1
|
Agam G, Barth A, Lamb DC. Folding pathway of a discontinuous two-domain protein. Nat Commun 2024; 15:690. [PMID: 38263337 PMCID: PMC10805907 DOI: 10.1038/s41467-024-44901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
It is estimated that two-thirds of all proteins in higher organisms are composed of multiple domains, many of them containing discontinuous folds. However, to date, most in vitro protein folding studies have focused on small, single-domain proteins. As a model system for a two-domain discontinuous protein, we study the unfolding/refolding of a slow-folding double mutant of the maltose binding protein (DM-MBP) using single-molecule two- and three-color Förster Resonance Energy Transfer experiments. We observe a dynamic folding intermediate population in the N-terminal domain (NTD), C-terminal domain (CTD), and at the domain interface. The dynamic intermediate fluctuates rapidly between unfolded states and compact states, which have a similar FRET efficiency to the folded conformation. Our data reveals that the delayed folding of the NTD in DM-MBP is imposed by an entropic barrier with subsequent folding of the highly dynamic CTD. Notably, accelerated DM-MBP folding is routed through the same dynamic intermediate within the cavity of the GroEL/ES chaperone system, suggesting that the chaperonin limits the conformational space to overcome the entropic folding barrier. Our study highlights the subtle tuning and co-dependency in the folding of a discontinuous multi-domain protein.
Collapse
Affiliation(s)
- Ganesh Agam
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Anders Barth
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629HZ, Delft, The Netherlands
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany.
| |
Collapse
|
2
|
Timpmann K, Kangur L, Freiberg A. Hysteretic Pressure Dependence of Ca 2+ Binding in LH1 Bacterial Membrane Chromoproteins. J Phys Chem B 2023; 127:456-464. [PMID: 36608327 DOI: 10.1021/acs.jpcb.2c05938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Much of the thermodynamic parameter values that support life are set by the properties of proteins. While the denaturing effects of pressure and temperature on proteins are well documented, their precise structural nature is rarely revealed. This work investigates the destabilization of multiple Ca2+ binding sites in the cyclic LH1 light-harvesting membrane chromoprotein complexes from two Ca-containing sulfur purple bacteria by hydrostatic high-pressure perturbation spectroscopy. The native (Ca-saturated) and denatured (Ca-depleted) phases of these complexes are well distinguishable by much-shifted bacteriochlorophyll a exciton absorption bands serving as innate optical probes in this study. The pressure-induced denaturation of the complexes related to the failure of the protein Ca-binding pockets and the concomitant breakage of hydrogen bonds between the pigment chromophores and protein environment were found cooperative, involving all or most of the Ca2+ binding sites, but irreversible. The strong hysteresis observed in the spectral and kinetic characteristics of phase transitions along the compression and decompression pathways implies asymmetry in the relevant free energy landscapes and activation free energy distributions. A phase transition pressure equal to about 1.9 kbar was evaluated for the complexes from Thiorhodovibrio strain 970 from the pressure dependence of biphasic kinetics observed in the minutes to 100 h time range.
Collapse
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia.,Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
3
|
The Thermodynamic Stability of Membrane Proteins in Micelles and Lipid Bilayers Investigated with the Ferrichrom Receptor FhuA. J Membr Biol 2022; 255:485-502. [PMID: 35552784 PMCID: PMC9581862 DOI: 10.1007/s00232-022-00238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022]
Abstract
Extraction of integral membrane proteins into detergents for structural and functional studies often leads to a strong loss in protein stability. The impact of the lipid bilayer on the thermodynamic stability of an integral membrane protein in comparison to its solubilized form in detergent was examined and compared for FhuA from Escherichia coli and for a mutant, FhuAΔ5-160, lacking the N-terminal cork domain. Urea-induced unfolding was monitored by fluorescence spectroscopy to determine the effective free energies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo of unfolding. To obtain enthalpic and entropic contributions of unfolding of FhuA, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo were determined at various temperatures. When solubilized in LDAO detergent, wt-FhuA and FhuAΔ5-160 unfolded in a single step. The 155-residue cork domain stabilized wt-FhuA by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta\Delta G{^\text{o}_{\rm u}} $$\end{document}ΔΔGuo~ 40 kJ/mol. Reconstituted into lipid bilayers, wt-FhuA unfolded in two steps, while FhuAΔ5-160 unfolded in a single step, indicating an uncoupled unfolding of the cork domain. For FhuAΔ5-160 at 35 °C, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo increased from ~ 5 kJ/mol in LDAO micelles to about ~ 20 kJ/mol in lipid bilayers, while the temperature of unfolding increased from TM ~ 49 °C in LDAO micelles to TM ~ 75 °C in lipid bilayers. Enthalpies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta H{_{\rm M}^\text{o}}$$\end{document}ΔHMowere much larger than free energies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo, for FhuAΔ5-160 and for wt-FhuA, and compensated by a large gain of entropy upon unfolding. The gain in conformational entropy is expected to be similar for unfolding of FhuA from micelles or bilayers. The strongly increased TM and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta H{_{\rm M}^\text{o}}$$\end{document}ΔHMo observed for the lipid bilayer-reconstituted FhuA in comparison to the LDAO-solubilized forms, therefore, very likely arise from a much-increased solvation entropy of FhuA in bilayers.
