1
|
Behroozi Z, Hassani D, Mobini M, Bahadori T, Peyghami K, Judaki MA, Khoshnoodi J, Amiri MM, Golsaz-Shirazi F, Shokri F. Production and characterization of monoclonal antibodies against hepatitis B e-antigen and their potential application for development of HBeAg detection ELISA. Biologicals 2025; 90:101819. [PMID: 39892062 DOI: 10.1016/j.biologicals.2025.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
Despite global vaccination efforts, hepatitis B virus (HBV) infection remains a major health threat, causing over a million deaths annually. Hepatitis B e-antigen (HBeAg) is an indicator of HBV replication and high infectivity. HBeAg is an essential serological marker for monitoring response to treatment and/or determining the stage of chronic HBV infection. Here, we produced a panel of mouse hybridomas secreting monoclonal antibodies (MAbs) to HBeAg by fusing a mouse myeloma cell line with splenocytes from mice immunized with recombinant HBeAg. Anti-HBe MAbs were then characterized by competition ELISA and Western blotting. We designed and optimized an in-house sandwich ELISA using HBeAg-specific rabbit polyclonal and mouse monoclonal antibodies. The diagnostic performance of the assay was then compared to a commercial HBeAg detection ELISA kit using 176 HBeAg[-] and 44 HBeAg[+] serum samples, showing a significant positive correlation (r = 0.8250; P < 0.0001). The in-house ELISA showed reasonable sensitivity (97.56 %) and specificity (99.40 %), with a cut-off value and area under the curve of 0.193 and 0.9884, respectively. Additionally, the assay showed high repeatability, with intra- and inter-assay coefficients of variation of 2.46 % and 11.38 %, respectively. Our designed HBeAg-detecting sandwich ELISA has the potential for use in clinical diagnosis.
Collapse
Affiliation(s)
- Zeinab Behroozi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Danesh Hassani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Peyghami
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hong X, Schneider WM, Rice CM. Hepatitis B Virus Nucleocapsid Assembly. J Mol Biol 2025:169182. [PMID: 40316009 DOI: 10.1016/j.jmb.2025.169182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Hepatitis B virus (HBV), the prototypical member of the Hepadnaviridae family, is a DNA virus that replicates its genome through reverse transcription of a pregenomic RNA (pgRNA) precursor. The selective packaging of pgRNA and viral polymerase (Pol) into assembling capsids formed by the viral core protein-a process known as nucleocapsid assembly-is an essential step in the HBV lifecycle. Advances in cellular and cell-free systems have provided significant insights into the mechanisms underlying capsid assembly, Pol binding to pgRNA, Pol-pgRNA packaging, and initiation of genome replication. However, the absence of a cell-free system capable of reconstituting selective HBV Pol-pgRNA packaging into fully assembled capsids leaves fundamental questions about nucleocapsid assembly unanswered. This review summarizes the current knowledge of HBV nucleocapsid assembly, focusing on the interplay between Pol-pgRNA interactions, capsid formation, and regulation by host factors. It also highlights the contribution of cellular and cell-free systems to these discoveries and underscores the need for new approaches that reconstitute the complete HBV nucleocapsid assembly process. With the growing interest in developing nucleocapsid assembly inhibitors, some of which are currently in clinical trials, targeting Pol-pgRNA interactions and nucleocapsid assembly represents a promising therapeutic strategy for curing chronic hepatitis B.
Collapse
Affiliation(s)
- Xupeng Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
3
|
Hojatizadeh M, Amiri MM, Mobini M, Hassanzadeh Makoui M, Ghaedi M, Ghotloo S, Peyghami K, Jeddi-Tehrani M, Golsaz-Shirazi F, Shokri F. Cross-Reactivity of HBe Antigen-Specific Polyclonal Antibody with HBc Antigen. Viral Immunol 2023; 36:378-388. [PMID: 37294935 DOI: 10.1089/vim.2022.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem worldwide and causes almost one million deaths annually. The HBV core gene codes for two related antigens, known as core antigen (HBcAg) and e-antigen (HBeAg), sharing 149 residues but having different amino- and carboxy-terminals. HBeAg is a soluble variant of HBcAg and a clinical marker for determining the disease severity and patients' screening. Currently available HBeAg assays have a shortcoming of showing cross-reactivity with HBcAg. In this study, for the first time, we evaluated whether HBcAg-adsorbed anti-HBe polyclonal antibodies could specifically recognize HBeAg or still show cross-reactivity with HBcAg. Recombinant HBeAg was cloned in pCold1 vector and successfully expressed in Escherichia coli and after purification by Ni-NTA resin was used to generate polyclonal anti-HBe antibodies in rabbit. Purified HBeAg was further characterized by assessing its reactivity with anti-HBe in the sera of chronically infected patients and HBeAg-immunized rabbit. Sera from patients with chronic HBV infection, containing anti-HBe, specifically reacted with recombinant HBeAg, implying antigenic similarity between the prokaryotic and native HBeAg in the serum of HBV-infected patients. In addition, the designed enzyme-linked immunosorbent assay (ELISA) with rabbit anti-HBe polyclonal antibodies could detect recombinant HBeAg with high sensitivity, while high cross-reactivity with HBcAg was observed. It is noteworthy that HBcAg-adsorbed anti-HBe polyclonal antibodies still showed high cross-reactivity with HBcAg, implying that due to the presence of highly similar epitopes in both antigens, HBcAg-adsorbed polyclonal antibodies cannot differentiate between the two antigens.
