1
|
Wang J, Chen Y, Li M, Xia S, Zhao K, Fan H, Ni J, Sun W, Jia X, Lai S. The effects of differential feeding on ileum development, digestive ability and health status of newborn calves. Front Vet Sci 2023; 10:1255122. [PMID: 37745216 PMCID: PMC10514501 DOI: 10.3389/fvets.2023.1255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Pre-weaning is the most important period for the growth and development of calves. Intestinal morphology, microbial community and immunity are initially constructed at this stage, and even have a lifelong impact on calves. Early feeding patterns have a significant impact on gastrointestinal development and microbial communities. This study mainly analyzed the effects of three feeding methods on the gastrointestinal development of calves, and provided a theoretical basis for further improving the feeding mode of calves. it is very important to develop a suitable feeding mode. In this study, we selected nine newborn healthy Holstein bull calves were randomly selected and divided into three groups (n = 3), which were fed with starter + hay + milk (SH group), starter + milk (SF group), total mixed ration + milk (TMR group). After 80 days of feeding Feeding to 80 days of age after, the ileum contents and blood samples were collected, and the differences were compared and analyzed by metagenomic analysis and serum metabolomics analysis. Results show that compared with the other two groups, the intestinal epithelium of the SH group was more complete and the goblet cells developed better. The feeding method of SH group was more conducive to the development of calves, with higher daily gain and no pathological inflammatory reaction. The intestinal microbial community was more conducive to digestion and absorption, and the immunity was stronger. These findings are helpful for us to explore better calf feeding patterns. In the next step, we will set up more biological replicates to study the deep-seated reasons for the differences in the development of pre-weaning calves. At the same time, the new discoveries of neuro microbiology broaden our horizons and are the focus of our future attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Shapiro L. A Half Century Defining the Logic of Cellular Life. Annu Rev Genet 2022; 56:1-15. [DOI: 10.1146/annurev-genet-071719-021436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Over more than fifty years, I have studied how the logic that controls and integrates cell function is built into the dynamic architecture of living cells. I worked with a succession of exceptionally talented students and postdocs, and we discovered that the bacterial cell is controlled by an integrated genetic circuit in which transcriptional and translational controls are interwoven with the three-dimensional deployment of key regulatory and morphological proteins. Caulobacter's interconnected genetic regulatory network includes logic that regulates sets of genes expressed at specific times in the cell cycle and mechanisms that synchronize the advancement of the core cyclical circuit with chromosome replication and cytokinesis. Here, I have traced my journey from New York City art student to Stanford developmental biologist.
Collapse
Affiliation(s)
- Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Fatima NI, Fazili KM, Bhat NH. Proteolysis dependent cell cycle regulation in Caulobacter crescentus. Cell Div 2022; 17:3. [PMID: 35365160 PMCID: PMC8973945 DOI: 10.1186/s13008-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Caulobacter crescentus, a Gram-negative alpha-proteobacterium, has surfaced as a powerful model system for unraveling molecular networks that control the bacterial cell cycle. A straightforward synchronization protocol and existence of many well-defined developmental markers has allowed the identification of various molecular circuits that control the underlying differentiation processes executed at the level of transcription, translation, protein localization and dynamic proteolysis. The oligomeric AAA+ protease ClpXP is a well-characterized example of an enzyme that exerts post-translational control over a number of pathways. Also, the proteolytic pathways of its candidate proteins are reported to play significant roles in regulating cell cycle and protein quality control. A detailed evaluation of the impact of its proteolysis on various regulatory networks of the cell has uncovered various significant cellular roles of this protease in C. crescentus. A deeper insight into the effects of regulatory proteolysis with emphasis on cell cycle progression could shed light on how cells respond to environmental cues and implement developmental switches. Perturbation of this network of molecular machines is also associated with diseases such as bacterial infections. Thus, research holds immense implications in clinical translation and health, representing a promising area for clinical advances in the diagnosis, therapeutics and prognosis.