Collapse
|
4
|
Kum SL, Ho JCS, Parikh AN, Liedberg B. Amphiphilic Membrane Environments Regulate Enzymatic Behaviors of Salmonella Outer Membrane Protease. ACS BIO & MED CHEM AU 2022; 2:73-83. [PMID: 37102179 PMCID: PMC10114716 DOI: 10.1021/acsbiomedchemau.1c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The role of an amphiphilic environment in the functional regulation of integral membrane proteins is well appreciated but how specific amphiphilic surrounding influences the conformational plasticity and function of a protein is less obvious. We focus on the Salmonella phosphoglycerate transport system (pgt)-encoded outer membrane protease E (PgtE), which plays an important role in tissue infiltration and survival of Salmonella enterica. Despite our understanding of its physiological functions, elucidation of its enzymatic behavior in response to the immediate amphiphilic surrounding is lacking. We monitor the proteolytic activity of PgtE reconstituted in Zwittergent 3-12 detergent micelles or a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer and examine factors that influence its activity. We find, to our surprise, that PgtE, which is thought to elicit a rapid response toward various substrates, showed hysteretic enzymatic behavior, characterized by a prominent lag phase prior to achieving the exponential steady state in its detergent-stabilized form as well as in the outer membrane embedded native state in live bacteria. The lag phase was abolished under three conditions: preformation of an inactive detergent-stabilized PgtE-substrate complex without lipopolysaccharide (LPS), LPS-bound detergent-stabilized PgtE that had reached steady state velocity, or PgtE reconstituted into a POPC bilayer environment. Interestingly, detergent- and bilayer-stabilized PgtE showed comparable steady-state activity. And strikingly, lipopolysaccharide (LPS) becomes nonessential for the activation of PgtE when the protein is reconstituted in the phospholipid bilayer, contrasting a long-standing notion that LPS is required for proteases belonging to the omptin family to be proteolytically active. These findings suggest intriguing biological nuances for the proteolytic function of PgtE that were not well appreciated previously and offer new perspectives that may generally be applicable for omptins.
Collapse
Affiliation(s)
- Siau Ling Kum
- Centre
for Biomimetic Sensor Science, Nanyang Technological
University, 50 Nanyang Drive, 637553 Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Ave, 639798 Singapore
| | - James C. S. Ho
- Centre
for Biomimetic Sensor Science, Nanyang Technological
University, 50 Nanyang Drive, 637553 Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Ave, 639798 Singapore
| | - Atul N. Parikh
- Centre
for Biomimetic Sensor Science, Nanyang Technological
University, 50 Nanyang Drive, 637553 Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Ave, 639798 Singapore
- Department of Chemistry and Department of
Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Bo Liedberg
- Centre
for Biomimetic Sensor Science, Nanyang Technological
University, 50 Nanyang Drive, 637553 Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Ave, 639798 Singapore
| |
Collapse
|
5
|
Principles and Methods in Computational Membrane Protein Design. J Mol Biol 2021; 433:167154. [PMID: 34271008 DOI: 10.1016/j.jmb.2021.167154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/13/2023]
Abstract
After decades of progress in computational protein design, the design of proteins folding and functioning in lipid membranes appears today as the next frontier. Some notable successes in the de novo design of simplified model membrane protein systems have helped articulate fundamental principles of protein folding, architecture and interaction in the hydrophobic lipid environment. These principles are reviewed here, together with the computational methods and approaches that were used to identify them. We provide an overview of the methodological innovations in the generation of new protein structures and functions and in the development of membrane-specific energy functions. We highlight the opportunities offered by new machine learning approaches applied to protein design, and by new experimental characterization techniques applied to membrane proteins. Although membrane protein design is in its infancy, it appears more reachable than previously thought.
Collapse
|
6
|
Marx DC, Fleming KG. Membrane proteins enter the fold. Curr Opin Struct Biol 2021; 69:124-130. [PMID: 33975156 DOI: 10.1016/j.sbi.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 11/19/2022]
Abstract
Membrane proteins have historically been recalcitrant to biophysical folding studies. However, recent adaptations of methods from the soluble protein folding field have found success in their applications to transmembrane proteins composed of both α-helical and β-barrel conformations. Avoiding aggregation is critical for the success of these experiments. Altogether these studies are leading to discoveries of folding trajectories, foundational stabilizing forces and better-defined endpoints that enable more accurate interpretation of thermodynamic data. Increased information on membrane protein folding in the cell shows that the emerging biophysical principles are largely recapitulated even in the complex biological environment.
Collapse
Affiliation(s)
- Dagan C Marx
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, United States
| | - Karen G Fleming
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, United States.
| |
Collapse
|
7
|
Vorobieva AA, White P, Liang B, Horne JE, Bera AK, Chow CM, Gerben S, Marx S, Kang A, Stiving AQ, Harvey SR, Marx DC, Khan GN, Fleming KG, Wysocki VH, Brockwell DJ, Tamm LK, Radford SE, Baker D. De novo design of transmembrane β barrels. Science 2021; 371:eabc8182. [PMID: 33602829 PMCID: PMC8064278 DOI: 10.1126/science.abc8182] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Transmembrane β-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow β-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.