Collapse
Affiliation(s)
- Maryam Hojatizadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Hassanzadeh Makoui
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Ghaedi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ghotloo
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Kiana Peyghami
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACER, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACER, Tehran, Iran
| |
Collapse
|
4
|
Pfister S, Rabl J, Wiegand T, Mattei S, Malär AA, Lecoq L, Seitz S, Bartenschlager R, Böckmann A, Nassal M, Boehringer D, Meier BH. Structural conservation of HBV-like capsid proteins over hundreds of millions of years despite the shift from non-enveloped to enveloped life-style. Nat Commun 2023; 14:1574. [PMID: 36949039 PMCID: PMC10033635 DOI: 10.1038/s41467-023-37068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
The discovery of nackednaviruses provided new insight into the evolutionary history of the hepatitis B virus (HBV): The common ancestor of HBV and nackednaviruses was non-enveloped and while HBV acquired an envelope during evolution, nackednaviruses remained non-enveloped. We report the capsid structure of the African cichlid nackednavirus (ACNDV), determined by cryo-EM at 3.7 Å resolution. This enables direct comparison with the known capsid structures of HBV and duck HBV, prototypic representatives of the mammalian and avian lineages of the enveloped Hepadnaviridae, respectively. The sequence identity with HBV is 24% and both the ACNDV capsid protein fold and the capsid architecture are very similar to those of the Hepadnaviridae and HBV in particular. Acquisition of the hepadnaviral envelope was thus not accompanied by a major change in capsid structure. Dynamic residues at the spike tip are tentatively assigned by solid-state NMR, while the C-terminal domain is invisible due to dynamics. Solid-state NMR characterization of the capsid structure reveals few conformational differences between the quasi-equivalent subunits of the ACNDV capsid and an overall higher capsid structural disorder compared to HBV. Despite these differences, the capsids of ACNDV and HBV are structurally highly similar despite the 400 million years since their separation.
Collapse
Affiliation(s)
- Sara Pfister
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Julius Rabl
- Cryo-EM Knowledge hub, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, EMBL Heidelberg, 69117, Heidelberg, Germany
| | | | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Université de Lyon, 69367, Lyon, France
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ralf Bartenschlager
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Université de Lyon, 69367, Lyon, France.
| | - Michael Nassal
- Department of Medicine II / Molecular Biology, University of Freiburg, Freiburg im Breisgau, Germany.
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Probing the Hepatitis B Virus E-Antigen with a Nanopore Sensor Based on Collisional Events Analysis. BIOSENSORS 2022; 12:bios12080596. [PMID: 36004992 PMCID: PMC9405897 DOI: 10.3390/bios12080596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Real-time monitoring, simple operation, and cheaper methods for detecting immunological proteins hold the potential for a solid influence on proteomics and human biology, as they can promote the onset of timely diagnoses and adequate treatment protocols. In this work we present an exploratory study suggesting the applicability of resistive-pulse sensing technology in conjunction with the α-hemolysin (α-HL) protein nanopore, for the detection of the chronic hepatitis B virus (HBV) e-antigen (HBeAg). In this approach, the recognition between HBeAg and a purified monoclonal hepatitis B e antibody (Ab(HBeAg)) was detected via transient ionic current spikes generated by partial occlusions of the α-HL nanopore by protein aggregates electrophoretically driven toward the nanopore’s vestibule entrance. Despite the steric hindrance precluding antigen, antibody, or antigen–antibody complex capture inside the nanopore, their stochastic bumping with the nanopore generated clear transient blockade events. The subsequent analysis suggested the detection of protein subpopulations in solution, rendering the approach a potentially valuable label-free platform for the sensitive, submicromolar-scale screening of HBeAg targets.
