE, Guereca S, Wisniewski BT, Shorter J, Manogaran AL. The middle domain of Hsp104 can ensure substrates are functional after processing. PLoS Genet 2024; 20:e1011424. [PMID: 39361717 PMCID: PMC11478891 DOI: 10.1371/journal.pgen.1011424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/15/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Molecular chaperones play a central role in protein disaggregation. However, the molecular determinants that regulate this process are poorly understood. Hsp104 is an AAA+ ATPase that disassembles stress granules and amyloids in yeast through collaboration with Hsp70 and Hsp40. In vitro studies show that Hsp104 processes different types of protein aggregates by partially translocating or threading polypeptides through the central pore of the hexamer. However, it is unclear how Hsp104 processing influences client protein function in vivo. The middle domain (MD) of Hsp104 regulates ATPase activity and interactions with Hsp70. Here, we tested how MD variants, Hsp104A503S and Hsp104A503V, process different protein aggregates. We establish that engineered MD variants fail to resolve stress granules but retain prion fragmentation activity required for prion propagation. Using the Sup35 prion protein, our in vitro and in vivo data indicate that the MD variants can disassemble Sup35 aggregates, but the disaggregated protein has reduced GTPase and translation termination activity. These results suggest that the middle domain can play a role in sensing certain substrates and plays an essential role in ensuring the processed protein is functional.
Collapse
Affiliation(s)
- Hannah E. Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Sam Guereca
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Brett T. Wisniewski
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anita L. Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
3
|
Stanford KE, Zhao X, Kim N, Masison DC, Greene LE. Overexpression of Hsp104 by Causing Dissolution of the Prion Seeds Cures the Yeast [ PSI+] Prion. Int J Mol Sci 2023; 24:10833. [PMID: 37446010 DOI: 10.3390/ijms241310833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The yeast Sup35 protein misfolds into the infectious [PSI+] prion, which is then propagated by the severing activity of the molecular chaperone, Hsp104. Unlike other yeast prions, this prion is unique in that it is efficiently cured by the overexpression as well as the inactivation of Hsp104. However, it is controversial whether curing by overexpression is due to the dissolution of the prion seeds by the trimming activity of Hsp104 or the asymmetric segregation of the prion seeds between mother and daughter cells which requires cell division. To answer this question, we conducted experiments and found no difference in the extent of curing between mother and daughter cells when half of the cells were cured by Hsp104 overexpression in one generation. Furthermore, curing was not affected by the lack of Sir2 expression, which was reported to be required for asymmetric segregation of the [PSI+] seeds. More importantly, when either hydroxyurea or ethanol were used to inhibit cell division, the extent of curing by Hsp104 overexpression was not significantly reduced. Therefore, the curing of [PSI+] by Hsp104 overexpression is not due to asymmetric segregation of the prion seeds, but rather their dissolution by Hsp104.
Collapse
Affiliation(s)
- Katherine E Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Kim
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lois E Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Zhouravleva GA, Bondarev SA, Zemlyanko OM, Moskalenko SE. Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization. Mol Biol 2022. [DOI: 10.1134/s0026893322010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Differential Interactions of Molecular Chaperones and Yeast Prions. J Fungi (Basel) 2022; 8:jof8020122. [PMID: 35205876 PMCID: PMC8877571 DOI: 10.3390/jof8020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Baker’s yeast Saccharomyces cerevisiae is an important model organism that is applied to study various aspects of eukaryotic cell biology. Prions in yeast are self-perpetuating heritable protein aggregates that can be leveraged to study the interaction between the protein quality control (PQC) machinery and misfolded proteins. More than ten prions have been identified in yeast, of which the most studied ones include [PSI+], [URE3], and [PIN+]. While all of the major molecular chaperones have been implicated in propagation of yeast prions, many of these chaperones differentially impact propagation of different prions and/or prion variants. In this review, we summarize the current understanding of the life cycle of yeast prions and systematically review the effects of different chaperone proteins on their propagation. Our analysis clearly shows that Hsp40 proteins play a central role in prion propagation by determining the fate of prion seeds and other amyloids. Moreover, direct prion-chaperone interaction seems to be critically important for proper recruitment of all PQC components to the aggregate. Recent results also suggest that the cell asymmetry apparatus, cytoskeleton, and cell signaling all contribute to the complex network of prion interaction with the yeast cell.
Collapse
|
6
|
Amyloid Fragmentation and Disaggregation in Yeast and Animals. Biomolecules 2021; 11:biom11121884. [PMID: 34944528 PMCID: PMC8699242 DOI: 10.3390/biom11121884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/29/2022] Open
Abstract
Amyloids are filamentous protein aggregates that are associated with a number of incurable diseases, termed amyloidoses. Amyloids can also manifest as infectious or heritable particles, known as prions. While just one prion is known in humans and animals, more than ten prion amyloids have been discovered in fungi. The propagation of fungal prion amyloids requires the chaperone Hsp104, though in excess it can eliminate some prions. Even though Hsp104 acts to disassemble prion fibrils, at normal levels it fragments them into multiple smaller pieces, which ensures prion propagation and accelerates prion conversion. Animals lack Hsp104, but disaggregation is performed by the same complement of chaperones that assist Hsp104 in yeast—Hsp40, Hsp70, and Hsp110. Exogenous Hsp104 can efficiently cooperate with these chaperones in animals and promotes disaggregation, especially of large amyloid aggregates, which indicates its potential as a treatment for amyloid diseases. However, despite the significant effects, Hsp104 and its potentiated variants may be insufficient to fully dissolve amyloid. In this review, we consider chaperone mechanisms acting to disassemble heritable protein aggregates in yeast and animals, and their potential use in the therapy of human amyloid diseases.
Collapse
|
7
|
Innate immunity to prions: anti-prion systems turn a tsunami of prions into a slow drip. Curr Genet 2021; 67:833-847. [PMID: 34319422 DOI: 10.1007/s00294-021-01203-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
The yeast prions (infectious proteins) [URE3] and [PSI+] are essentially non-functional (or even toxic) amyloid forms of Ure2p and Sup35p, whose normal function is in nitrogen catabolite repression and translation termination, respectively. Yeast has an array of systems working in normal cells that largely block infection with prions, block most prion formation, cure most nascent prions and mitigate the toxic effects of those prions that escape the first three types of systems. Here we review recent progress in defining these anti-prion systems, how they work and how they are regulated. Polymorphisms of the prion domains partially block infection with prions. Ribosome-associated chaperones ensure proper folding of nascent proteins, thus reducing [PSI+] prion formation and curing many [PSI+] variants that do form. Btn2p is a sequestering protein which gathers [URE3] amyloid filaments to one place in the cells so that the prion is often lost by progeny cells. Proteasome impairment produces massive overexpression of Btn2p and paralog Cur1p, resulting in [URE3] curing. Inversely, increased proteasome activity, by derepression of proteasome component gene transcription or by 60S ribosomal subunit gene mutation, prevents prion curing by Btn2p or Cur1p. The nonsense-mediated decay proteins (Upf1,2,3) cure many nascent [PSI+] variants by associating with Sup35p directly. Normal levels of the disaggregating chaperone Hsp104 can also cure many [PSI+] prion variants. By keeping the cellular levels of certain inositol polyphosphates / pyrophosphates low, Siw14p cures certain [PSI+] variants. It is hoped that exploration of the yeast innate immunity to prions will lead to discovery of similar systems in humans.