Collapse
Affiliation(s)
- Anastassia A Vorobieva
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sinduja Marx
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Q Stiving
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Dagan C Marx
- TC Jenkins Department of Biophysics Johns Hopkins University, Baltimore, MD 21218, USA
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Karen G Fleming
- TC Jenkins Department of Biophysics Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Marx DC, Fleming KG. Local Bilayer Hydrophobicity Modulates Membrane Protein Stability. J Am Chem Soc 2021; 143:764-772. [DOI: 10.1021/jacs.0c09412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dagan C. Marx
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Karen G. Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Huysmans GHM, Marx DC, Radford SE, Fleming KG. Determining the Free Energies of Outer Membrane Proteins in Lipid Bilayers. Methods Mol Biol 2020; 2168:217-232. [PMID: 33582994 DOI: 10.1007/978-1-0716-0724-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The thermodynamic stabilities of membrane proteins are of fundamental interest to provide a biophysical description of their structure-function relationships because energy determines conformational populations. In addition, structure-energy relationships can be exploited in membrane protein design and in synthetic biology. To determine the thermodynamic stability of a membrane protein, it is not sufficient to be able to unfold and refold the molecule: establishing path independence of this reaction is essential. Here we describe the procedures required to measure and verify path independence for the folding of outer membrane proteins in large unilamellar vesicles.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Dagan C Marx
- T C Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Karen G Fleming
- T C Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Tian W, Naveed H, Lin M, Liang J. GeTFEP: A general transfer free energy profile of transmembrane proteins. Protein Sci 2019; 29:469-479. [PMID: 31658402 DOI: 10.1002/pro.3763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
Free energy of transferring amino acid side-chains from aqueous environment into lipid bilayers, known as transfer free energy (TFE), provides important information on the thermodynamic stability of membrane proteins. In this study, we derived a TFE profile named General Transfer Free Energy Profile (GeTFEP) based on computation of the TFEs of 58 β-barrel membrane proteins (βMPs). The GeTFEP agrees well with experimentally measured and computationally derived TFEs. Analysis based on the GeTFEP shows that residues in different regions of the transmembrane (TM) segments of βMPs have different roles during the membrane insertion process. Results further reveal the importance of the sequence pattern of TM strands in stabilizing βMPs in the membrane environment. In addition, we show that GeTFEP can be used to predict the positioning and the orientation of βMPs in the membrane. We also show that GeTFEP can be used to identify structurally or functionally important amino acid residue sites of βMPs. Furthermore, the TM segments of α-helical membrane proteins can be accurately predicted with GeTFEP, suggesting that the GeTFEP is of general applicability in studying membrane protein.
Collapse
Affiliation(s)
- Wei Tian
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Hammad Naveed
- Department of Computer Science, National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Islamabad Capital Territory, Pakistan
| | - Meishan Lin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Jiang Y, Li X, Morrow BR, Pothukuchy A, Gollihar J, Novak R, Reilly CB, Ellington AD, Walt DR. Single-Molecule Mechanistic Study of Enzyme Hysteresis. ACS CENTRAL SCIENCE 2019; 5:1691-1698. [PMID: 31660437 PMCID: PMC6813718 DOI: 10.1021/acscentsci.9b00718] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 05/04/2023]
Abstract
Hysteresis is an important feature of enzyme-catalyzed reactions, as it reflects the influence of enzyme regulation in the presence of ligands such as substrates or allosteric molecules. In typical kinetic studies of enzyme activity, hysteretic behavior is observed as a "lag" or "burst" in the time course of the catalyzed reaction. These lags and bursts are due to the relatively slow transition from one state to another state of the enzyme molecule, with different states having different kinetic properties. However, it is difficult to understand the underlying mechanism of hysteresis by observing bulk reactions because the different enzyme molecules in the population behave stochastically. In this work, we studied the hysteretic behavior of mutant β-glucuronidase (GUS) using a high-throughput single-molecule array platform and investigated the effect of thermal treatment on the hysteresis.
Collapse
Affiliation(s)
- Yu Jiang
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute, Harvard University, Boston, Massachusetts 02115, United States
| | - Xiang Li
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute, Harvard University, Boston, Massachusetts 02115, United States
| | - Barrett R. Morrow
- Institute
for Cellular and Molecular Biology, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Arti Pothukuchy
- Institute
for Cellular and Molecular Biology, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Jimmy Gollihar
- Institute
for Cellular and Molecular Biology, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Richard Novak
- Wyss
Institute, Harvard University, Boston, Massachusetts 02115, United States
| | - Charles B. Reilly
- Wyss
Institute, Harvard University, Boston, Massachusetts 02115, United States
| | - Andrew D. Ellington
- Institute
for Cellular and Molecular Biology, University
of Texas at Austin, Austin, Texas 78712, United States
- E-mail:
| | - David R. Walt
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute, Harvard University, Boston, Massachusetts 02115, United States
- E-mail:
| |
Collapse
|
13
|
Koehler Leman J, Bonneau R, Ulmschneider MB. Statistically derived asymmetric membrane potentials from α-helical and β-barrel membrane proteins. Sci Rep 2018. [PMID: 29535329 PMCID: PMC5849751 DOI: 10.1038/s41598-018-22476-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Modeling membrane protein (MP) folding, insertion, association and their interactions with other proteins, lipids, and drugs requires accurate transfer free energies (TFEs). Various TFE scales have been derived to quantify the energy required or released to insert an amino acid or protein into the membrane. Experimental measurement of TFEs is challenging, and only few scales were extended to depth-dependent energetic profiles. Statistical approaches can be used to derive such potentials; however, this requires a sufficient number of MP structures. Furthermore, MPs are tightly coupled to bilayers that are heterogeneous in terms of lipid composition, asymmetry, and protein content between organisms and organelles. Here we derived asymmetric implicit membrane potentials from β-barrel and α-helical MPs and use them to predict topology, depth and orientation of proteins in the membrane. Our data confirm the ‘charge-outside’ and ‘positive-inside’ rules for β-barrels and α-helical proteins, respectively. We find that the β-barrel profiles have greater asymmetry than the ones from α-helical proteins, as a result of the different membrane architecture of gram-negative bacterial outer membranes and the existence of lipopolysaccharide in the outer leaflet. Our data further suggest that pore-facing residues in β-barrels have a larger contribution to membrane insertion and stability than previously suggested.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, 10010 NY, USA. .,Department of Biology, Center for Genomics and Systems Biology, New York University, New York, 10003 NY, USA.