Collapse
|
6
|
Liu H, Cheng J, Viswanathan U, Chang J, Lu F, Guo JT. Amino acid residues at core protein dimer-dimer interface modulate multiple steps of hepatitis B virus replication and HBeAg biogenesis. PLoS Pathog 2021; 17:e1010057. [PMID: 34752483 PMCID: PMC8604296 DOI: 10.1371/journal.ppat.1010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
The core protein (Cp) of hepatitis B virus (HBV) assembles pregenomic RNA (pgRNA) and viral DNA polymerase to form nucleocapsids where the reverse transcriptional viral DNA replication takes place. Core protein allosteric modulators (CpAMs) inhibit HBV replication by binding to a hydrophobic "HAP" pocket at Cp dimer-dimer interfaces to misdirect the assembly of Cp dimers into aberrant or morphologically "normal" capsids devoid of pgRNA. We report herein that a panel of CpAM-resistant Cp with single amino acid substitution of residues at the dimer-dimer interface not only disrupted pgRNA packaging, but also compromised nucleocapsid envelopment, virion infectivity and covalently closed circular (ccc) DNA biosynthesis. Interestingly, these mutations also significantly reduced the secretion of HBeAg. Biochemical analysis revealed that the CpAM-resistant mutations in the context of precore protein (p25) did not affect the levels of p22 produced by signal peptidase removal of N-terminal 19 amino acid residues, but significantly reduced p17, which is produced by furin cleavage of C-terminal arginine-rich domain of p22 and secreted as HBeAg. Interestingly, p22 existed as both unphosphorylated and phosphorylated forms. While the unphosphorylated p22 is in the membranous secretary organelles and the precursor of HBeAg, p22 in the cytosol and nuclei is hyperphosphorylated at the C-terminal arginine-rich domain and interacts with Cp to disrupt capsid assembly and viral DNA replication. The results thus indicate that in addition to nucleocapsid assembly, interaction of Cp at dimer-dimer interface also plays important roles in the production and infectivity of progeny virions through modulation of nucleocapsid envelopment and uncoating. Similar interaction at reduced p17 dimer-dimer interface appears to be important for its metabolic stability and sensitivity to CpAM suppression of HBeAg secretion.
Collapse
Affiliation(s)
- Hui Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Usha Viswanathan
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail: (FL); (J-TG)
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (FL); (J-TG)
| |
Collapse
|
7
|
Chen J, Liu B, Tang X, Zheng X, Lu J, Zhang L, Wang W, Candotti D, Fu Y, Allain JP, Li C, Li L, Li T. Role of core protein mutations in the development of occult HBV infection. J Hepatol 2021; 74:1303-1314. [PMID: 33453326 DOI: 10.1016/j.jhep.2020.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Occult HBV infection (OBI) is associated with transfusion-transmitted HBV infection and hepatocellular carcinoma. Studies on OBI genesis have concentrated on mutations in the S region and the regulatory elements. Herein, we aimed to determine the role of mutations in the core region on OBIs. METHODS An OBI strain (SZA) carrying 9 amino acid (aa) substitutions in the core protein/capsid (Cp) was selected by sequence alignment and Western blot analysis from 26 genotype B OBI samples to extensively explore the impact of Cp mutations on viral antigen production in vitro and in vivo. RESULTS A large panel of 30 Cp replicons were generated by a replication-competent pHBV1.3 carrying SZA or wild-type (WT) Cp in a 1.3-fold over-length of HBV genome, in which the various Cp mutants were individually introduced by repairing site mutations of SZA-Cp or creating site mutations of WT-Cp by site-directed mutagenesis. The expression of HBcAg, HBeAg, and HBsAg and viral RNA was quantified from individual SZA and WT Cp mutant replicons in transfected Huh7 cells or infected mice, respectively. An analysis of the effect of Cp mutants on intracellular or extracellular viral protein production indicated that the W62R mutation in Cp had a critical impact on the reduction of HBcAg and HBeAg production during HBV replication, whereas P50H and/or S74G mutations played a limited role in influencing viral protein production invivo. CONCLUSIONS W62R and its combination mutations in HBV Cp might massively affect HBcAg and HBeAg production during viral replication, which, in turn, might contribute to the occurrence of OBI. LAY SUMMARY Occult hepatitis B virus infections (OBIs) have been found to be associated with amino acid mutations in the S region of the HBV, but the role of mutations in the core protein (Cp) remains unclear. In this study, an OBI strain (SZA) carrying 9 amino acid substitutions in Cp has been examined comprehensively in vitro and in vivo. The W62R mutation in Cp majorly reduces HBcAg and HBeAg production during HBV replication, potentially contributing to the occurrence of OBI.