Collapse
Affiliation(s)
- Nida I Fatima
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Nowsheen Hamid Bhat
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, 191201, India.
| |
Collapse
|
4
|
Del Medico L, Cerletti D, Schächle P, Christen M, Christen B. The type IV pilin PilA couples surface attachment and cell-cycle initiation in Caulobacter crescentus. Proc Natl Acad Sci U S A 2020; 117:9546-9553. [PMID: 32295877 PMCID: PMC7196804 DOI: 10.1073/pnas.1920143117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding how bacteria colonize surfaces and regulate cell-cycle progression in response to cellular adhesion is of fundamental importance. Here, we use transposon sequencing in conjunction with fluorescence resonance energy transfer (FRET) microscopy to uncover the molecular mechanism for how surface sensing drives cell-cycle initiation in Caulobacter crescentus We identify the type IV pilin protein PilA as the primary signaling input that couples surface contact to cell-cycle initiation via the second messenger cyclic di-GMP (c-di-GMP). Upon retraction of pili filaments, the monomeric pilin reservoir in the inner membrane is sensed by the 17-amino acid transmembrane helix of PilA to activate the PleC-PleD two-component signaling system, increase cellular c-di-GMP levels, and signal the onset of the cell cycle. We termed the PilA signaling sequence CIP for "cell-cycle initiating pilin" peptide. Addition of the chemically synthesized CIP peptide initiates cell-cycle progression and simultaneously inhibits surface attachment. The broad conservation of the type IV pili and their importance in pathogens for host colonization suggests that CIP peptide mimetics offer strategies to inhibit surface sensing, prevent biofilm formation and control persistent infections.
Collapse
Affiliation(s)
- Luca Del Medico
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| | - Dario Cerletti
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| | - Philipp Schächle
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| | - Beat Christen
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische HochschuleZürich, Zürich 8093, Switzerland
| |
Collapse
|
5
|
Aretakis JR, Al-Husini N, Schrader JM. Methodology for Ribosome Profiling of Key Stages of the Caulobacter crescentus Cell Cycle. Methods Enzymol 2018; 612:443-465. [PMID: 30502952 DOI: 10.1016/bs.mie.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial cell division is the result of a productive round of the cell cycle to yield two daughter cells. The cell cycle is highly coordinated in Caulobacter crescentus where it is driven by a cell cycle gene-regulatory network that coordinates gene expression with the major cell cycle events such as chromosome replication and cell division. Recent ribosomes profiling data showed that 484 genes undergo changes in translation efficiency during the cell cycle, suggesting a broad role for translational control in cell cycle regulation. In this chapter, we focus on how to perform ribosome profiling to measure the translation efficiency across cellular mRNAs at key stages in the Caulobacter cell cycle. This methodology relies on the high-yield ludox gradient synchronization of Caulobacter cells followed by ribosome profiling to measure ribosome density and total RNA-seq to measure mRNA levels.
Collapse
Affiliation(s)
- James R Aretakis
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
6
|
Vo CD, Shebert HL, Zikovich S, Dryer RA, Huang TP, Moran LJ, Cho J, Wassarman DR, Falahee BE, Young PD, Gu GH, Heinl JF, Hammond JW, Jackvony TN, Frederick TE, Blair JA. Repurposing Hsp90 inhibitors as antibiotics targeting histidine kinases. Bioorg Med Chem Lett 2017; 27:5235-5244. [PMID: 29110989 DOI: 10.1016/j.bmcl.2017.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/05/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023]
Abstract
To address the growing need for new antimicrobial agents, we explored whether inhibition of bacterial signaling machinery could inhibit bacterial growth. Because bacteria rely on two-component signaling systems to respond to environmental changes, and because these systems are both highly conserved and mediated by histidine kinases, inhibiting histidine kinases may provide broad spectrum antimicrobial activity. The histidine kinase ATP binding domain is conserved with the ATPase domain of eukaryotic Hsp90 molecular chaperones. To find a chemical scaffold for compounds that target histidine kinases, we leveraged this conservation. We screened ATP competitive Hsp90 inhibitors against CckA, an essential histidine kinase in Caulobacter crescentus that controls cell growth, and showed that the diaryl pyrazole is a promising scaffold for histidine kinase inhibition. We synthesized a panel of derivatives and found that they inhibit the histidine kinases C. crescentus CckA and Salmonella PhoQ but not C. crescentus DivJ; and they inhibit bacterial growth in both Gram-negative and Gram-positive bacterial strains.