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, 10010 NY, USA.,Department of Biology, Center for Genomics and Systems Biology, New York University, New York, 10003 NY, USA.,Department of Computer Science, New York University, New York, 10012 NY, USA
| | | |
Collapse
|
14
|
Domański J, Sansom MSP, Stansfeld PJ, Best RB. Balancing Force Field Protein-Lipid Interactions To Capture Transmembrane Helix-Helix Association. J Chem Theory Comput 2018; 14:1706-1715. [PMID: 29424543 PMCID: PMC5852462 DOI: 10.1021/acs.jctc.7b00983] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 01/21/2023]
Abstract
Atomistic simulations have recently been shown to be sufficiently accurate to reversibly fold globular proteins and have provided insights into folding mechanisms. Gaining similar understanding from simulations of membrane protein folding and association would be of great medical interest. All-atom simulations of the folding and assembly of transmembrane protein domains are much more challenging, not least due to very slow diffusion within the lipid bilayer membrane. Here, we focus on a simple and well-characterized prototype of membrane protein folding and assembly, namely the dimerization of glycophorin A, a homodimer of single transmembrane helices. We have determined the free energy landscape for association of the dimer using the CHARMM36 force field. We find that the native structure is a metastable state, but not stable as expected from experimental estimates of the dissociation constant and numerous experimental structures obtained under a variety of conditions. We explore two straightforward approaches to address this problem and demonstrate that they result in stable dimers with dissociation constants consistent with experimental data.
Collapse
Affiliation(s)
- Jan Domański
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Phillip J. Stansfeld
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
15
|
Tian W, Lin M, Naveed H, Liang J. Efficient computation of transfer free energies of amino acids in beta-barrel membrane proteins. Bioinformatics 2018; 33:1664-1671. [PMID: 28158457 DOI: 10.1093/bioinformatics/btx053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/25/2017] [Indexed: 11/14/2022] Open
Abstract
Motivation Transmembrane beta-barrel proteins (TMBs) serve a multitude of essential cellular functions in Gram-negative bacteria, mitochondria and chloroplasts. Transfer free energies (TFEs) of residues in the transmembrane (TM) region provides fundamental quantifications of thermodynamic stabilities of TMBs, which are important for the folding and the membrane insertion processes, and may help in understanding the structure-function relationship. However, experimental measurement of TFEs of TMBs is challenging. Although a recent computational method can be used to calculate TFEs, the results of which are in excellent agreement with experimentally measured values, this method does not scale up, and is limited to small TMBs. Results We have developed an approximation method that calculates TFEs of TM residues in TMBs accurately, with which depth-dependent transfer free energy profiles can be derived. Our results are in excellent agreement with experimental measurements. This method is efficient and applicable to all bacterial TMBs regardless of the size of the protein. Availability and Implementation An online webserver is available at http://tanto.bioe.uic.edu/tmb-tfe . Contact : jliang@uic.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Tian
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Meishan Lin
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Hammad Naveed
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Jie Liang
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 584] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
17
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
18
|
Isothermal chemical denaturation of large proteins: Path-dependence and irreversibility. Anal Biochem 2017; 539:60-69. [DOI: 10.1016/j.ab.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
|
19
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
20
|
Marx DC, Fleming KG. Influence of Protein Scaffold on Side-Chain Transfer Free Energies. Biophys J 2017; 113:597-604. [PMID: 28793214 DOI: 10.1016/j.bpj.2017.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 11/26/2022] Open
Abstract
The process by which membrane proteins fold involves the burial of side chains into lipid bilayers. Both structure and function of membrane proteins depend on the magnitudes of side-chain transfer free energies (ΔΔGsco). In the absence of other interactions, ΔΔGsco is an independent property describing the energetics of an isolated side chain in the bilayer. However, in reality, side chains are attached to the peptide backbone and surrounded by other side chains in the protein scaffold in biology, which may alter the apparent ΔΔGsco. Previously we reported a whole protein water-to-bilayer hydrophobicity scale using the transmembrane β-barrel Escherichia coli OmpLA as a scaffold protein. To investigate how a different protein scaffold can modulate these energies, we measured ΔΔGsco for all 20 amino acids using the transmembrane β-barrel E. coli PagP as a scaffold protein. This study represents, to our knowledge, the first instance of ΔΔGsco measured in the same experimental conditions in two structurally and sequentially distinct protein scaffolds. Although the two hydrophobicity scales are strongly linearly correlated, we find that there are apparent scaffold induced changes in ΔΔGsco for more than half of the side chains, most of which are polar residues. We propose that the protein scaffold affects the ΔΔGsco of side chains that are buried in unfavorable environments by dictating the mechanisms by which the side chain can reach a more favorable environment and thus modulating the magnitude of ΔΔGsco.
Collapse
|
21
|
Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy. J Mol Biol 2017; 429:977-986. [DOI: 10.1016/j.jmb.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
|
22
|
Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. Angew Chem Int Ed Engl 2017; 56:1919-1924. [PMID: 28079955 PMCID: PMC5299484 DOI: 10.1002/anie.201610778] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/24/2016] [Indexed: 12/22/2022]
Abstract
Once removed from their natural environment, membrane proteins depend on membrane-mimetic systems to retain their native structures and functions. To this end, lipid-bilayer nanodiscs that are bounded by scaffold proteins or amphiphilic polymers such as styrene/maleic acid (SMA) copolymers have been introduced as alternatives to detergent micelles and liposomes for in vitro membrane-protein research. Herein, we show that an alternating diisobutylene/maleic acid (DIBMA) copolymer shows equal performance to SMA in solubilizing phospholipids, stabilizes an integral membrane enzyme in functional bilayer nanodiscs, and extracts proteins of various sizes directly from cellular membranes. Unlike aromatic SMA, aliphatic DIBMA has only a mild effect on lipid acyl-chain order, does not interfere with optical spectroscopy in the far-UV range, and does not precipitate in the presence of low millimolar concentrations of divalent cations.