Collapse
Affiliation(s)
- Jingna Chen
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China; Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bochao Liu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xi Tang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Infectious Diseases, The First Foshan People's Hospital, Foshan, China
| | - Xin Zheng
- Shenzhen Blood Center, Shenzhen, China
| | - Jinhui Lu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Daniel Candotti
- Department of Blood Transmitted Agents, National Institute of Blood Transfusion, Paris, France
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Guangzhou Blood Center, Guangzhou, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Linhai Li
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae. PLoS Comput Biol 2020; 16:e1007782. [PMID: 32310951 PMCID: PMC7192502 DOI: 10.1371/journal.pcbi.1007782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a leading cause of liver disease. The capsid is an essential component of the virion and it is therefore of interest how it assembles and disassembles. The capsid protein is unusual both for its rare fold and that it polymerizes according to two different icosahedral symmetries, causing the polypeptide chain to exist in seven quasi-equivalent environments: A, B, and C in AB and CC dimers in T = 3 capsids, and A, B, C, and D in AB and CD dimers in T = 4 capsids. We have compared the two capsids by cryo-EM at 3.5 Å resolution. To ensure a valid comparison, the two capsids were prepared and imaged under identical conditions. We find that the chains have different conformations and potential energies, with the T = 3 C chain having the lowest. Three of the four quasi-equivalent dimers are asymmetric with respect to conformation and potential energy; however, the T = 3 CC dimer is symmetrical and has the lowest potential energy although its intra-dimer interface has the least free energy of formation. Of all the inter-dimer interfaces, the CB interface has the least area and free energy, in both capsids. From the calculated energies of higher-order groupings of dimers discernible in the lattices we predict early assembly intermediates, and indeed we observe such structures by negative stain EM of in vitro assembly reactions. By sequence analysis and computational alanine scanning we identify key residues and motifs involved in capsid assembly. Our results explain several previously reported observations on capsid assembly, disassembly, and dimorphism. Hepatitis B virus has infected approximately one third of the human population and causes almost 1 million deaths from liver disease annually. The capsid is a defining feature of a virus, distinct from host components, and therefore a target for intervention. Unusually for a virus, Hepatitis B assembles two capsids, with different geometries, from the same dimeric protein. Geometric principles dictate that the subunits in this system occupy seven different environments. From comparing the two capsids by cryo-electron microscopy at high resolution under the exact same conditions we find that the polypeptide chains adopt seven different conformations. We use these structures to calculate potential energies (analogous to elastic deformation or strain) for the individual chains, dimers, and several higher-order groupings discernible in the two lattices. We also calculate the binding energies between chains. We find that some groupings have substantially lower energy and are therefore potentially more stable, allowing us to predict likely intermediates on the two assembly pathways. We also observe such intermediates by electron microscopy of in vitro capsid assembly reactions. This is the first structural characterization of the early assembly intermediates of this important human pathogen.
Collapse
|
9
|
Watts NR, Palmer IW, Eren E, Steven AC, Wingfield PT. Capsids of hepatitis B virus e antigen with authentic C termini are stabilized by electrostatic interactions. FEBS Lett 2019; 594:1052-1061. [PMID: 31792961 DOI: 10.1002/1873-3468.13706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
The hepatitis B virus e antigen, an alternative transcript of the core gene, is a secreted protein that maintains viral persistence. The physiological form has extended C termini relative to Cp(-10)149, the construct used in many studies. To examine the role of the C termini, we expressed the constructs Cp(-10)151 and Cp(-10)154, which have additional arginine residues. Both constructs when treated with reductant formed capsids more efficiently than Cp(-10)149. These capsids were also substantially more stable, as measured by thermal denaturation and resistance to urea dissociation. Mutagenesis suggests that electrostatic interactions between the additional arginine residues and glutamate residues on adjacent subunits play a role in the extra stabilization. These findings have implications for the physiological role and biotechnological potential of this protein.