Collapse
Affiliation(s)
- Chau D Vo
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Hanna L Shebert
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Shannon Zikovich
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Rebecca A Dryer
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Tony P Huang
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Lindsey J Moran
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Juno Cho
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Douglas R Wassarman
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Bryn E Falahee
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Peter D Young
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Garrick H Gu
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - James F Heinl
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - John W Hammond
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Taylor N Jackvony
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Thomas E Frederick
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jimmy A Blair
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA.
| |
Collapse
|
7
|
Abstract
Progression of the Caulobacter cell cycle requires temporal and spatial control of gene expression, culminating in an asymmetric cell division yielding distinct daughter cells. To explore the contribution of translational control, RNA-seq and ribosome profiling were used to assay global transcription and translation levels of individual genes at six times over the cell cycle. Translational efficiency (TE) was used as a metric for the relative rate of protein production from each mRNA. TE profiles with similar cell cycle patterns were found across multiple clusters of genes, including those in operons or in subsets of operons. Collections of genes associated with central cell cycle functional modules (e.g., biosynthesis of stalk, flagellum, or chemotaxis machinery) have consistent but different TE temporal patterns, independent of their operon organization. Differential translation of operon-encoded genes facilitates precise cell cycle-timing for the dynamic assembly of multiprotein complexes, such as the flagellum and the stalk and the correct positioning of regulatory proteins to specific cell poles. The cell cycle-regulatory pathways that produce specific temporal TE patterns are separate from-but highly coordinated with-the transcriptional cell cycle circuitry, suggesting that the scheduling of translational regulation is organized by the same cyclical regulatory circuit that directs the transcriptional control of the Caulobacter cell cycle.
Collapse
|
8
|
Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris. J Bacteriol 2015; 198:867-76. [PMID: 26712940 DOI: 10.1128/jb.00771-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhodopseudomonas palustris is an alphaproteobacterium that has served as a model organism for studies of photophosphorylation, regulation of nitrogen fixation, production of hydrogen as a biofuel, and anaerobic degradation of aromatic compounds. This bacterium is able to transition between anaerobic photoautotrophic growth, anaerobic photoheterotrophic growth, and aerobic heterotrophic growth. As a starting point to explore the genetic basis for the metabolic versatility of R. palustris, we used transposon mutagenesis and Tn-seq to identify 552 genes as essential for viability in cells growing aerobically on semirich medium. Of these, 323 have essential gene homologs in the alphaproteobacterium Caulobacter crescentus, and 187 have essential gene homologs in Escherichia coli. There were 24 R. palustris genes that were essential for viability under aerobic growth conditions that have low sequence identity but are likely to be functionally homologous to essential E. coli genes. As expected, certain functional categories of essential genes were highly conserved among the three organisms, including translation, ribosome structure and biogenesis, secretion, and lipid metabolism. R. palustris cells divide by budding in which a sessile cell gives rise to a motile swarmer cell. Conserved cell cycle genes required for this developmental process were essential in both C. crescentus and R. palustris. Our results suggest that despite vast differences in lifestyles, members of the alphaproteobacteria have a common set of essential genes that is specific to this group and distinct from that of gammaproteobacteria like E. coli. IMPORTANCE Essential genes in bacteria and other organisms are those absolutely required for viability. Rhodopseudomonas palustris has served as a model organism for studies of anaerobic aromatic compound degradation, hydrogen gas production, nitrogen fixation, and photosynthesis. We used the technique of Tn-seq to determine the essential genes of R. palustris grown under heterotrophic aerobic conditions. The transposon library generated in this study will be useful for future studies to identify R. palustris genes essential for viability under specialized growth conditions and also for survival under conditions of stress.
Collapse
|
9
|
Lasker K, Schrader JM, Men Y, Marshik T, Dill DL, McAdams HH, Shapiro L. CauloBrowser: A systems biology resource for Caulobacter crescentus. Nucleic Acids Res 2015; 44:D640-5. [PMID: 26476443 PMCID: PMC4702786 DOI: 10.1093/nar/gkv1050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/01/2015] [Indexed: 11/12/2022] Open
Abstract
Caulobacter crescentus is a premier model organism for studying the molecular basis of cellular asymmetry. The Caulobacter community has generated a wealth of high-throughput spatiotemporal databases including data from gene expression profiling experiments (microarrays, RNA-seq, ChIP-seq, ribosome profiling, LC-ms proteomics), gene essentiality studies (Tn-seq), genome wide protein localization studies, and global chromosome methylation analyses (SMRT sequencing). A major challenge involves the integration of these diverse data sets into one comprehensive community resource. To address this need, we have generated CauloBrowser (www.caulobrowser.org), an online resource for Caulobacter studies. This site provides a user-friendly interface for quickly searching genes of interest and downloading genome-wide results. Search results about individual genes are displayed as tables, graphs of time resolved expression profiles, and schematics of protein localization throughout the cell cycle. In addition, the site provides a genome viewer that enables customizable visualization of all published high-throughput genomic data. The depth and diversity of data sets collected by the Caulobacter community makes CauloBrowser a unique and valuable systems biology resource.