Collapse
Affiliation(s)
- Abraham Olusegun Oluwole
- Molecular BiophysicsUniversity of KaiserslauternErwin-Schrödinger-Str. 1367663KaiserslauternGermany
- Department of ChemistryUniversity of Ibadan200284IbadanNigeria
| | - Bartholomäus Danielczak
- Molecular BiophysicsUniversity of KaiserslauternErwin-Schrödinger-Str. 1367663KaiserslauternGermany
| | - Annette Meister
- Institute of Chemistry and Institute of Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | | | - Carolyn Vargas
- Molecular BiophysicsUniversity of KaiserslauternErwin-Schrödinger-Str. 1367663KaiserslauternGermany
| | - Sandro Keller
- Molecular BiophysicsUniversity of KaiserslauternErwin-Schrödinger-Str. 1367663KaiserslauternGermany
| |
Collapse
|
23
|
Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S. Solubilisierung von Membranproteinen in funktionelle Lipiddoppelschicht-Nanodiscs mithilfe eines Diisobutylen/ Maleinsäure-Copolymers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abraham Olusegun Oluwole
- Molekulare Biophysik; Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 13 67663 Kaiserslautern Deutschland
- Department of Chemistry; University of Ibadan; 200284 Ibadan Nigeria
| | - Bartholomäus Danielczak
- Molekulare Biophysik; Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 13 67663 Kaiserslautern Deutschland
| | - Annette Meister
- Institut für Chemie und Institut für Biochemie und Biotechnologie; Martin-Luther-Universität Halle-Wittenberg; Von-Danckelmann-Platz 4 06120 Halle Deutschland
| | | | - Carolyn Vargas
- Molekulare Biophysik; Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 13 67663 Kaiserslautern Deutschland
| | - Sandro Keller
- Molekulare Biophysik; Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 13 67663 Kaiserslautern Deutschland
| |
Collapse
|
24
|
Andersen KK, Vad B, Omer S, Otzen DE. Concatemers of Outer Membrane Protein A Take Detours in the Folding Landscape. Biochemistry 2016; 55:7123-7140. [PMID: 27973779 DOI: 10.1021/acs.biochem.6b01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outer membrane protein A (OmpA) is the most abundant protein in the outer membrane of Escherichia coli. The N-terminal domain forms an eight-stranded membrane-embedded β-barrel that is widely used as a model protein for in vitro folding into the membrane and into surfactant micelles. Under conditions that include a low surfactant concentration, OmpA can form stable higher-order structures by intermolecular association. Other β-barrel membrane proteins also associate to form noncovalently linked trimers in vivo. This inspired us to test how topological constraints imposed by intramolecular links between individual OmpA molecules affect this process. Here we report on the properties of concatemers consisting of two and three copies of the transmembrane part of OmpA. Both concatemers could be folded to a native state in surfactant micelles according to spectroscopy and electrophoretic band shifts. This native state had the same thermodynamic stability against chemical denaturation as the original OmpA. Above 1.5 M GdmCl, concatemerization increased both refolding and unfolding rates, which we attribute to entropic effects. However, below 1.5 M GdmCl, folding kinetics were 2-3 orders of magnitude slower and more complex, involving a greater degree of parallel folding steps and species that could be classified as off-pathway. Only OmpA2 could quantitatively be folded into vesicles (though to an extent lower than that of OmpA), while OmpA3 formed three species with different levels of folding. Thus, close spatial and sequential proximity of OmpA domains on the same polypeptide chain have a strong tendency to trap the protein in different misfolded states.
Collapse
Affiliation(s)
- Kell K Andersen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Brian Vad
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Sahar Omer
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
25
|
McDonald SK, Fleming KG. Negative Charge Neutralization in the Loops and Turns of Outer Membrane Phospholipase A Impacts Folding Hysteresis at Neutral pH. Biochemistry 2016; 55:6133-6137. [PMID: 27731977 DOI: 10.1021/acs.biochem.6b00652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hysteresis in equilibrium protein folding titrations is an experimental barrier that must be overcome to extract meaningful thermodynamic quantities. Traditional approaches to solving this problem involve testing a spectrum of solution conditions to find ones that achieve path independence. Through this procedure, a specific pH of 3.8 was required to achieve path independence for the water-to-bilayer equilibrium folding of outer membrane protein OmpLA. We hypothesized that the neutralization of negatively charged side chains (Asp and Glu) at pH 3.8 could be the physical basis for path-independent folding at this pH. To test this idea, we engineered variants of OmpLA with Asp → Asn and Glu → Gln mutations to neutralize the negative charges within various regions of the protein and tested for reversible folding at neutral pH. Although not fully resolved, our results show that these mutations in the periplasmic turns and extracellular loops are responsible for 60% of the hysteresis in wild-type folding. Overall, our study suggests that negative charges impact the folding hysteresis in outer membrane proteins and their neutralization may aid in protein engineering applications.
Collapse
Affiliation(s)
- Sarah K McDonald
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Lin M, Gessmann D, Naveed H, Liang J. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale. J Am Chem Soc 2016; 138:2592-601. [PMID: 26860422 DOI: 10.1021/jacs.5b10307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.