Collapse
Affiliation(s)
- Norman R Watts
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - Ira W Palmer
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Yan Z, Wu D, Hu H, Zeng J, Yu X, Xu Z, Zhou Z, Zhou X, Yang G, Young JA, Gao L. Direct Inhibition of Hepatitis B e Antigen by Core Protein Allosteric Modulator. Hepatology 2019; 70:11-24. [PMID: 30664279 PMCID: PMC6618080 DOI: 10.1002/hep.30514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
Abstract
Hepatitis B e antigen (HBeAg) is an important immunomodulator for promoting host immune tolerance during chronic hepatitis B (CHB) infection. In patients with CHB, HBeAg loss and seroconversion represent partial immune control of CHB infection and are regarded as valuable endpoints. However, the current approved treatments have only a limited efficacy in achieving HBeAg seroconversion in HBeAg-positive patients. Hepatitis B virus (HBV) core protein has been recognized as an attractive antiviral target, and two classes of core protein allosteric modulator (CpAM) have been discovered: the phenylpropenamides (PPAs) and the heteroaryldihydropyrimidines (HAPs). However, their differentiation and potential therapeutic benefit beyond HBV DNA inhibition remain to be seen. Here, we show that in contrast to PPA series compound AT-130, a HAP CpAM, HAP_R01, reduced HBeAg levels in multiple in vitro and in vivo HBV experimental models. Mechanistically, we found that HAP_R01 treatment caused the misassembly of capsids formed by purified HBeAg in vitro. In addition, HAP_R01 directly reduces HBeAg levels by inducing intracellular precore protein misassembly and aggregation. Using a HAP_R01-resistant mutant, we found that HAP_R01-mediated HBeAg and core protein reductions were mediated through the same mechanism. Furthermore, HAP_R01 treatment substantially reduced serum HBeAg levels in an HBV mouse model. Conclusion: Unlike PPA series compound AT-130, HAP_R01 not only inhibits HBV DNA levels but also directly reduces HBeAg through induction of its misassembly. HAP_R01, as well as other similar CpAMs, has the potential to achieve higher anti-HBeAg seroconversion rates than currently approved therapies for patients with CHB. Our findings also provide guidance for dose selection when designing clinical trials with molecules from HAP series.
Collapse
Affiliation(s)
- Zhipeng Yan
- Roche Innovation Center ShanghaiShanghaiChina
| | - Daitze Wu
- Roche Innovation Center ShanghaiShanghaiChina
| | - Hui Hu
- Roche Innovation Center ShanghaiShanghaiChina
| | - Jing Zeng
- Roche Innovation Center ShanghaiShanghaiChina
| | - Xin Yu
- Roche Innovation Center ShanghaiShanghaiChina
| | - Zhiheng Xu
- Roche Innovation Center ShanghaiShanghaiChina
| | - Zheng Zhou
- Roche Innovation Center ShanghaiShanghaiChina
| | - Xue Zhou
- Roche Innovation Center ShanghaiShanghaiChina
| | - Guang Yang
- Roche Innovation Center ShanghaiShanghaiChina
| | | | - Lu Gao
- Roche Innovation Center ShanghaiShanghaiChina
| |
Collapse
|
11
|
Novel Potent Capsid Assembly Modulators Regulate Multiple Steps of the Hepatitis B Virus Life Cycle. Antimicrob Agents Chemother 2018; 62:AAC.00835-18. [PMID: 30012770 DOI: 10.1128/aac.00835-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
The assembly of hepatitis B virus (HBV) core protein (HBc) into capsids represents a critical step of viral replication. HBc has multiple functions during the HBV life cycle, which makes it an attractive target for antiviral therapies. Capsid assembly modulators (CAMs) induce the formation of empty capsid or aberrant capsid devoid of pregenomic RNA (pgRNA) and finally block relaxed circular DNA neosynthesis and virion progeny. In this study, the novel CAMs JNJ-827 and JNJ-890 were found to be potent inhibitors of HBV replication with respective half-maximal effective concentrations of 4.7 and 66 nM, respectively, in HepG2.117 cells. Antiviral profiling in differentiated HepaRG (dHepaRG) cells and primary human hepatocytes revealed that these compounds efficiently inhibited HBV replication, as well as de novo establishment of covalently closed circular DNA (cccDNA). In addition to these two known effects of CAMs, we observed for the first time that a CAM, here JNJ-827, when added postinfection for a short-term period, significantly reduced hepatitis B e antigen (HBeAg) secretion without affecting the levels of cccDNA amount, transcription, and hepatitis B surface antigen (HBsAg) secretion. This inhibitory activity resulted from a direct effect of JNJ-827 on HBeAg biogenesis. In a long-term treatment condition using persistently infected dHepaRG cells, JNJ-827 and JNJ-890 reduced HBsAg concomitantly with a decrease in viral total RNA and pgRNA levels. Altogether, these data demonstrate that some CAMs could interfere with multiple functions of HBc in the viral life cycle.
Collapse
|
12
|
Eren E, Watts NR, Dearborn AD, Palmer IW, Kaufman JD, Steven AC, Wingfield PT. Structures of Hepatitis B Virus Core- and e-Antigen Immune Complexes Suggest Multi-point Inhibition. Structure 2018; 26:1314-1326.e4. [PMID: 30100358 DOI: 10.1016/j.str.2018.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) is the leading cause of liver disease worldwide. While an adequate vaccine is available, current treatment options are limited, not highly effective, and associated with adverse effects, encouraging the development of alternative therapeutics. The HBV core gene encodes two different proteins: core, which forms the viral nucleocapsid, and pre-core, which serves as an immune modulator with multiple points of action. The two proteins mostly have the same sequence, although they differ at their N and C termini and in their dimeric arrangements. Previously, we engineered two human-framework antibody fragments (Fab/scFv) with nano- to picomolar affinities for both proteins. Here, by means of X-ray crystallography, analytical ultracentrifugation, and electron microscopy, we demonstrate that the antibodies have non-overlapping epitopes and effectively block biologically important assemblies of both proteins. These properties, together with the anticipated high tolerability and long half-lives of the antibodies, make them promising therapeutics.