Collapse
Affiliation(s)
- Keren Lasker
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Jared M Schrader
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Yifei Men
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Tyler Marshik
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Harley H McAdams
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Schrader JM, Shapiro L. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle. J Vis Exp 2015:52633. [PMID: 25938623 PMCID: PMC4541484 DOI: 10.3791/52633] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.
Collapse
Affiliation(s)
- Jared M Schrader
- Department of Developmental Biology, Stanford University School of Medicine;
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine
| |
Collapse
|
11
|
Zhou B, Schrader JM, Kalogeraki VS, Abeliuk E, Dinh CB, Pham JQ, Cui ZZ, Dill DL, McAdams HH, Shapiro L. The global regulatory architecture of transcription during the Caulobacter cell cycle. PLoS Genet 2015; 11:e1004831. [PMID: 25569173 PMCID: PMC4287350 DOI: 10.1371/journal.pgen.1004831] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/15/2014] [Indexed: 11/18/2022] Open
Abstract
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. The generation of diverse cell types occurs through two fundamental processes; asymmetric cell division and cell differentiation. Cells progress through these developmental changes guided by complex and layered genetic programs that lead to differential expression of the genome. To explore how a genetic program directs cell cycle progression, we examined the global activity of promoters at distinct stages of the cell cycle of the bacterium Caulobacter crescentus, that undergoes cellular differentiation and divides asymmetrically at each cell division. We found that approximately 21% of transcription start sites are cell cycle-regulated, driving the transcription of both mRNAs and non-coding and antisense RNAs. In addition, 102 cell cycle-regulated genes are transcribed from multiple promoters, allowing multiple regulatory inputs to control the logic of gene activation. We found combinatorial control by the five master transcription regulators that provide the core regulation for the genetic circuitry controlling the cell cycle. Much of this combinatorial control appears to be directed at refinement of temporal expression of various genes over the cell cycle, and at tighter control of asymmetric gene expression between the swarmer and stalked daughter cells.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jared M. Schrader
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Virginia S. Kalogeraki
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Eduardo Abeliuk
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cong B. Dinh
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James Q. Pham
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Zhongying Z. Cui
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - David L. Dill
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Harley H. McAdams
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Panis G, Murray SR, Viollier PH. Versatility of global transcriptional regulators in alpha-Proteobacteria: from essential cell cycle control to ancillary functions. FEMS Microbiol Rev 2014; 39:120-33. [PMID: 25793963 DOI: 10.1093/femsre/fuu002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent data indicate that cell cycle transcription in many alpha-Proteobacteria is executed by at least three conserved functional modules in which pairs of antagonistic regulators act jointly, rather than in isolation, to control transcription in S-, G2- or G1-phase. Inactivation of module components often results in pleiotropic defects, ranging from cell death and impaired cell division to fairly benign deficiencies in motility. Expression of module components can follow systemic (cell cycle) or external (nutritional/cell density) cues and may be implemented by auto-regulation, ancillary regulators or other (unknown) mechanisms. Here, we highlight the recent progress in understanding the molecular events and the genetic relationships of the module components in environmental, pathogenic and/or symbiotic alpha-proteobacterial genera. Additionally, we take advantage of the recent genome-wide transcriptional analyses performed in the model alpha-Proteobacterium Caulobacter crescentus to illustrate the complexity of the interactions of the global regulators at selected cell cycle-regulated promoters and we detail the consequences of (mis-)expression when the regulators are absent. This review thus provides the first detailed mechanistic framework for understanding orthologous operational principles acting on cell cycle-regulated promoters in other alpha-Proteobacteria.