Collapse
Affiliation(s)
- Meishan Lin
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Dennis Gessmann
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| |
Collapse
|
27
|
Maurya SR, Mahalakshmi R. N-helix and Cysteines Inter-regulate Human Mitochondrial VDAC-2 Function and Biochemistry. J Biol Chem 2015; 290:30240-52. [PMID: 26487717 PMCID: PMC4683249 DOI: 10.1074/jbc.m115.693978] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 12/25/2022] Open
Abstract
Human voltage-dependent anion channel-2 (hVDAC-2) functions primarily as the crucial anti-apoptotic protein in the outer mitochondrial membrane, and additionally as a gated bidirectional metabolite transporter. The N-terminal helix (NTH), involved in voltage sensing, bears an additional 11-residue extension (NTE) only in hVDAC-2. In this study, we assign a unique role for the NTE as influencing the chaperone-independent refolding kinetics and overall thermodynamic stability of hVDAC-2. Our electrophysiology data shows that the N-helix is crucial for channel activity, whereas NTE sensitizes this isoform to voltage gating. Additionally, hVDAC-2 possesses the highest cysteine content, possibly for regulating reactive oxygen species content. We identify interdependent contributions of the N-helix and cysteines to channel function, and the measured stability in micellar environments with differing physicochemical properties. The evolutionary demand for the NTE in the presence of cysteines clearly emerges from our biochemical and functional studies, providing insight into factors that functionally demarcate hVDAC-2 from the other VDACs.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- From the Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- From the Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal 462023, India
| |
Collapse
|
28
|
Modulating bilayer mechanical properties to promote the coupled folding and insertion of an integral membrane protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:503-12. [DOI: 10.1007/s00249-015-1032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
|
29
|
Scott HL, Nguyen VP, Alves DS, Davis FL, Booth KR, Bryner J, Barrera FN. The negative charge of the membrane has opposite effects on the membrane entry and exit of pH-low insertion peptide. Biochemistry 2015; 54:1709-12. [PMID: 25692747 DOI: 10.1021/acs.biochem.5b00069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pH-low insertion peptide (pHLIP) targets acidic diseases such as cancer. The acidity of the environment causes key aspartic acids in pHLIP to become protonated, causing the peptide to insert into membranes. Here we investigate how the negative charge of the membrane influences how pHLIP enters and exits the lipid bilayer. We found that electrostatic repulsion affected differently the membrane entry and exit of pHLIP for negatively charged membranes. As a consequence, a large hysteresis was observed. We propose this is not a consequence of structural changes but results from local changes in the environment of aspartic acids, shifting their pK values.
Collapse
Affiliation(s)
- Haden L Scott
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Gupta A, Iyer BR, Chaturvedi D, Maurya SR, Mahalakshmi R. Thermodynamic, structural and functional properties of membrane protein inclusion bodies are analogous to purified counterparts: case study from bacteria and humans. RSC Adv 2015. [DOI: 10.1039/c4ra11207e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purification-free transmembrane protein inclusion body preparations for rapid and cost-effective biophysical, functional and structural studies.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Deepti Chaturvedi
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| |
Collapse
|
31
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
32
|
Toward understanding driving forces in membrane protein folding. Arch Biochem Biophys 2014; 564:297-313. [DOI: 10.1016/j.abb.2014.07.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
|
33
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
34
|
Banerjee K, Weliky DP. Folded monomers and hexamers of the ectodomain of the HIV gp41 membrane fusion protein: potential roles in fusion and synergy between the fusion peptide, hairpin, and membrane-proximal external region. Biochemistry 2014; 53:7184-98. [PMID: 25372604 PMCID: PMC4245979 DOI: 10.1021/bi501159w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
HIV
is an enveloped virus and fusion between the HIV and host cell
membranes is catalyzed by the ectodomain of the HIV gp41 membrane
protein. Both the N-terminal fusion peptide (FP)
and C-terminal membrane-proximal external region
(MPER) are critical for fusion and are postulated to bind to the host
cell and HIV membranes, respectively. Prior to fusion, the gp41 on
the virion is a trimer in noncovalent complex with larger gp120 subunits.
The gp120 bind host cell receptors and move away or dissociate from
gp41 which subsequently catalyzes fusion. In the present work, large
gp41 ectodomain constructs were produced and biophysically and structurally
characterized. One significant finding is observation of synergy between
the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced
fusion can be very efficient with only ∼15 gp41 per vesicle,
which is comparable to the number of gp41 on a virion. Conditions
are found with predominant monomer or hexamer but not trimer and these
may be oligomeric states during fusion. Monomer gp41 ectodomain is
hyperthermostable and has helical hairpin structure. A new HIV fusion
model is presented where (1) hemifusion is catalyzed by folding of
gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps
are catalyzed by assembly into a hexamer with FPs in an antiparallel
β sheet. There is also significant interest in the gp41 MPER
because it is the epitope of several broadly neutralizing antibodies.
Two of these antibodies bind our gp41 ectodomain constructs and support
investigation of the gp41 ectodomain as an immunogen in HIV vaccine
development.
Collapse
Affiliation(s)
- Koyeli Banerjee
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | |
Collapse
|
35
|
Differential contribution of tryptophans to the folding and stability of the attachment invasion locus transmembrane β-barrel from Yersinia pestis. Sci Rep 2014; 4:6508. [PMID: 25266561 PMCID: PMC4179465 DOI: 10.1038/srep06508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022] Open
Abstract
Attachment invasion locus (Ail) protein of Yersinia pestis is a crucial outer membrane protein for host invasion and determines bacterial survival within the host. Despite its importance in pathogenicity, surprisingly little is known on Ail biophysical properties. We investigate the contribution of micelle concentrations and interface tryptophans on the Ail β-barrel refolding and unfolding processes. Our results reveal that barrel folding is surprisingly independent of micelle amounts, but proceeds through an on-pathway intermediate that requires the interface W42 for cooperative barrel refolding. On the contrary, the unfolding event is strongly controlled by absolute micelle concentrations. We find that upon Trp → Phe substitution, protein stabilities follow the order W149F>WT>W42F for the refolding, and W42F>WT>W149F for unfolding. W42 confers cooperativity in barrel folding, and W149 clamps the post-folded barrel structure to its micelle environment. Our analyses reveal, for the first time, that interface tryptophan mutation can indeed render greater β-barrel stability. Furthermore, hysteresis in Ail stems from differential barrel-detergent interaction strengths in a micelle concentration-dependent manner, largely mediated by W149. The kinetically stabilized Ail β-barrel has strategically positioned tryptophans to balance efficient refolding and subsequent β-barrel stability, and may be evolutionarily chosen for optimal functioning of Ail during Yersinia pathogenesis.