Collapse
Affiliation(s)
- Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norman R Watts
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Altaira D Dearborn
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira W Palmer
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Kaufman
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Zhuang X, Watts NR, Palmer IW, Kaufman JD, Dearborn AD, Trenbeath JL, Eren E, Steven AC, Rader C, Wingfield PT. Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy. J Biol Chem 2017; 292:16760-16772. [PMID: 28842495 DOI: 10.1074/jbc.m117.802272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli, had unprecedentedly high binding affinities (Kd ∼10-12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.
Collapse
Affiliation(s)
| | | | | | | | | | - Joni L Trenbeath
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Christoph Rader
- the Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | | |
Collapse
|
14
|
Abstract
Hepatitis B virus is one of the smallest human pathogens, encoded by a 3,200-bp genome with only four open reading frames. Yet the virus shows a remarkable diversity in structural features, often with the same proteins adopting several conformations. In part, this is the parsimony of viruses, where a minimal number of proteins perform a wide variety of functions. However, a more important theme is that weak interactions between components as well as components with multiple conformations that have similar stabilities lead to a highly dynamic system. In hepatitis B virus, this is manifested as a virion where the envelope proteins have multiple structures, the envelope-capsid interaction is irregular, and the capsid is a dynamic compartment that actively participates in metabolism of the encapsidated genome and carries regulated signals for intracellular trafficking.
Collapse
Affiliation(s)
| | - Adam Zlotnick
- Department of Molecular and Cellular Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
15
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|
16
|
Structurally similar woodchuck and human hepadnavirus core proteins have distinctly different temperature dependences of assembly. J Virol 2014; 88:14105-15. [PMID: 25253350 DOI: 10.1128/jvi.01840-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Woodchuck hepatitis virus (WHV), a close relative of human hepatitis B virus (HBV), has been a key model for disease progression and clinical studies. Sequences of the assembly domain of WHV and HBV core proteins (wCp149 and hCp149, respectively) have 65% identity, suggesting similar assembly behaviors. We report a cryo-electron microscopy (cryo-EM) structure of the WHV capsid at nanometer resolution and characterization of wCp149 assembly. At this resolution, the T=4 capsid structures of WHV and HBV are practically identical. In contrast to their structural similarity, wCp149 demonstrates enhanced assembly kinetics and stronger dimer-dimer interactions than hCp149: at 23 °C and at 100 mM ionic strength, the pseudocritical concentrations of assembly of wCp149 and hCp149 are 1.8 μM and 43.3 μM, respectively. Transmission electron microscopy reveals that wCp149 assembles into predominantly T=4 capsids with a sizeable population of larger, nonicosahedral structures. Charge detection mass spectrometry indicates that T=3 particles are extremely rare compared to the ∼ 5% observed in hCp149 reactions. Unlike hCp149, wCp149 capsid assembly is favorable over a temperature range of 4 °C to 37 °C; van't Hoff analyses relate the differences in temperature dependence to the high positive values for heat capacity, enthalpy, and entropy of wCp149 assembly. Because the final capsids are so similar, these findings suggest that free wCp149 and hCp149 undergo different structural transitions leading to assembly. The difference in the temperature dependence of wCp149 assembly may be related to the temperature range of its hibernating host. IMPORTANCE In this paper, we present a cryo-EM structure of a WHV capsid showing its similarity to HBV. We then observe that the assembly properties of the two homologous proteins are very different. Unlike human HBV, the capsid protein of WHV has evolved to function in a nonhomeostatic environment. These studies yield insight into the interplay between core protein self-assembly and the host environment, which may be particularly relevant to plant viruses and viruses with zoonotic cycles involving insect vectors.