Collapse
|
8
|
Mechanisms for Curing Yeast Prions. Int J Mol Sci 2020; 21:ijms21186536. [PMID: 32906758 PMCID: PMC7555348 DOI: 10.3390/ijms21186536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
Prions are infectious proteins that self-propagate by changing from their normal folded conformation to a misfolded conformation. The misfolded conformation, which is typically rich in β-sheet, serves as a template to convert the prion protein into its misfolded conformation. In yeast, the misfolded prion proteins are assembled into amyloid fibers or seeds, which are constantly severed and transmitted to daughter cells. To cure prions in yeast, it is necessary to eliminate all the prion seeds. Multiple mechanisms of curing have been found including inhibiting severing of the prion seeds, gradual dissolution of the prion seeds, asymmetric segregation of the prion seeds between mother and daughter cells during cell division, and degradation of the prion seeds. These mechanisms, achieved by using different protein quality control machinery, are not mutually exclusive; depending on conditions, multiple mechanisms may work simultaneously to achieve curing. This review discusses the various methods that have been used to differentiate between these mechanisms of curing.
Collapse
|
9
|
Wickner RB, Edskes HK, Son M, Wu S, Niznikiewicz M. How Do Yeast Cells Contend with Prions? Int J Mol Sci 2020; 21:ijms21134742. [PMID: 32635197 PMCID: PMC7369894 DOI: 10.3390/ijms21134742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious proteins (prions) include an array of human (mammalian) and yeast amyloid diseases in which a protein or peptide forms a linear β-sheet-rich filament, at least one functional amyloid prion, and two functional infectious proteins unrelated to amyloid. In Saccharomyces cerevisiae, at least eight anti-prion systems deal with pathogenic amyloid yeast prions by (1) blocking their generation (Ssb1,2, Ssz1, Zuo1), (2) curing most variants as they arise (Btn2, Cur1, Hsp104, Upf1,2,3, Siw14), and (3) limiting the pathogenicity of variants that do arise and propagate (Sis1, Lug1). Known mechanisms include facilitating proper folding of the prion protein (Ssb1,2, Ssz1, Zuo1), producing highly asymmetric segregation of prion filaments in mitosis (Btn2, Hsp104), competing with the amyloid filaments for prion protein monomers (Upf1,2,3), and regulation of levels of inositol polyphosphates (Siw14). It is hoped that the discovery of yeast anti-prion systems and elucidation of their mechanisms will facilitate finding analogous or homologous systems in humans, whose manipulation may be useful in treatment.
Collapse
|
10
|
Kabani M, Pilard M, Melki R. Glucose availability dictates the export of the soluble and prion forms of Sup35p via periplasmic or extracellular vesicles. Mol Microbiol 2020; 114:322-332. [PMID: 32339313 DOI: 10.1111/mmi.14515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022]
Abstract
The yeast [PSI+ ] prion originates from the self-perpetuating transmissible aggregates of the translation termination factor Sup35p. We previously showed that infectious Sup35p particles are exported outside the cells via extracellular vesicles (EV). This finding suggested a function for EV in the vertical and horizontal transmission of yeast prions. Here we report a significant export of Sup35p within periplasmic vesicles (PV) upon glucose starvation. We show that PV are up to three orders of magnitude more abundant than EV. However, PV and EV are different in terms of size and protein content, and their export is oppositely regulated by glucose availability in the growth medium. Overall, our work suggests that the export of prion particles to both the periplasm and the extracellular space needs to be considered to address the physiological consequences of vesicle-mediated yeast prions trafficking.
Collapse
Affiliation(s)
- Mehdi Kabani
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Marion Pilard
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Ronald Melki
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Drozdova PB, Barbitoff YA, Belousov MV, Skitchenko RK, Rogoza TM, Leclercq JY, Kajava AV, Matveenko AG, Zhouravleva GA, Bondarev SA. Estimation of amyloid aggregate sizes with semi-denaturing detergent agarose gel electrophoresis and its limitations. Prion 2020; 14:118-128. [PMID: 32306832 PMCID: PMC7199750 DOI: 10.1080/19336896.2020.1751574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) was proposed by Vitaly V. Kushnirov in the Michael D. Ter-Avanesyan’s laboratory as a method to compare sizes of amyloid aggregates. Currently, this method is widely used for amyloid investigation, but mostly as a qualitative approach. In this work, we assessed the possibilities and limitations of the quantitative analysis of amyloid aggregate size distribution using SDD-AGE results. For this purpose, we used aggregates of two well-characterized yeast amyloid-forming proteins, Sup35 and Rnq1, and developed a protocol to standardize image analysis and process the result. A detailed investigation of factors that may affect the results of SDD-AGE revealed that both the cell lysis method and electrophoresis conditions can substantially affect the estimation of aggregate size. Despite this, quantitative analysis of SDD-AGE results is possible when one needs to estimate and compare the size of aggregates on the same gel, or even in different experiments, if the experimental conditions are tightly controlled and additional standards are used.