Collapse
|
36
|
Hausrath AC. Model for coupled insertion and folding of membrane-spanning proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022707. [PMID: 25215758 DOI: 10.1103/physreve.90.022707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Current understanding of the forces directing the folding of integral membrane proteins is very limited compared to the detailed picture available for water-soluble proteins. While mechanistic studies of the folding process in vitro have been conducted for only a small number of membrane proteins, the available evidence indicates that their folding process is thermodynamically driven like that of soluble proteins. In vivo, however, the majority of integral membrane proteins are installed in membranes by dedicated machinery, suggesting that the cellular systems may act to facilitate and regulate the spontaneous physical process of folding. Both the in vitro folding process and the in vivo pathway must navigate an energy landscape dominated by the energetically favorable burial of hydrophobic segments in the membrane interior and the opposition to folding due to the need for passage of polar segments across the membrane. This manuscript describes a simple, exactly solvable model which incorporates these essential features of membrane protein folding. The model is used to compare the folding time under conditions which depict both the in vitro and in vivo pathways. It is proposed that the cellular complexes responsible for insertion of membrane proteins act by lowering the energy barrier for passage of polar regions through the membrane, thereby allowing the chain to more rapidly achieve the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- Department of Chemistry and Biochemistry and Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
37
|
Affiliation(s)
- Karen G. Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218;
| |
Collapse
|
38
|
Cysteine residues impact the stability and micelle interaction dynamics of the human mitochondrial β-barrel anion channel hVDAC-2. PLoS One 2014; 9:e92183. [PMID: 24642864 PMCID: PMC3967697 DOI: 10.1371/journal.pone.0092183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/20/2014] [Indexed: 01/06/2023] Open
Abstract
The anti-apoptotic 19-stranded transmembrane human voltage dependent anion channel isoform 2 (hVDAC-2) β-barrel stability is crucial for anion transport in mitochondria. The role of the unusually high number of cysteine residues in this isoform is poorly understood. Using a Cys-less construct of hVDAC-2, we haveinvestigated the contribution of cysteines to channel function, barrel stability and its influence on the strength of protein-micelle interactions. We observe that despite the overall preservation in barrel structure upon cysteine mutation, subtle local variations in the mode of interaction of the barrel with its refolded micellar environment arise, which may manifest itself in the channel activity of both the proteins.Fluorescence measurements of the Trp residues in hVDAC-2 point to possible differences in the association of the barrel with lauryldimethylamine oxide (LDAO) micelles. Upon replacement of cysteines in hVDAC-2, our data suggests greater barrel rigidity by way of intra-protein interactions. This, in turn, lowers the equilibrium barrel thermodynamic parameters in LDAOby perturbingthe stability of the protein-micelle complex. In addition to this, we also find a difference in the cooperativity of unfolding upon increasing the LDAO concentration, implying the importance of micelle concentration and micelle-protein ratios on the stability of this barrel. Our results indicate that the nine cysteine residues of hVDAC-2 are the key in establishing strong(er) barrel interactions with its environment and also impart additional malleability to the barrel scaffold.
Collapse
|
39
|
Methionine mutations of outer membrane protein X influence structural stability and beta-barrel unfolding. PLoS One 2013; 8:e79351. [PMID: 24265768 PMCID: PMC3827151 DOI: 10.1371/journal.pone.0079351] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022] Open
Abstract
We report the biochemical and biophysical characterization of outer membrane protein X (OmpX), an eight-stranded transmembrane β-barrel from E. coli, and compare the barrel behavior with a mutant devoid of methionine residues. Transmembrane outer membrane proteins of bacterial origin are known to display high tolerance to sequence rearrangements and mutations. Our studies with the triple mutant of OmpX that is devoid of all internal methionine residues (M18L; M21L; M118L) indicate that Met replacement has no influence on the refolding efficiency and structural characteristics of the protein. Surprisingly, the conserved substitution of Met→Leu leads to barrel destabilization and causes a lowering of the unfolding free energy by a factor of ∼8.5 kJ/mol, despite the mutations occurring at the loop regions. We report that the barrel destabilization is accompanied by a loss in cooperativity of unfolding in the presence of chemical denaturants. Furthermore, we are able to detect an unfolding intermediate in the Met-less barrel, whereas the parent protein exhibits a classic two-state unfolding. Thermal denaturation measurements also suggest a greater susceptibility of the OmpX barrel to heat, in the Met-less construct. Our studies reveal that even subtle variations in the extra-membrane region of rigid barrel structures such as OmpX, may bear severe implications on barrel stability. We propose that methionines contribute to efficient barrel structuring and protein-lipid interactions, and are therefore important elements of OmpX stability.