Collapse
Affiliation(s)
- Gaël Panis
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | - Sean R Murray
- Department of Biology, Center for Cancer and Developmental Biology, Interdisciplinary Research Institute for the Sciences, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| |
Collapse
|
13
|
Quiñones-Valles C, Sánchez-Osorio I, Martínez-Antonio A. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus. PLoS One 2014; 9:e111116. [PMID: 25369202 PMCID: PMC4219702 DOI: 10.1371/journal.pone.0111116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/24/2014] [Indexed: 12/16/2022] Open
Abstract
The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.
Collapse
Affiliation(s)
- César Quiñones-Valles
- Engineering and Biomedical Physics Department, Center for Research and Advanced Studies of the National Polytechnic Institute at Monterrey, Apodaca, Nuevo León, México
- Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute at Irapuato, Irapuato, Guanajuato, México
| | - Ismael Sánchez-Osorio
- Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute at Irapuato, Irapuato, Guanajuato, México
| | - Agustino Martínez-Antonio
- Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute at Irapuato, Irapuato, Guanajuato, México
- * E-mail:
| |
Collapse
|
14
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control. J Bacteriol 2014; 196:2901-11. [PMID: 24914187 PMCID: PMC4135643 DOI: 10.1128/jb.01706-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous free-living bacteria undergo complex differentiation in response to unfavorable environmental conditions or as part of their natural cell cycle. Developmental programs require the de novo expression of several sets of genes responsible for morphological, physiological, and metabolic changes, such as spore/endospore formation, the generation of flagella, and the synthesis of antibiotics. Notably, the frequency of chromosomal replication initiation events must also be adjusted with respect to the developmental stage in order to ensure that each nascent cell receives a single copy of the chromosomal DNA. In this review, we focus on the master transcriptional factors, Spo0A, CtrA, and AdpA, which coordinate developmental program and which were recently demonstrated to control chromosome replication. We summarize the current state of knowledge on the role of these developmental regulators in synchronizing the replication with cell differentiation in Bacillus subtilis, Caulobacter crescentus, and Streptomyces coelicolor, respectively.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
15
|
Schrader JM, Zhou B, Li GW, Lasker K, Childers WS, Williams B, Long T, Crosson S, McAdams HH, Weissman JS, Shapiro L. The coding and noncoding architecture of the Caulobacter crescentus genome. PLoS Genet 2014; 10:e1004463. [PMID: 25078267 PMCID: PMC4117421 DOI: 10.1371/journal.pgen.1004463] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022] Open
Abstract
Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division. Caulobacter crescentus is a model system for studying asymmetric cell division, a fundamental process that, through differential gene expression in the two daughter cells, enables the generation of cells with different fates. To explore how the genome directs and maintains asymmetry upon cell division, we performed a coordinated analysis of multiple genomic and proteomic datasets to identify the RNA and protein coding features in the C. crescentus genome. Our integrated analysis identifies many new genetic regulatory elements, adding significant regulatory complexity to the C. crescentus genome. Surprisingly, 75.4% of protein coding genes lack a canonical translation initiation sequence motif (the Shine-Dalgarno site) which hybridizes to the 3′ end of the ribosomal RNA allowing translation initiation. We find Shine-Dalgarno sites primarily inside of genes where they cause translating ribosomes to pause, possibly allowing nascent proteins to correctly fold. With our detailed map of genomic transcription and translation elements, a systems view of the genetic network that controls asymmetric cell division is within reach.
Collapse
Affiliation(s)
- Jared M. Schrader
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Bo Zhou
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Gene-Wei Li
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Keren Lasker
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - W. Seth Childers
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Brandon Williams
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Tao Long
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Harley H. McAdams
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. Proc Natl Acad Sci U S A 2013; 110:E4658-67. [PMID: 24218615 DOI: 10.1073/pnas.1319315110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.