Collapse
|
17
|
Duriez M, Thouard A, Bressanelli S, Rossignol JM, Sitterlin D. Conserved aromatic residues of the hepatitis B virus Precore propeptide are involved in a switch between distinct dimeric conformations and essential in the formation of heterocapsids. Virology 2014; 462-463:273-82. [PMID: 24999840 DOI: 10.1016/j.virol.2014.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/21/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
The Hepatitis B virus Precore protein, present in the secretory pathway as the HBeAg precursor, can associate in the cytoplasm with the Core protein to form heterocapsids, likely to favor viral persistence. Core and Precore proteins share their primary sequence except for ten additional aminoacids at the N-terminus of Precore. To address the role of this propeptide sequence in the formation of Precore heterocapsids, we designed a Precore mutant in which the two propeptide tryptophans are replaced by glycines. This mutant retains the properties of the wild-type Precore, notably cell trafficking and ability to interact with Core. However, it is not incorporated into heterocapsids and forms stable dimers distinct from the labile HBe dimers and the presumably Core-like dimers assembled into heterocapsids. Our data highlights the essential role of Precore׳s propeptide in switching between different conformations for different functions and pinpoint the propeptide Tryptophan residues as central in these properties.
Collapse
Affiliation(s)
- Marion Duriez
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| | - Anne Thouard
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| | - Stéphane Bressanelli
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| | - Jean-Michel Rossignol
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| | - Delphine Sitterlin
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| |
Collapse
|
18
|
Bereszczak JZ, Watts NR, Wingfield PT, Steven AC, Heck AJR. Assessment of differences in the conformational flexibility of hepatitis B virus core-antigen and e-antigen by hydrogen deuterium exchange-mass spectrometry. Protein Sci 2014; 23:884-96. [PMID: 24715628 DOI: 10.1002/pro.2470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 01/17/2023]
Abstract
Hepatitis B virus core-antigen (capsid protein) and e-antigen (an immune regulator) have almost complete sequence identity, yet the dimeric proteins (termed Cp149d and Cp(-10)149d , respectively) adopt quite distinct quaternary structures. Here we use hydrogen deuterium exchange-mass spectrometry (HDX-MS) to study their structural properties. We detect many regions that differ substantially in their HDX dynamics. Significantly, whilst all regions in Cp(-10)149d exchange by EX2-type kinetics, a number of regions in Cp149d were shown to exhibit a mixture of EX2- and EX1-type kinetics, hinting at conformational heterogeneity in these regions. Comparison of the HDX of the free Cp149d with that in assembled capsids (Cp149c ) indicated increased resistance to exchange at the C-terminus where the inter-dimer contacts occur. Furthermore, evidence of mixed exchange kinetics were not observed in Cp149c , implying a reduction in flexibility upon capsid formation. Cp(-10)149d undergoes a drastic structural change when the intermolecular disulphide bridge is reduced, adopting a Cp149d -like structure, as evidenced by the detected HDX dynamics being more consistent with Cp149d in many, albeit not all, regions. These results demonstrate the highly dynamic nature of these similar proteins. To probe the effect of these structural differences on the resulting antigenicity, we investigated binding of the antibody fragment (Fab E1) that is known to bind a conformational epitope on the four-helix bundle. Whilst Fab E1 binds to Cp149c and Cp149d , it does not bind non-reduced and reduced Cp(-10)149d , despite unhindered access to the epitope. These results imply a remarkable sensitivity of this epitope to its structural context.
Collapse
Affiliation(s)
- Jessica Z Bereszczak
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Yu X, Jin L, Jih J, Shih C, Hong Zhou Z. 3.5Å cryoEM structure of hepatitis B virus core assembled from full-length core protein. PLoS One 2013; 8:e69729. [PMID: 24039702 PMCID: PMC3765168 DOI: 10.1371/journal.pone.0069729] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/12/2013] [Indexed: 12/14/2022] Open
Abstract
The capsid shell of infectious hepatitis B virus (HBV) is composed of 240 copies of a single protein called HBV core antigen (HBc). An atomic model of a core assembled from truncated HBc was determined previously by X-ray crystallography. In an attempt to obtain atomic structural information of HBV core in a near native, non-crystalline environment, we reconstructed a 3.5Å-resolution structure of a recombinant core assembled from full-length HBc by cryo electron microscopy (cryoEM) and derived an atomic model. The structure shows that the 240 molecules of full-length HBc form a core with two layers. The outer layer, composed of the N-terminal assembly domain, is similar to the crystal structure of the truncated HBc, but has three differences. First, unlike the crystal structure, our cryoEM structure shows no disulfide bond between the Cys61 residues of the two subunits within the dimer building block, indicating such bond is not required for core formation. Second, our cryoEM structure reveals up to four more residues in the linker region (amino acids 140-149). Third, the loops in the cryoEM structures containing this linker region in subunits B and C are oriented differently (~30° and ~90°) from their counterparts in the crystal structure. The inner layer, composed of the C-terminal arginine-rich domain (ARD) and the ARD-bound RNAs, is partially-ordered and connected with the outer layer through linkers positioned around the two-fold axes. Weak densities emanate from the rims of positively charged channels through the icosahedral three-fold and local three-fold axes. We attribute these densities to the exposed portions of some ARDs, thus explaining ARD's accessibility by proteases and antibodies. Our data supports a role of ARD in mediating communication between inside and outside of the core during HBV maturation and envelopment.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lei Jin
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jonathan Jih
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chiaho Shih
- Institute of Biomedical Sciences (IBMS), Academia Sinica, Taipei, Taiwan
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Hepatitis B virus core gene products can adopt different conformations to perform their functional roles. In this issue of Structure, DiMattia and colleagues show the crystal structure of immuno-modulating HBeAg and thereby reveal the similarities and differences between it and HBcAg, the variant found in virions.