Collapse
|
40
|
McMorran LM, Bartlett AI, Huysmans GHM, Radford SE, Brockwell DJ. Dissecting the effects of periplasmic chaperones on the in vitro folding of the outer membrane protein PagP. J Mol Biol 2013; 425:3178-91. [PMID: 23796519 PMCID: PMC3906610 DOI: 10.1016/j.jmb.2013.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Although many periplasmic folding factors have been identified, the mechanisms by which they interact with unfolded outer membrane proteins (OMPs) to promote correct folding and membrane insertion remain poorly understood. Here, we have investigated the effect of two chaperones, Skp and SurA, on the folding kinetics of the OMP, PagP. Folding kinetics of PagP into both zwitterionic diC12:0PC (1,2-dilauroyl-sn-glycero-3-phosphocholine) liposomes and negatively charged 80:20 diC12:0PC:diC12:0PG [1,2-dilauroyl-sn-glycero-3-phospho-(1'-rac-glycerol)] liposomes were investigated using a combination of spectroscopic and SDS-PAGE assays. The results indicate that Skp modulates the observed rate of PagP folding in a manner that is dependent on the composition of the membrane and the ionic strength of the buffer used. These data suggest that electrostatic interactions play an important role in Skp-assisted substrate delivery to the membrane. In contrast, SurA showed no effect on the observed folding rates of PagP, consistent with the view that these chaperones act by distinct mechanisms in partially redundant parallel chaperone pathways that facilitate OMP assembly. In addition to delivery of the substrate protein to the membrane, the ability of Skp to prevent OMP aggregation was investigated. The results show that folding and membrane insertion of PagP can be restored, in part, by Skp in conditions that strongly favour PagP aggregation. These results illustrate the utility of in vitro systems for dissecting the complex folding environment encountered by OMPs in the periplasm and demonstrate the key role of Skp in holding aggregation-prone OMPs prior to their direct or indirect delivery to the membrane.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
41
|
Folding of outer membrane proteins. Arch Biochem Biophys 2013; 531:34-43. [DOI: 10.1016/j.abb.2012.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022]
|
42
|
Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc Natl Acad Sci U S A 2013; 110:4285-90. [PMID: 23440211 DOI: 10.1073/pnas.1212527110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermodynamic stabilities are pivotal for understanding structure-function relationships of proteins, and yet such determinations are rare for membrane proteins. Moreover, the few measurements that are available have been conducted under very different experimental conditions, which compromises a straightforward extraction of physical principles underlying stability differences. Here, we have overcome this obstacle and provided structure-stability comparisons for multiple membrane proteins. This was enabled by measurements of the free energies of folding and the m values for the transmembrane proteins PhoP/PhoQ-activated gene product (PagP) and outer membrane protein W (OmpW) from Escherichia coli. Our data were collected in the same lipid bilayer and buffer system we previously used to determine those parameters for E. coli outer membrane phospholipase A (OmpLA). Biophysically, our results suggest that the stabilities of these proteins are strongly correlated to the water-to-bilayer transfer free energy of the lipid-facing residues in their transmembrane regions. We further discovered that the sensitivities of these membrane proteins to chemical denaturation, as judged by their m values, was consistent with that previously observed for water-soluble proteins having comparable differences in solvent exposure between their folded and unfolded states. From a biological perspective, our findings suggest that the folding free energies for these membrane proteins may be the thermodynamic sink that establishes an energy gradient across the periplasm, thus driving their sorting by chaperones to the outer membranes in living bacteria. Binding free energies of these outer membrane proteins with periplasmic chaperones support this energy sink hypothesis.
Collapse
|
43
|
Andersen KK, Wang H, Otzen DE. A Kinetic Analysis of the Folding and Unfolding of OmpA in Urea and Guanidinium Chloride: Single and Parallel Pathways. Biochemistry 2012; 51:8371-83. [DOI: 10.1021/bi300974y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kell K. Andersen
- Interdisciplinary Nanoscience Centre (iNANO), Centre
for Insoluble Protein Structures (inSPIN), Department of Molecular
Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Huabing Wang
- Interdisciplinary Nanoscience Centre (iNANO), Centre
for Insoluble Protein Structures (inSPIN), Department of Molecular
Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Centre
for Insoluble Protein Structures (inSPIN), Department of Molecular
Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
44
|
Schlebach JP, Cao Z, Bowie JU, Park C. Revisiting the folding kinetics of bacteriorhodopsin. Protein Sci 2011; 21:97-106. [PMID: 22095725 DOI: 10.1002/pro.766] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 01/09/2023]
Abstract
The elucidation of the physical principles that govern the folding and stability of membrane proteins is one of the greatest challenges in protein science. Several insights into the folding of α-helical membrane proteins have come from the investigation of the conformational equilibrium of H. halobium bacteriorhodopsin (bR) in mixed micelles using SDS as a denaturant. In an effort to confirm that folded bR and SDS-denatured bR reach the same conformational equilibrium, we found that bR folding is significantly slower than has been previously known. Interrogation of the effect of the experimental variables on folding kinetics reveals that the rate of folding is dependent not only on the mole fraction of SDS but also on the molar concentrations of mixed micelle components, a variable that was not controlled in the previous study of bR folding kinetics. Moreover, when the molar concentrations of mixed micelle components are fixed at the concentrations commonly employed for bR equilibrium studies, conformational relaxation in the transition zone is slower than hydrolysis of the retinal Schiff base. As a result, the conformational equilibrium between folded bR and SDS-denatured bR cannot be achieved under the conventional condition. Our finding suggests that the molar concentrations of mixed micelle components are important experimental variables in the investigation of the kinetics and thermodynamics of bR folding and should be accounted for to ensure the accurate assessment of the conformational equilibrium of bR without the interference of retinal hydrolysis.
Collapse
Affiliation(s)
- Jonathan P Schlebach
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|