Collapse
Affiliation(s)
- Polina B Drozdova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Yury A Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V Belousov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Rostislav K Skitchenko
- International Research Institute of Bioengineering, ITMO University, St. Petersburg, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Vavilov Institute of General Genetics Russian Academy of Sciences, St. Petersburg Branch, St. Petersburg, Russia
| | - Jeremy Y Leclercq
- Centre de Recherche En Biologie Cellulaire De Montpellier, UMR 5237 CNRS, Montpellier, France
| | - Andrey V Kajava
- International Research Institute of Bioengineering, ITMO University, St. Petersburg, Russia.,Centre de Recherche En Biologie Cellulaire De Montpellier, UMR 5237 CNRS, Montpellier, France
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
12
|
Dorweiler JE, Obaoye JO, Oddo MJ, Shilati FM, Scheidemantle GM, Coleman TJ, Reilly JA, Smith GR, Manogaran AL. DMSO-mediated curing of several yeast prion variants involves Hsp104 expression and protein solubilization, and is decreased in several autophagy related gene (atg) mutants. PLoS One 2020; 15:e0229796. [PMID: 32134970 PMCID: PMC7058316 DOI: 10.1371/journal.pone.0229796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/14/2020] [Indexed: 02/04/2023] Open
Abstract
Chaperones and autophagy are components of the protein quality control system that contribute to the management of proteins that are misfolded and aggregated. Here, we use yeast prions, which are self-perpetuating aggregating proteins, as a means to understand how these protein quality control systems influence aggregate loss. Chaperones, such as Hsp104, fragment prion aggregates to generate more prion seeds for propagation. While much is known about the role of chaperones, little is known about how other quality control systems contribute to prion propagation. We show that the aprotic solvent dimethyl sulfoxide (DMSO) cures a range of [PSI+] prion variants, which are related to several misfolded aggregated conformations of the Sup35 protein. Our studies show that DMSO-mediated curing is quicker and more efficient than guanidine hydrochloride, a prion curing agent that inactivates the Hsp104 chaperone. Instead, DMSO appears to induce Hsp104 expression. Using the yTRAP system, a recently developed transcriptional reporting system for tracking protein solubility, we found that DMSO also rapidly induces the accumulation of soluble Sup35 protein, suggesting a potential link between Hsp104 expression and disassembly of Sup35 from the prion aggregate. However, DMSO-mediated curing appears to also be associated with other quality control systems. While the induction of autophagy alone does not lead to curing, we found that DMSO-mediated curing is dramatically impaired in autophagy related (atg) gene mutants, suggesting that other factors influence this DMSO mechanism of curing. Our data suggest that DMSO-mediated curing is not simply dependent upon Hsp104 overexpression alone, but may further depend upon other aspects of proteostasis.
Collapse
Affiliation(s)
- Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States of America
| | - Joanna O. Obaoye
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States of America
| | - Mitch J. Oddo
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States of America
| | - Francesca M. Shilati
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States of America
| | - Grace M. Scheidemantle
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States of America
| | - Thomas J. Coleman
- Department of Biology, Lakeland University, Plymouth, WI, United States of America
| | - Jacob A. Reilly
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States of America
| | - Gregory R. Smith
- Department of Biology, Lakeland University, Plymouth, WI, United States of America
| | - Anita L. Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yeast Models for Amyloids and Prions: Environmental Modulation and Drug Discovery. Molecules 2019; 24:molecules24183388. [PMID: 31540362 PMCID: PMC6767215 DOI: 10.3390/molecules24183388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition) with human disease-related amyloids. Fundamental protein quality control pathways, including chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative diseases have become powerful tools for high-throughput screening for chemical compounds and FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions. Studies of environmental and physiological regulation of yeast prions open new possibilities for pharmacological intervention and/or prophylactic procedures aiming on common cellular systems rather than the properties of specific amyloids.
Collapse
|
14
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
15
|
Alexandrov AI, Grosfeld EV, Dergalev AA, Kushnirov VV, Chuprov-Netochin RN, Tyurin-Kuzmin PA, Kireev II, Ter-Avanesyan MD, Leonov SV, Agaphonov MO. Analysis of novel hyperosmotic shock response suggests 'beads in liquid' cytosol structure. Biol Open 2019; 8:bio044529. [PMID: 31285266 PMCID: PMC6679407 DOI: 10.1242/bio.044529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
Proteins can aggregate in response to stresses, including hyperosmotic shock. Formation and disassembly of aggregates is a relatively slow process. We describe a novel instant response of the cell to hyperosmosis, during which chaperones and other proteins form numerous foci with properties uncharacteristic of classical aggregates. These foci appeared/disappeared seconds after shock onset/removal, in close correlation with cell volume changes. Genome-wide and targeted testing revealed chaperones, metabolic enzymes, P-body components and amyloidogenic proteins in the foci. Most of these proteins can form large assemblies and for some, the assembled state was pre-requisite for participation in foci. A genome-wide screen failed to identify genes whose absence prevented foci participation by Hsp70. Shapes of and interconnections between foci, revealed by super-resolution microscopy, indicated that the foci were compressed between other entities. Based on our findings, we suggest a new model of cytosol architecture as a collection of numerous gel-like regions suspended in a liquid network. This network is reduced in volume in response to hyperosmosis and forms small pockets between the gel-like regions.
Collapse
Affiliation(s)
- Alexander I Alexandrov
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gori 1, bldg 40, Moscow 119234, Russia
| | - Erika V Grosfeld
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
- Chair of Molecular and Cell Biology, Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexander A Dergalev
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
| | - Vitaly V Kushnirov
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovskiy pr., 27 bldg 1, Moscow 119192, Russia
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gori 1, bldg 40, Moscow 119234, Russia
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow 117198, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Michael D Ter-Avanesyan
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
| | - Sergey V Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russia
- Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya str., 3, Moscow Region, 142290 Puschino, Russia
| | - Michael O Agaphonov
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Ave. 33, bld. 2, Moscow 119071, Russia
| |
Collapse
|
16
|
Howie RL, Jay-Garcia LM, Kiktev DA, Faber QL, Murphy M, Rees KA, Sachwani N, Chernoff YO. Role of the Cell Asymmetry Apparatus and Ribosome-Associated Chaperones in the Destabilization of a Saccharomyces cerevisiae Prion by Heat Shock. Genetics 2019; 212:757-771. [PMID: 31142614 PMCID: PMC6614889 DOI: 10.1534/genetics.119.302237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
Self-perpetuating transmissible protein aggregates, termed prions, are implicated in mammalian diseases and control phenotypically detectable traits in Saccharomyces cerevisiae Yeast stress-inducible chaperone proteins, including Hsp104 and Hsp70-Ssa that counteract cytotoxic protein aggregation, also control prion propagation. Stress-damaged proteins that are not disaggregated by chaperones are cleared from daughter cells via mother-specific asymmetric segregation in cell divisions following heat shock. Short-term mild heat stress destabilizes [PSI+ ], a prion isoform of the yeast translation termination factor Sup35 This destabilization is linked to the induction of the Hsp104 chaperone. Here, we show that the region of Hsp104 known to be required for curing by artificially overproduced Hsp104 is also required for heat-shock-mediated [PSI+ ] destabilization. Moreover, deletion of the SIR2 gene, coding for a deacetylase crucial for asymmetric segregation of heat-damaged proteins, also counteracts heat-shock-mediated destabilization of [PSI+ ], and Sup35 aggregates are colocalized with aggregates of heat-damaged proteins marked by Hsp104-GFP. These results support the role of asymmetric segregation in prion destabilization. Finally, we show that depletion of the heat-shock noninducible ribosome-associated chaperone Hsp70-Ssb decreases heat-shock-mediated destabilization of [PSI+ ], while disruption of a cochaperone complex mediating the binding of Hsp70-Ssb to the ribosome increases prion loss. Our data indicate that Hsp70-Ssb relocates from the ribosome to the cytosol during heat stress. Cytosolic Hsp70-Ssb has been shown to antagonize the function of Hsp70-Ssa in prion propagation, which explains the Hsp70-Ssb effect on prion destabilization by heat shock. This result uncovers the stress-related role of a stress noninducible chaperone.