Collapse
|
17
|
Davis NJ, Cohen Y, Sanselicio S, Fumeaux C, Ozaki S, Luciano J, Guerrero-Ferreira RC, Wright ER, Jenal U, Viollier PH. De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle. Genes Dev 2013; 27:2049-62. [PMID: 24065770 PMCID: PMC3792480 DOI: 10.1101/gad.222679.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic morphogenesis is seeded with the establishment and subsequent amplification of polarity cues at key times during the cell cycle, often using (cyclic) nucleotide signals. We discovered that flagellum de- and repolarization in the model prokaryote Caulobacter crescentus is precisely orchestrated through at least three spatiotemporal mechanisms integrated at TipF. We show that TipF is a cell cycle-regulated receptor for the second messenger--bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)--that perceives and transduces this signal through the degenerate c-di-GMP phosphodiesterase (EAL) domain to nucleate polar flagellum biogenesis. Once c-di-GMP levels rise at the G1 → S transition, TipF is activated, stabilized, and polarized, enabling the recruitment of downstream effectors, including flagellar switch proteins and the PflI positioning factor, at a preselected pole harboring the TipN landmark. These c-di-GMP-dependent events are coordinated with the onset of tipF transcription in early S phase and together enable the correct establishment and robust amplification of TipF-dependent polarization early in the cell cycle. Importantly, these mechanisms also govern the timely removal of TipF at cell division coincident with the drop in c-di-GMP levels, thereby resetting the flagellar polarization state in the next cell cycle after a preprogrammed period during which motility must be suspended.
Collapse
Affiliation(s)
- Nicole J Davis
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
φCbK is a B3 morphotype bacteriophage of the Siphoviridae family that infects Caulobacter crescentus, the preeminent model system for bacterial cell cycle studies. The last 4 decades of research with φCbK as a genetic and cytological tool to study the biology of the host warrant an investigation of the phage genome composition. Herein, we report the complete genome sequence of φCbK and highlight unusual features that emerged from its annotation. The complete genome analysis of the φCbK phage provides new insight into its characteristics and potential interactions with its Caulobacter crescentus host, setting the stage for future functional studies with φCbK.
Collapse
|
19
|
Shapiro L. Life in a three-dimensional grid. J Biol Chem 2012; 287:38289-94. [PMID: 23007401 PMCID: PMC3488097 DOI: 10.1074/jbc.x112.422337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There have been two sharp demarcations in my life in science: the transition from fine arts to chemistry, which happened early in my career, and the move from New York to Stanford University, which initiated an ongoing collaboration with the physicist Harley McAdams. Both had a profound effect on the kinds of questions I posed and the means I used to arrive at answers. The outcome of these experiences, together with the extraordinary scientists I came to know along the way, was and is an abiding passion to fully understand a simple cell in all its complexity and beauty.
Collapse
Affiliation(s)
- Lucy Shapiro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
20
|
Schredl AT, Perez Mora YG, Herrera A, Cuajungco MP, Murray SR. The Caulobacter crescentus ctrA P1 promoter is essential for the coordination of cell cycle events that prevent the overinitiation of DNA replication. MICROBIOLOGY-SGM 2012; 158:2492-2503. [PMID: 22790399 DOI: 10.1099/mic.0.055285-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The master regulator CtrA oscillates during the Caulobacter cell cycle due to temporally regulated proteolysis and transcription. It is proteolysed during the G1-S transition and reaccumulates in predivisional cells as a result of transcription from two sequentially activated promoters, P1 and P2. CtrA reinforces its own synthesis by directly mediating the activation of P2 concurrently with repression of P1. To explore the role of P1 in cell cycle control, we engineered a mutation into the native ctrA locus that prevents transcription from P1 but not P2. As expected, the ctrA P1 mutant exhibits striking growth, morphological and DNA replication defects. Unexpectedly, we found CtrA and its antagonist SciP, but not DnaA, GcrA or CcrM accumulation to be dramatically reduced in the ctrA P1 mutant. SciP levels closely paralleled CtrA accumulation, suggesting that CtrA acts as a rheostat to modulate SciP abundance. Furthermore, the reappearance of CtrA and CcrM in predivisional cells was delayed in the P1 mutant by 0.125 cell cycle unit in synchronized cultures. High levels of ccrM transcription despite low levels of CtrA and increased transcription of ctrA P2 in the ctrA P1 mutant are two examples of robustness in the cell cycle. Thus, Caulobacter can adjust regulatory pathways to partially compensate for reduced and delayed CtrA accumulation in the ctrA P1 mutant.