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47401, USA.
| | - Zhenning Tan
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47401, USA
| | - Lisa Selzer
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
21
|
DiMattia MA, Watts NR, Stahl SJ, Grimes JM, Steven AC, Stuart DI, Wingfield PT. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure 2013; 21:133-142. [PMID: 23219881 PMCID: PMC3544974 DOI: 10.1016/j.str.2012.10.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 01/12/2023]
Abstract
Chronic hepatitis B virus (HBV) infection afflicts millions worldwide with cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a nonparticulate variant of the protein (core antigen, HBcAg) that forms the building-blocks of capsids. HBeAg is not required for virion production, but is implicated in establishing immune tolerance and chronic infection. Here, we report the crystal structure of HBeAg, which clarifies how the short N-terminal propeptide of HBeAg induces a radically altered mode of dimerization relative to HBcAg (∼140° rotation), locked into place through formation of intramolecular disulfide bridges. This structural switch precludes capsid assembly and engenders a distinct antigenic repertoire, explaining why the two antigens are cross-reactive at the T cell level (through sequence identity) but not at the B cell level (through conformation). The structure offers insight into how HBeAg may establish immune tolerance for HBcAg while evading its robust immunogenicity.
Collapse
Affiliation(s)
- Michael A. DiMattia
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, U.K
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Norman R. Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Stephen J. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Jonathan M. Grimes
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, U.K
- Diamond Light Source, Didcot, OX11 0DE, U.K
| | - Alasdair C. Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - David I. Stuart
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, U.K
- Diamond Light Source, Didcot, OX11 0DE, U.K
| | - Paul T. Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
22
|
Abstract
Hepatitis B virus (HBV), a small and economically packaged double-stranded DNA virus, represents an enormous global health care burden. In spite of an effective vaccine, HBV is endemic in many countries. Chronic hepatitis B (CHB) results in the development of significant clinical outcomes such as liver disease and hepatocellular carcinoma (HCC), which are associated with high mortality rates. HBV is a non-cytopathic virus, with the host's immune response responsible for the associated liver damage. Indeed, HBV appears to be a master of manipulating and modulating the immune response to achieve persistent and chronic infection. The HBV precore protein or hepatitis B e antigen (HBeAg) is a key viral protein involved in these processes, for instance though the down-regulation of the innate immune response. The development of new therapies that target viral proteins, such as HBeAg, which regulates of the immune system, may offer a new wave of potential therapeutics to circumvent progression to CHB and liver disease.
Collapse
Affiliation(s)
- Renae Walsh
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia.
| | | |
Collapse
|
23
|
Abstract
Coordinated variation among positions in amino acid sequence alignments can reveal genetic dependencies at noncontiguous positions, but methods to assess these interactions are incompletely developed. Previously, we found genome-wide networks of covarying residue positions in the hepatitis C virus genome (R. Aurora, M. J. Donlin, N. A. Cannon, and J. E. Tavis, J. Clin. Invest. 119:225-236, 2009). Here, we asked whether such networks are present in a diverse set of viruses and, if so, what they may imply about viral biology. Viral sequences were obtained for 16 viruses in 13 species from 9 families. The entire viral coding potential for each virus was aligned, all possible amino acid covariances were identified using the observed-minus-expected-squared algorithm at a false-discovery rate of ≤1%, and networks of covariances were assessed using standard methods. Covariances that spanned the viral coding potential were common in all viruses. In all cases, the covariances formed a single network that contained essentially all of the covariances. The hepatitis C virus networks had hub-and-spoke topologies, but all other networks had random topologies with an unusually large number of highly connected nodes. These results indicate that genome-wide networks of genetic associations and the coordinated evolution they imply are very common in viral genomes, that the networks rarely have the hub-and-spoke topology that dominates other biological networks, and that network topologies can vary substantially even within a given viral group. Five examples with hepatitis B virus and poliovirus are presented to illustrate how covariance network analysis can lead to inferences about viral biology.
Collapse
|