Collapse
Affiliation(s)
- Rebecca L Howie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | - Denis A Kiktev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia 199034
| | - Quincy L Faber
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Margaret Murphy
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Katherine A Rees
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Numera Sachwani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia 199034
| |
Collapse
|
17
|
Killian AN, Miller SC, Hines JK. Impact of Amyloid Polymorphism on Prion-Chaperone Interactions in Yeast. Viruses 2019; 11:v11040349. [PMID: 30995727 PMCID: PMC6521183 DOI: 10.3390/v11040349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022] Open
Abstract
Yeast prions are protein-based genetic elements found in the baker's yeast Saccharomyces cerevisiae, most of which are amyloid aggregates that propagate by fragmentation and spreading of small, self-templating pieces called propagons. Fragmentation is carried out by molecular chaperones, specifically Hsp104, Hsp70, and Hsp40. Like other amyloid-forming proteins, amyloid-based yeast prions exhibit structural polymorphisms, termed "strains" in mammalian systems and "variants" in yeast, which demonstrate diverse phenotypes and chaperone requirements for propagation. Here, the known differential interactions between chaperone proteins and yeast prion variants are reviewed, specifically those of the yeast prions [PSI+], [RNQ+]/[PIN+], and [URE3]. For these prions, differences in variant-chaperone interactions (where known) with Hsp104, Hsp70s, Hsp40s, Sse1, and Hsp90 are summarized, as well as some interactions with chaperones of other species expressed in yeast. As amyloid structural differences greatly impact chaperone interactions, understanding and accounting for these variations may be crucial to the study of chaperones and both prion and non-prion amyloids.
Collapse
Affiliation(s)
- Andrea N Killian
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| | - Sarah C Miller
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| |
Collapse
|
18
|
Yu CI, King CY. Forms and abundance of chaperone proteins influence yeast prion variant competition. Mol Microbiol 2019; 111:798-810. [PMID: 30582872 DOI: 10.1111/mmi.14192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 02/01/2023]
Abstract
[PSI+ ] variants are different infectious conformations of the same Sup35 protein. We show that when [PSI+ ] variants VK and VL co-infect a dividing host, only one prevails in the end and the host genetic background is involved in winner selection. In the 5V-H19 background, the VK variant dominates over the VL variant. The order of dominance is reversed in the 74-D694 background, where VL can coexists with VK for a short period, but will eventually take over. Differential interaction of chaperone proteins with distinct prion variant conformations can influence the outcome of competition. Expanding the Glycine/Methionine-rich domain of Sis1, an Hsp40 protein, helps the propagation of VL. Over-expression of the Hsp70 protein Ssa2 lowers the number of prion particles (propagons) in the cell. There is more reduction for VK than VL, causing the latter to dominate in some of the 5V-H19 and all of the 74-D694 cells tested. Consistently, depleting Ssa1 in 74-D694 strengthens VK. Swapping chromosomal alleles of SSA1/2 and SIS1 between 5V-H19 and 74-D694, including cognate promoters, is not sufficient to change the native dominance order of each background, suggesting there exist additional polymorphic factors that modulate [PSI+ ] competition.
Collapse
Affiliation(s)
- Chang-I Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Yen King
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
19
|
Xu L, Gong W, Zhang H, Perrett S, Jones GW. The same but different: the role of Hsp70 in heat shock response and prion propagation. Prion 2018; 12:170-174. [PMID: 30074427 DOI: 10.1080/19336896.2018.1507579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The Hsp70 chaperone machinery is a key component of the heat-shock response and a modulator of prion propagation in yeast. A major factor in optimizing Hsp70 function is the highly coordinated activities of the nucleotide-binding and substrate-binding domains of the protein. Hsp70 inter-domain communication occurs through a bidirectional allosteric interaction network between the two domains. Recent findings identified the β6/β7 region of the substrate-binding domain as playing a critical role in optimizing Hsp70 function in both the stress response and prion propagation and highlighted the allosteric interaction interface between the domains. Importantly, while functional changes in Hsp70 can result in phenotypic consequences for both the stress response and prion propagation, there can be significant differences in the levels of phenotypic impact that such changes illicit.
Collapse
Affiliation(s)
- Linan Xu
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| | - Weibin Gong
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Hong Zhang
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,c University of the Chinese Academy of Sciences , Beijing , China
| | - Sarah Perrett
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,c University of the Chinese Academy of Sciences , Beijing , China
| | - Gary W Jones
- d Centre for Biomedical Science Research, School of Clinical and Applied Sciences , Leeds Beckett University , Leeds , UK
| |
Collapse
|
20
|
Wickner RB, Edskes HK, Son M, Bezsonov EE, DeWilde M, Ducatez M. Yeast Prions Compared to Functional Prions and Amyloids. J Mol Biol 2018; 430:3707-3719. [PMID: 29698650 DOI: 10.1016/j.jmb.2018.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/25/2023]
Abstract
Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI+] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel β-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA.
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Morgan DeWilde
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Mathieu Ducatez
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| |
Collapse
|
21
|
Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in Hsp104-mediated prion elimination. Mol Microbiol 2018; 109:41-62. [PMID: 29633387 PMCID: PMC6099457 DOI: 10.1111/mmi.13966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
The amyloid-based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J-protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+ ] by an alternative Sis1-dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J-proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well-studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J-proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J-protein complement, uncovered significant variant-dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+ ] variants, depletion of Apj1 inhibits Hsp104-mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J-protein necessary for the propagation of at least two weak [PSI+ ] variants and no J-protein alteration, or even combination of alterations, affected the curing of weak [PSI+ ] variants, suggesting the possibility of biochemically distinct, variant-specific Hsp104-mediated curing mechanisms.