Collapse
Affiliation(s)
- Alexander T Schredl
- Department of Biology, Center for Cancer and Developmental Biology, California State University Northridge, Northridge, CA 91330-8303, USA
| | - Yannet G Perez Mora
- Department of Biology, Center for Cancer and Developmental Biology, California State University Northridge, Northridge, CA 91330-8303, USA
| | - Anabel Herrera
- Department of Biology, Center for Cancer and Developmental Biology, California State University Northridge, Northridge, CA 91330-8303, USA
| | - Math P Cuajungco
- Mental Health Research Institute, Melbourne Brain Centre, Parkville, Victoria 3052, Australia.,Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA
| | - Sean R Murray
- Department of Biology, Center for Cancer and Developmental Biology, California State University Northridge, Northridge, CA 91330-8303, USA
| |
Collapse
|
21
|
Abstract
This study reports the essential Caulobacter genome at 8 bp resolution determined by saturated transposon mutagenesis and high-throughput sequencing. This strategy is applicable to full genome essentiality studies in a broad class of bacterial species. The essential Caulobacter genome was determined at 8 bp resolution using hyper-saturated transposon mutagenesis coupled with high-throughput sequencing. Essential protein-coding sequences comprise 90% of the essential genome; the remaining 10% comprising essential non-coding RNA sequences, gene regulatory elements and essential genome replication features. Of the 3876 annotated open reading frames (ORFs), 480 (12.4%) were essential ORFs, 3240 (83.6%) were non-essential ORFs and 156 (4.0%) were ORFs that severely impacted fitness when mutated. The essential elements are preferentially positioned near the origin and terminus of the Caulobacter chromosome. This high-resolution strategy is applicable to high-throughput, full genome essentiality studies and large-scale genetic perturbation experiments in a broad class of bacterial species.
The regulatory events that control polar differentiation and cell-cycle progression in the bacterium Caulobacter crescentus are highly integrated, and they have to occur in the proper order (McAdams and Shapiro, 2011). Components of the core regulatory circuit are largely known. Full discovery of its essential genome, including non-coding, regulatory and coding elements, is a prerequisite for understanding the complete regulatory network of this bacterial cell. We have identified all the essential coding and non-coding elements of the Caulobacter chromosome using a hyper-saturated transposon mutagenesis strategy that is scalable and can be readily extended to obtain rapid and accurate identification of the essential genome elements of any sequenced bacterial species at a resolution of a few base pairs. We engineered a Tn5 derivative transposon (Tn5Pxyl) that carries at one end an inducible outward pointing Pxyl promoter (Christen et al, 2010). We showed that this transposon construct inserts into the genome randomly where it can activate or disrupt transcription at the site of integration, depending on the insertion orientation. DNA from hundred of thousands of transposon insertion sites reading outward into flanking genomic regions was parallel PCR amplified and sequenced by Illumina paired-end sequencing to locate the insertion site in each mutant strain (Figure 1). A single sequencing run on DNA from a mutagenized cell population yielded 118 million raw sequencing reads. Of these, >90 million (>80%) read outward from the transposon element into adjacent genomic DNA regions and the insertion site could be mapped with single nucleotide resolution. This yielded the location and orientation of 428 735 independent transposon insertions in the 4-Mbp Caulobacter genome. Within non-coding sequences of the Caulobacter genome, we detected 130 non-disruptable DNA segments between 90 and 393 bp long in addition to all essential promoter elements. Among 27 previously identified and validated sRNAs (Landt et al, 2008), three were contained within non-disruptable DNA segments and another three were partially disruptable, that is, insertions caused a notable growth defect. Two additional small RNAs found to be essential are the transfer-messenger RNA (tmRNA) and the ribozyme RNAseP (Landt et al, 2008). In addition to the 8 non-disruptable sRNAs, 29 out of the 130 intergenic essential non-coding sequences contained non-redundant tRNA genes; duplicated tRNA genes were non-essential. We also identified two non-disruptable DNA segments within the chromosomal origin of replication. Thus, we resolved essential non-coding RNAs, tRNAs and essential replication elements within the origin region of the chromosome. An additional 90 non-disruptable small genome elements of currently unknown function were identified. Eighteen of these are conserved in at least one closely related species. Only 2 could encode a protein of over 50 amino acids. For each of the 3876 annotated open reading frames (ORFs), we analyzed the distribution, orientation, and genetic context of transposon insertions. There are 480 essential ORFs and 3240 non-essential ORFs. In addition, there were 156 ORFs that severely impacted fitness when mutated. The 8-bp resolution allowed a dissection of the essential and non-essential