Collapse
Affiliation(s)
| | - Erina Kamiya
- Department of ChemistryLafayette CollegeEastonPAUSA
| | - Zachary A. Sporn
- Department of ChemistryLafayette CollegeEastonPAUSA
- Present address:
Geisinger Commonwealth School of MedicineScrantonPAUSA
| | | | | |
Collapse
|
22
|
Zhao X, Lanz J, Steinberg D, Pease T, Ahearn JM, Bezsonov EE, Staguhn ED, Eisenberg E, Masison DC, Greene LE. Real-time imaging of yeast cells reveals several distinct mechanisms of curing of the [URE3] prion. J Biol Chem 2018; 293:3104-3117. [PMID: 29330300 DOI: 10.1074/jbc.m117.809079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
The [URE3] yeast prion is the self-propagating amyloid form of the Ure2 protein. [URE3] is cured by overexpression of several yeast proteins, including Ydj1, Btn2, Cur1, Hsp42, and human DnaJB6. To better understand [URE3] curing, we used real-time imaging with a yeast strain expressing a GFP-labeled full-length Ure2 construct to monitor the curing of [URE3] over time. [URE3] yeast cells exhibited numerous fluorescent foci, and expression of the GFP-labeled Ure2 affected neither mitotic stability of [URE3] nor the rate of [URE3] curing by the curing proteins. Using guanidine to cure [URE3] via Hsp104 inactivation, we found that the fluorescent foci are progressively lost as the cells divide until they are cured; the fraction of cells that retained the foci was equivalent to the [URE3] cell fraction measured by a plating assay, indicating that the foci were the prion seeds. During the curing of [URE3] by Btn2, Cur1, Hsp42, or Ydj1 overexpression, the foci formed aggregates, many of which were 0.5 μm or greater in size, and [URE3] was cured by asymmetric segregation of the aggregated seeds. In contrast, DnaJB6 overexpression first caused a loss of detectable foci in cells that were still [URE3] before there was complete dissolution of the seeds, and the cells were cured. We conclude that GFP labeling of full-length Ure2 enables differentiation among the different [URE3]-curing mechanisms, including inhibition of severing followed by seed dilution, seed clumping followed by asymmetric segregation between mother and daughter cells, and seed dissolution.
Collapse
Affiliation(s)
| | - Jenna Lanz
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Tyler Pease
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Evgeny E Bezsonov
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | | | | - Daniel C Masison
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | |
Collapse
|
23
|
Chernova TA, Kiktev DA, Romanyuk AV, Shanks JR, Laur O, Ali M, Ghosh A, Kim D, Yang Z, Mang M, Chernoff YO, Wilkinson KD. Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress. Cell Rep 2017; 18:751-761. [PMID: 28099852 DOI: 10.1016/j.celrep.2016.12.082] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/18/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022] Open
Abstract
Self-perpetuating ordered protein aggregates (amyloids and prions) are associated with a variety of neurodegenerative disorders. Although environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. We have employed endogenous yeast prions as a model system to study environmental control of amyloid formation. A short-lived actin-associated yeast protein Lsb2 can trigger prion formation by other proteins in a mode regulated by the cytoskeleton and ubiquitin-dependent processes. Here, we show that such a heterologous prion induction is due to the ability of Lsb2 to form a transient prion state, generated in response to thermal stress. Evolutionary acquisition of prion-inducing activity by Lsb2 is traced to a single amino acid change, coinciding with the acquisition of thermotolerance in the Saccharomyces yeast lineage. This raises the intriguing possibility that the transient prion formation could aid in functioning of Lsb2 at higher temperatures.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Denis A Kiktev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA; Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Andrey V Romanyuk
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - John R Shanks
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Oskar Laur
- Division of Microbiology, Yerkes Research Center, Emory University, Atlanta, GA 30322, USA
| | - Moiez Ali
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Abheek Ghosh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dami Kim
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhen Yang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maggie Mang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA; Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Keith D Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Aslam K, Tsai CJ, Hazbun TR. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation. Prion 2017; 10:444-465. [PMID: 27690738 DOI: 10.1080/19336896.2016.1234574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSI+] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSI+] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI+] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSI+] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSI+] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSI+] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSI+] status by the chaperone action of Hsp31. The delineation of Hsp31's role in the chaperone cycle has implications for understanding the role of the DJ-1 superfamily in controlling misfolded proteins in neurodegenerative disease and cancer.
Collapse
Affiliation(s)
- Kiran Aslam
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| | - Chai-Jui Tsai
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| | - Tony R Hazbun
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
25
|
Abstract
Prions are infectious protein polymers that have been found to cause fatal diseases in mammals. Prions have also been identified in fungi (yeast and filamentous fungi), where they behave as cytoplasmic non-Mendelian genetic elements. Fungal prions correspond in most cases to fibrillary β-sheet-rich protein aggregates termed amyloids. Fungal prion models and, in particular, yeast prions were instrumental in the description of fundamental aspects of prion structure and propagation. These models established the "protein-only" nature of prions, the physical basis of strain variation, and the role of a variety of chaperones in prion propagation and amyloid aggregate handling. Yeast and fungal prions do not necessarily correspond to harmful entities but can have adaptive roles in these organisms.
Collapse
|
26
|
|
27
|
Abstract
The AAA+ disaggregase Hsp104 is essential for the maintenance and inheritance of nearly all known prions of the yeast Saccharomyces cerevisiae. Uniquely for [PSI+], the prion form of the Sup35 protein, there seem to be two activities, involving differing co-chaperones, by which Hsp104 affects the inheritance of [PSI+], the prion form of the Sup35 protein. Each pathway is also involved in protection against ageing, one through disaggregation of damaged proteins and the other through their retention in the mother cell during budding. Mutations in both Hsp104 and Sup35 affect prion inheritance by one or other of these pathways, as does manipulation of either Hsp104 enzyme activity or expression, in both vegetative (budding) divisions and in sporulation. Based on our recent finding (Ness et al. in Molec Microbiol 104:125–143, 2017) we suggest that the management of the heritable prion forms of Sup35 in [PSI+] cells in sporulation may be a marker for a role for Hsp104 in rejuvenation during sporulation.
Collapse
Affiliation(s)
- Brian Cox
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK. .,Linacre College, Oxford University, St. Cross Rd, Oxford, OX1 3JA, UK.
| | - Mick Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
28
|
Abstract
Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices. We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.
Collapse
Affiliation(s)
- Tatiana A Chernova
- a Department of Biochemistry , Emory University School of Medicine , Atlanta , GA , USA
| | - Yury O Chernoff
- b School of Biological Sciences , Georgia Institute of Technology , Atlanta , GA , USA.,c Laboratory of Amyloid Biology and Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Keith D Wilkinson
- a Department of Biochemistry , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
29
|
Barbitoff YA, Matveenko AG, Moskalenko SE, Zemlyanko OM, Newnam GP, Patel A, Chernova TA, Chernoff YO, Zhouravleva GA. To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Mol Microbiol 2017; 105:242-257. [PMID: 28431189 DOI: 10.1111/mmi.13697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
Yeast self-perpetuating protein aggregates (prions) provide a convenient model for studying various components of the cellular protein quality control system. Molecular chaperones and chaperone-sorting factors, such as yeast Cur1 protein, play key role in proteostasis via tight control of partitioning and recycling of misfolded proteins. In this study, we show that, despite the previously described ability of Cur1 to antagonize the yeast prion [URE3], it enhances propagation and phenotypic manifestation of another prion, [PSI+ ]. We demonstrate that both curing of [URE3] and enhancement of [PSI+ ] in the presence of excess Cur1 are counteracted by the cochaperone Hsp40-Sis1 in a dosage-dependent manner, and show that the effect of Cur1 on prions parallels effects of the attachment of nuclear localization signal to Sis1, indicating that Cur1 acts on prions via its previously reported ability to relocalize Sis1 from the cytoplasm to nucleus. This shows that the direction in which Cur1 influences a prion depends on how this specific prion responds to relocalization of Sis1.
Collapse
Affiliation(s)
- Yury A Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Svetlana E Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Olga M Zemlyanko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Gary P Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Ayesha Patel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
30
|
Hsp104 disaggregase at normal levels cures many [ PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proc Natl Acad Sci U S A 2017; 114:E4193-E4202. [PMID: 28484020 DOI: 10.1073/pnas.1704016114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Overproduction or deficiency of many chaperones and other cellular components cure the yeast prions [PSI+] (formed by Sup35p) or [URE3] (based on Ure2p). However, at normal expression levels, Btn2p and Cur1p eliminate most newly arising [URE3] variants but do not cure [PSI+], even after overexpression. Deficiency or overproduction of Hsp104 cures the [PSI+] prion. Hsp104 deficiency curing is a result of failure to cleave the Sup35p amyloid filaments to make new seeds, whereas Hsp104 overproduction curing occurs by a different mechanism. Hsp104(T160M) can propagate [PSI+], but cannot cure it by overproduction, thus separating filament cleavage from curing activities. Here we show that most [PSI+] variants arising spontaneously in an hsp104(T160M) strain are cured by restoration of just normal levels of the WT Hsp104. Both strong and weak [PSI+] variants are among those cured by this process. This normal-level Hsp104 curing is promoted by Sti1p, Hsp90, and Sis1p, proteins previously implicated in the Hsp104 overproduction curing of [PSI+]. The [PSI+] prion arises in hsp104(T160M) cells at more than 10-fold the frequency in WT cells. The curing activity of Hsp104 thus constitutes an antiprion system, culling many variants of the [PSI+] prion at normal Hsp104 levels.
Collapse
|
31
|
Ness F, Cox BS, Wongwigkarn J, Naeimi WR, Tuite MF. Over-expression of the molecular chaperone Hsp104 inSaccharomyces cerevisiaeresults in the malpartition of [PSI+] propagons. Mol Microbiol 2017; 104:125-143. [DOI: 10.1111/mmi.13617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Frederique Ness
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| | - Brian S. Cox
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| | - Jintana Wongwigkarn
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| | - Wesley R. Naeimi
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| |
Collapse
|
32
|
Chernova TA, Wilkinson KD, Chernoff YO. Prions, Chaperones, and Proteostasis in Yeast. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023663. [PMID: 27815300 DOI: 10.1101/cshperspect.a023663] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prions are alternatively folded, self-perpetuating protein isoforms involved in a variety of biological and pathological processes. Yeast prions are protein-based heritable elements that serve as an excellent experimental system for studying prion biology. The propagation of yeast prions is controlled by the same Hsp104/70/40 chaperone machinery that is involved in the protection of yeast cells against proteotoxic stress. Ribosome-associated chaperones, proteolytic pathways, cellular quality-control compartments, and cytoskeletal networks influence prion formation, maintenance, and toxicity. Environmental stresses lead to asymmetric prion distribution in cell divisions. Chaperones and cytoskeletal proteins mediate this effect. Overall, this is an intimate relationship with the protein quality-control machinery of the cell, which enables prions to be maintained and reproduced. The presence of many of these same mechanisms in higher eukaryotes has implications for the diagnosis and treatment of mammalian amyloid diseases.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Keith D Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-2000.,Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
33
|
Tikhodeyev ON, Tarasov OV, Bondarev SA. Allelic variants of hereditary prions: The bimodularity principle. Prion 2017; 11:4-24. [PMID: 28281926 PMCID: PMC5360123 DOI: 10.1080/19336896.2017.1283463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either "canonical" (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as "gene" and "allele" to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor.
Collapse
Affiliation(s)
- Oleg N. Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Oleg V. Tarasov
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Saint-Petersburg Scientific Center of RAS, Saint-Petersburg, Russia
| | - Stanislav A. Bondarev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
- The Laboratory of Amyloid Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
34
|
Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo. PLoS Genet 2016; 12:e1006417. [PMID: 27814358 PMCID: PMC5096688 DOI: 10.1371/journal.pgen.1006417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid. Protein misfolding and assembly into ordered aggregates known as amyloid has emerged as a novel mechanism for regulation of protein function. In the case of prion proteins, the resulting amyloid is transmissible, creating protein-based elements of infectivity and inheritance. These unusual properties are linked to the amino acid composition and sequence of the protein, which confer both conformational flexibility and persistence in vivo, the latter of which occurs through mechanisms that are currently poorly understood. Here, we address this open question by studying a region of the yeast prion Sup35 that has been genetically linked to persistence. We find that this region is composed of two separable elements that are both required for efficient persistence of the amyloid. These elements do not contribute to amyloid stability. Rather, they promote distinct aspects of its functional interactions with molecular chaperones, which are required for efficient conformational self-replication and transmission.
Collapse
|
35
|
Blondel M, Soubigou F, Evrard J, Nguyen PH, Hasin N, Chédin S, Gillet R, Contesse MA, Friocourt G, Stahl G, Jones GW, Voisset C. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation. Sci Rep 2016; 6:32117. [PMID: 27633137 PMCID: PMC5025663 DOI: 10.1038/srep32117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/02/2016] [Indexed: 11/09/2022] Open
Abstract
6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases.
Collapse
Affiliation(s)
- Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Flavie Soubigou
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Justine Evrard
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Phu hai Nguyen
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Naushaba Hasin
- Yeast Genetics Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Stéphane Chédin
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CEA, CNRS, Université Paris-Sud, CEA/Saclay, SBIGeM, Gif-sur-Yvette, France
| | - Reynald Gillet
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, Rennes, France
| | - Marie-Astrid Contesse
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Guillaume Stahl
- Laboratoire de Biologie Moléculaire Eucaryotes, CNRS, Université de Toulouse, Toulouse, France
| | - Gary W. Jones
- Yeast Genetics Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Cécile Voisset
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
36
|
Abstract
Although prions were first discovered through their link to severe brain degenerative diseases in animals, the emergence of prions as regulators of the phenotype of the yeast Saccharomyces cerevisiae and the filamentous fungus Podospora anserina has revealed a new facet of prion biology. In most cases, fungal prions are carried without apparent detriment to the host cell, representing a novel form of epigenetic inheritance. This raises the question of whether or not yeast prions are beneficial survival factors or actually gives rise to a "disease state" that is selected against in nature. To date, most studies on the impact of fungal prions have focused on laboratory-cultivated "domesticated" strains of S. cerevisiae. At least eight prions have now been described in this species, each with the potential to impact on a wide range of cellular processes. The discovery of prions in nondomesticated strains of S. cerevisiae and P. anserina has confirmed that prions are not simply an artifact of "domestication" of this species. In this review, I describe what we currently know about the phenotypic impact of fungal prions. I then describe how the interplay between host genotype and the prion-mediated changes can generate a wide array of phenotypic diversity. How such prion-generated diversity may be of benefit to the host in survival in a fluctuating, often hazardous environment is then outlined. Prion research has now entered a new phase in which we must now consider their biological function and evolutionary significance in the natural world.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| |
Collapse
|
37
|
Masison DC, Reidy M. Yeast prions are useful for studying protein chaperones and protein quality control. Prion 2016; 9:174-83. [PMID: 26110609 DOI: 10.1080/19336896.2015.1027856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.