regions of the coding sequences. Sixty ORFs had transposon insertions within a significant portion of their 3′ region but lacked insertions in the essential 5′ coding region, allowing the identification of non-essential protein segments. For example, transposon insertions in the essential cell-cycle regulatory gene divL, a tyrosine kinase, showed that the last 204 C-terminal amino acids did not impact viability, confirming previous reports that the C-terminal ATPase domain of DivL is dispensable for viability (Reisinger et al, 2007; Iniesta et al, 2010). In addition, we found that 30 out of 480 (6.3%) of the essential ORFs appear to be shorter than the annotated ORF, suggesting that these are probably mis-annotated. Among the 480 ORFs essential for growth on rich media, there were 10 essential transcriptional regulatory proteins, including 5 previously identified cell-cycle regulators (McAdams and Shapiro, 2003; Holtzendorff et al, 2004; Collier and Shapiro, 2007; Gora et al, 2010; Tan et al, 2010) and 5 uncharacterized predicted transcription factors. In addition, two RNA polymerase sigma factors RpoH and RpoD, as well as the anti-sigma factor ChrR, which mitigates rpoE-dependent stress response under physiological growth conditions (Lourenco and Gomes, 2009), were also found to be essential. Thus, a set of 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor are the core essential transcriptional regulators for growth on rich media. To further characterize the core components of the Caulobacter cell-cycle control network, we identified all essential regulatory sequences and operon transcripts. Altogether, the 480 essential protein-coding and 37 essential RNA-coding Caulobacter genes are organized into operons such that 402 individual promoter regions are sufficient to regulate their expression. Of these 402 essential promoters, the transcription start sites (TSSs) of 105 were previously identified (McGrath et al, 2007). The essential genome features are non-uniformly distributed on the Caulobacter genome and enriched near the origin and the terminus regions. In contrast, the chromosomal positions of the published E. coli essential coding sequences (Rocha, 2004) are preferentially located at either side of the origin (Figure 4A). This indicates that there are selective pressures on chromosomal positioning of some essential elements (Figure 4A). The strategy described in this report could be readily extended to quickly determine the essential genome for a large class of bacterial species. Caulobacter crescentus is a model organism for the integrated circuitry that runs a bacterial cell cycle. Full discovery of its essential genome, including non-coding, regulatory and coding elements, is a prerequisite for understanding the complete regulatory network of a bacterial cell. Using hyper-saturated transposon mutagenesis coupled with high-throughput sequencing, we determined the essential Caulobacter genome at 8 bp resolution, including 1012 essential genome features: 480 ORFs, 402 regulatory sequences and 130 non-coding elements, including 90 intergenic segments of unknown function. The essential transcriptional circuitry for growth on rich media includes 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor. We identified all essential promoter elements for the cell cycle-regulated genes. The essential elements are preferentially positioned near the origin and terminus of the chromosome. The high-resolution strategy used here is applicable to high-throughput, full genome essentiality studies and large-scale genetic perturbation experiments in a broad class of bacterial species.
Collapse
|
22
|
Integrated Gene Regulatory Circuits: Celebrating the 50th Anniversary of the Operon Model. Mol Cell 2011; 43:505-14. [DOI: 10.1016/j.molcel.2011.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/17/2022]
|
23
|
Yaniv M. The 50th anniversary of the publication of the operon theory in the Journal of Molecular Biology: past, present and future. J Mol Biol 2011; 409:1-6. [PMID: 21435342 DOI: 10.1016/j.jmb.2011.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of eight review articles that appear in the present issue of the Journal of Molecular Biology celebrates the 50th anniversary for the landmark publication of François Jacob and Jacques Monod entitled "Genetic Regulatory Mechanisms in the Synthesis of Proteins". In this publication, the authors presented a model for the regulation of gene expression deduced from genetic and biochemical studies. They proposed that a new class of genes, regulatory genes, would code for repressors that bind to operator sequences upstream of operons consisting of a group of catabolic or biosynthetic genes with related functions. Binding is controlled by small metabolites, substrates or end products. The repressors control the transmission of information from genes to mRNA that is translated into proteins. The present review articles demonstrate how this publication influenced our thinking and how it stimulated the studies on the regulation of gene expression all the way to present day epigenetics and systems biology.
Collapse
Affiliation(s)
- Moshe Yaniv
- Department of Developmental Biology, URA 2578 CNRS, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France.
| |
Collapse
|