Collapse
Affiliation(s)
- Daniel C Masison
- a Laboratory of Biochemistry and Genetics; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health ; Bethesda , MD USA
| | | |
Collapse
|
38
|
Dual role of ribosome-associated chaperones in prion formation and propagation. Curr Genet 2016; 62:677-685. [PMID: 26968706 DOI: 10.1007/s00294-016-0586-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 01/20/2023]
Abstract
Chaperones of the diverse ubiquitous Hsp70 family are involved in the regulation of ordered self-perpetuating protein aggregates (amyloids and prions), implicated in both devastating diseases and protein-based inheritance. Yeast ribosome-associated chaperone complex (RAC), composed of the Hsp40 protein Zuo1 and non-canonical Hsp70 protein Ssz1, mediates association of the Hsp70 chaperone Ssb with translating ribosomes. Ssb participates in co-translational protein folding, regulation of premature translation termination, and ribosome biogenesis. The loss of Ssb or disruption of RAC results in the increased formation of [PSI +], a prion form of the translation termination factor Sup35 (eRF3). This implicates co-translational protein misfolding in de novo prion formation. However, RAC disruption also destabilizes pre-existing [PSI +] prions, as Ssb, released from ribosomes to the cytosol in the absence of RAC, antagonizes the function of the major cytosolic chaperone, Ssa, in prion propagation. The mechanism of the Ssa/Ssb antagonism is currently under investigation and may include a competition for substrates and/or co-chaperones. Notably, yeast cells with wild-type RAC also release Ssb to the cytosol in certain unfavorable growth conditions, and Ssb contributes to increased prion loss in these conditions. This indicates that the circulation of Ssb between the ribosome and cytosol may serve as a physiological regulator of the formation and propagation of self-perpetuating protein aggregates. Indeed, RAC and Ssb modulate toxicity of some aggregating proteins in yeast. Mammalian cells lack the Ssb ortholog but contain a RAC counterpart, apparently recruiting other Hsp70 protein(s). Thus, amyloid modulation by ribosome-associated chaperones could be applicable beyond yeast.
Collapse
|
39
|
Wickner RB, Edskes HK, Gorkovskiy A, Bezsonov EE, Stroobant EE. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology. ADVANCES IN GENETICS 2016; 93:191-236. [PMID: 26915272 PMCID: PMC9432818 DOI: 10.1016/bs.adgen.2015.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far.
Collapse
Affiliation(s)
- R B Wickner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - H K Edskes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - A Gorkovskiy
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - E E Bezsonov
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - E E Stroobant
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
40
|
Reidy M, Sharma R, Roberts BL, Masison DC. Human J-protein DnaJB6b Cures a Subset of Saccharomyces cerevisiae Prions and Selectively Blocks Assembly of Structurally Related Amyloids. J Biol Chem 2015; 291:4035-47. [PMID: 26702057 DOI: 10.1074/jbc.m115.700393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Human chaperone DnaJB6, an Hsp70 co-chaperone whose defects cause myopathies, protects cells from polyglutamine toxicity and prevents purified polyglutamine and Aβ peptides from forming amyloid. Yeast prions [URE3] and [PSI(+)] propagate as amyloid forms of Ure2 and Sup35 proteins, respectively. Here we find DnaJB6-protected yeast cells from polyglutamine toxicity and cured yeast of both [URE3] prions and weak variants of [PSI(+)] prions but not strong [PSI(+)] prions. Weak and strong variants of [PSI(+)] differ only in the structural conformation of their amyloid cores. In line with its anti-prion effects, DnaJB6 prevented purified Sup35NM from forming amyloids at 37 °C, which produce predominantly weak [PSI(+)] variants when used to infect yeast, but not at 4 °C, which produces mostly strong [PSI(+)] variants. Thus, structurally distinct amyloids composed of the same protein were differentially sensitive to the anti-amyloid activity of DnaJB6 both in vitro and in vivo. These findings have important implications for strategies using DnaJB6 as a target for therapy in amyloid disorders.
Collapse
Affiliation(s)
- Michael Reidy
- From the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Ruchika Sharma
- From the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Brittany-Lee Roberts
- From the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel C Masison
- From the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Kumar N, Gaur D, Gupta A, Puri A, Sharma D. Hsp90-Associated Immunophilin Homolog Cpr7 Is Required for the Mitotic Stability of [URE3] Prion in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005567. [PMID: 26473735 PMCID: PMC4608684 DOI: 10.1371/journal.pgen.1005567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
The role of Hsp70 chaperones in yeast prion propagation is well established. Highly conserved Hsp90 chaperones participate in a number of cellular processes, such as client protein maturation, protein degradation, cellular signalling and apoptosis, but little is known about their role in propagation of infectious prion like aggregates. Here, we examine the influence of Hsp90 in the maintenance of yeast prion [URE3] which is a prion form of native protein Ure2, and reveal a previously unknown role of Hsp90 as an important regulator of [URE3] stability. We show that the C-terminal MEEVD pentapeptide motif, but not the client maturation activity of Hsp90, is essential for [URE3] prion stability. In testing deletions of various Hsp90 co-chaperones known to bind this motif, we find the immunophilin homolog Cpr7 is essential for [URE3] propagation. We show that Cpr7 interacts with Ure2 and enhances its fibrillation. The requirement of Cpr7 is specific for [URE3] as its deletion does not antagonize both strong and weak variant of another yeast prion [PSI+], suggesting a distinct role of the Hsp90 co-chaperone with different yeast prions. Our data show that, similar to the Hsp70 family, the Hsp90 chaperones also influence yeast prion maintenance, and that immunophilins could regulate protein multimerization independently of their activity as peptidyl-prolyl isomerases.
Collapse
Affiliation(s)
- Navinder Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Deepika Gaur
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Arpit Gupta
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Anuradhika Puri
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
42
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
43
|
Jarosz DF, Brown JCS, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A, Newby GA, Weitz DA, Bisson LF, Lindquist S. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 2015; 158:1083-1093. [PMID: 25171409 DOI: 10.1016/j.cell.2014.07.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/29/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
In experimental science, organisms are usually studied in isolation, but in the wild, they compete and cooperate in complex communities. We report a system for cross-kingdom communication by which bacteria heritably transform yeast metabolism. An ancient biological circuit blocks yeast from using other carbon sources in the presence of glucose. [GAR(+)], a protein-based epigenetic element, allows yeast to circumvent this "glucose repression" and use multiple carbon sources in the presence of glucose. Some bacteria secrete a chemical factor that induces [GAR(+)]. [GAR(+)] is advantageous to bacteria because yeast cells make less ethanol and is advantageous to yeast because their growth and long-term viability is improved in complex carbon sources. This cross-kingdom communication is broadly conserved, providing a compelling argument for its adaptive value. By heritably transforming growth and survival strategies in response to the selective pressures of life in a biological community, [GAR(+)] presents a unique example of Lamarckian inheritance.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Chemical and Systems Biology and of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica C S Brown
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gordon A Walker
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Manoshi S Datta
- Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W Lloyd Ung
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Alex K Lancaster
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Assaf Rotem
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Amelia Chang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory A Newby
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Weitz
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Linda F Bisson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA.
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
44
|
Klaips CL, Hochstrasser ML, Langlois CR, Serio TR. Spatial quality control bypasses cell-based limitations on proteostasis to promote prion curing. eLife 2014; 3. [PMID: 25490068 PMCID: PMC4270096 DOI: 10.7554/elife.04288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/23/2014] [Indexed: 01/16/2023] Open
Abstract
The proteostasis network has evolved to support protein folding under normal conditions and to expand this capacity in response to proteotoxic stresses. Nevertheless, many pathogenic states are associated with protein misfolding, revealing in vivo limitations on quality control mechanisms. One contributor to these limitations is the physical characteristics of misfolded proteins, as exemplified by amyloids, which are largely resistant to clearance. However, other limitations imposed by the cellular environment are poorly understood. To identify cell-based restrictions on proteostasis capacity, we determined the mechanism by which thermal stress cures the [PSI(+)]/Sup35 prion. Remarkably, Sup35 amyloid is disassembled at elevated temperatures by the molecular chaperone Hsp104. This process requires Hsp104 engagement with heat-induced non-prion aggregates in late cell-cycle stage cells, which promotes its asymmetric retention and thereby effective activity. Thus, cell division imposes a potent limitation on proteostasis capacity that can be bypassed by the spatial engagement of a quality control factor.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Megan L Hochstrasser
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Christine R Langlois
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Tricia R Serio
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
45
|
Brodsky JL, Merz A, Serio T. Organelle and proteome quality control mechanisms: how cells are able to keep calm and carry on. Mol Biol Cell 2014; 25:733-4. [PMID: 24626847 PMCID: PMC3952841 DOI: 10.1091/mbc.e13-11-0672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 Departments of Biochemistry and Physiology and Biophysics, University of Washington, Seattle, WA 98195-3750 Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | | | | |
Collapse
|
46
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
47
|
Ali M, Chernova TA, Newnam GP, Yin L, Shanks J, Karpova TS, Lee A, Laur O, Subramanian S, Kim D, McNally JG, Seyfried NT, Chernoff YO, Wilkinson KD. Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. J Biol Chem 2014; 289:27625-39. [PMID: 25143386 PMCID: PMC4183801 DOI: 10.1074/jbc.m114.582429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.
Collapse
Affiliation(s)
- Moiez Ali
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatiana A Chernova
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322,
| | - Gary P Newnam
- the School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Luming Yin
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John Shanks
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatiana S Karpova
- the Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew Lee
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Oskar Laur
- the Division of Microbiology, Yerkes Research Center, Emory University, Atlanta, Georgia 30329, and
| | - Sindhu Subramanian
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dami Kim
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - James G McNally
- the Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nicholas T Seyfried
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yury O Chernoff
- the School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, the Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia 199034
| | - Keith D Wilkinson
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322,
| |
Collapse
|
48
|
Jarosz DF, Lancaster AK, Brown JCS, Lindquist S. An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell 2014; 158:1072-1082. [PMID: 25171408 PMCID: PMC4424049 DOI: 10.1016/j.cell.2014.07.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/29/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Abstract
[GAR(+)] is a protein-based element of inheritance that allows yeast (Saccharomyces cerevisiae) to circumvent a hallmark of their biology: extreme metabolic specialization for glucose fermentation. When glucose is present, yeast will not use other carbon sources. [GAR(+)] allows cells to circumvent this "glucose repression." [GAR(+)] is induced in yeast by a factor secreted by bacteria inhabiting their environment. We report that de novo rates of [GAR(+)] appearance correlate with the yeast's ecological niche. Evolutionarily distant fungi possess similar epigenetic elements that are also induced by bacteria. As expected for a mechanism whose adaptive value originates from the selective pressures of life in biological communities, the ability of bacteria to induce [GAR(+)] and the ability of yeast to respond to bacterial signals have been extinguished repeatedly during the extended monoculture of domestication. Thus, [GAR(+)] is a broadly conserved adaptive strategy that links environmental and social cues to heritable changes in metabolism.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Chemical and Systems Biology and of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex K Lancaster
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica C S Brown
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
49
|
Chang HY, Hou SC, Way TD, Wong CH, Wang IF. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation. Nat Commun 2014; 4:2757. [PMID: 24220679 DOI: 10.1038/ncomms3757] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 10/14/2013] [Indexed: 01/05/2023] Open
Abstract
Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.
Collapse
Affiliation(s)
- Hsiang-Yu Chang
- 1] Garage Brain Science, Taichung 413, Taiwan [2] Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 404, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Westergard L, True HL. Extracellular environment modulates the formation and propagation of particular amyloid structures. Mol Microbiol 2014; 92:698-715. [PMID: 24628771 DOI: 10.1111/mmi.12579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/27/2022]
Abstract
Amyloidogenic proteins, including prions, assemble into multiple forms of structurally distinct fibres. The [PSI(+)] prion, endogenous to the yeast Saccharomyces cerevisiae, is a dominantly inherited, epigenetic modifier of phenotypes. [PSI(+)] formation relies on the coexistence of another prion, [RNQ(+)]. Here, in order to better define the role of amyloid diversity on cellular phenotypes, we investigated how physiological and environmental changes impact the generation and propagation of diverse protein conformations from a single polypeptide. Utilizing the yeast model system, we defined extracellular factors that influence the formation of a spectrum of alternative self-propagating amyloid structures of the Sup35 protein, called [PSI(+)] variants. Strikingly, exposure to specific stressful environments dramatically altered the variants of [PSI(+)] that formed de novo. Additionally, we found that stress also influenced the association between the [PSI(+)] and [RNQ(+)] prions in a way that it superceded their typical relationship. Furthermore, changing the growth environment modified both the biochemical properties and [PSI(+)]-inducing capabilities of the [RNQ(+)] template. These data suggest that the cellular environment contributes to both the generation and the selective propagation of specific amyloid structures, providing insight into a key feature that impacts phenotypic diversity in yeast and the cross-species transmission barriers characteristic of prion diseases.
Collapse
Affiliation(s)
- Laura Westergard
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|