1
|
May JF, Gonske SJ. Insights into mechanisms and significance of domain swapping from emerging examples in the Mog1p/PsbP-like fold. Biochem Biophys Res Commun 2025; 755:151570. [PMID: 40048759 PMCID: PMC11963792 DOI: 10.1016/j.bbrc.2025.151570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Three-dimensional (3D) domain swapping in proteins occurs when identical polypeptide chains exchange structural elements to form a homo-oligomeric protein. Domain swapping can play a regulatory role for certain oligomeric proteins and has been implicated in deleterious protein aggregation. Here, we examine recently reported 3D domain swapping in proteins that contain the Mog1p/PsbP-like fold, which is a small fold found in non-enzymatic proteins that participate in a variety of distinct cellular processes. This fold was initially identified from structures of the yeast Mog1p protein, which regulates nuclear protein transport in eukaryotes, and PsbP proteins, which are part of photosystem II in plants, green algae, and cyanobacteria. The core structural element of the Mog1p/PsbP-like fold is an α-β-α sandwich that contains a 6- or 7-stranded antiparallel β-sheet. Additionally, most Mog1p/PsbP-like proteins contain an N-terminal β-hairpin that interacts with the α-β-α sandwich. Interestingly, domain-swapped dimers can form by exchange of this N-terminal β-hairpin in certain proteins. We discuss biochemical mechanisms and explore the functional significance of domain-swapping in the formation of an interaction interface in homo-dimers that bind a protein target. Lastly, we examine domain swapping between 2 tandem Mog1p/PsbP-like domains in a multidomain protein. In summary, this review provides recent examples of domain-swapping in proteins containing the Mog1p/PsbP-like fold and highlights general roles for domain-swapping in facilitating protein-protein interactions and in the evolution of multidomain proteins.
Collapse
Affiliation(s)
- John F May
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA.
| | - Sara J Gonske
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA
| |
Collapse
|
2
|
Jayaraman V, Toledo‐Patiño S, Noda‐García L, Laurino P. Mechanisms of protein evolution. Protein Sci 2022; 31:e4362. [PMID: 35762715 PMCID: PMC9214755 DOI: 10.1002/pro.4362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/06/2022]
Abstract
How do proteins evolve? How do changes in sequence mediate changes in protein structure, and in turn in function? This question has multiple angles, ranging from biochemistry and biophysics to evolutionary biology. This review provides a brief integrated view of some key mechanistic aspects of protein evolution. First, we explain how protein evolution is primarily driven by randomly acquired genetic mutations and selection for function, and how these mutations can even give rise to completely new folds. Then, we also comment on how phenotypic protein variability, including promiscuity, transcriptional and translational errors, may also accelerate this process, possibly via "plasticity-first" mechanisms. Finally, we highlight open questions in the field of protein evolution, with respect to the emergence of more sophisticated protein systems such as protein complexes, pathways, and the emergence of pre-LUCA enzymes.
Collapse
Affiliation(s)
- Vijay Jayaraman
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Saacnicteh Toledo‐Patiño
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Lianet Noda‐García
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
3
|
Liang R, Wang G, Zhang D, Ye G, Li M, Shi Y, Shi J, Chen H, Peng G. Structural comparisons of host and African swine fever virus dUTPases reveal new clues for inhibitor development. J Biol Chem 2021; 296:100015. [PMID: 33139328 PMCID: PMC7948977 DOI: 10.1074/jbc.ra120.014005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022] Open
Abstract
African swine fever, caused by the African swine fever virus (ASFV), is among the most significant swine diseases. There are currently no effective treatments against ASFV. ASFV contains a gene encoding a dUTPase (E165R), which is required for viral replication in swine macrophages, making it an attractive target for inhibitor development. However, the full structural details of the ASFV dUTPase and those of the comparable swine enzyme are not available, limiting further insights. Herein, we determine the crystal structures of ASFV dUTPase and swine dUTPase in both their ligand-free and ligand-bound forms. We observe that the swine enzyme employs a classical dUTPase architecture made up of three-subunit active sites, whereas the ASFV enzyme employs a novel two-subunit active site. We then performed a comparative analysis of all dUTPase structures uploaded in the Protein Data Bank (PDB), which showed classical and non-classical types were mainly determined by the C-terminal β-strand orientation, and the difference was mainly related to the four amino acids behind motif IV. Thus, our study not only explains the reason for the structural diversity of dUTPase but also reveals how to predict dUTPase type, which may have implications for the dUTPase family. Finally, we tested two dUTPase inhibitors developed for the Plasmodium falciparum dUTPase against the swine and ASFV enzymes. One of these compounds inhibited the ASFV dUTPase at low micromolar concentrations (Kd = 15.6 μM) and with some selectivity (∼2x) over swine dUTPase. In conclusion, our study expands our understanding of the dUTPase family and may aid in the development of specific ASFV inhibitors.
Collapse
Affiliation(s)
- Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Toledo-Patiño S, Chaubey M, Coles M, Höcker B. Reconstructing the Remote Origins of a Fold Singleton from a Flavodoxin-Like Ancestor. Biochemistry 2019; 58:4790-4793. [PMID: 31724394 PMCID: PMC6968885 DOI: 10.1021/acs.biochem.9b00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Evolutionary processes that led to the emergence of structured
protein domains left footprints in the sequences of modern proteins.
We searched for such hints employing state-of-the-art sequence analysis
and found evidence that the HemD-like fold emerged from the flavodoxin-like
fold through segment swap and gene duplication. To verify this hypothesis,
we reverted these evolutionary steps experimentally, constructing
a HemD-half that resulted in a protein with the canonical flavodoxin-like
architecture. These results of fold reconstruction from the sequence
of a different fold strongly support our hypothesis of common ancestry.
It further illustrates the plasticity of modern proteins to form new
folded proteins.
Collapse
Affiliation(s)
- Saacnicteh Toledo-Patiño
- Department of Biochemistry , University of Bayreuth , 95447 Bayreuth , Germany.,Max Planck Institute for Developmental Biology , 72076 Tübingen , Germany
| | - Manish Chaubey
- Max Planck Institute for Developmental Biology , 72076 Tübingen , Germany
| | - Murray Coles
- Max Planck Institute for Developmental Biology , 72076 Tübingen , Germany
| | - Birte Höcker
- Department of Biochemistry , University of Bayreuth , 95447 Bayreuth , Germany.,Max Planck Institute for Developmental Biology , 72076 Tübingen , Germany
| |
Collapse
|
5
|
Esposito L, Donnarumma F, Ruggiero A, Leone S, Vitagliano L, Picone D. Structure, stability and aggregation propensity of a Ribonuclease A-Onconase chimera. Int J Biol Macromol 2019; 133:1125-1133. [PMID: 31026530 DOI: 10.1016/j.ijbiomac.2019.04.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
Abstract
Structural roles of loop regions are frequently overlooked in proteins. Nevertheless, they may be key players in the definition of protein topology and in the self-assembly processes occurring through domain swapping. We here investigate the effects on structure and stability of replacing the loop connecting the last two β-strands of RNase A with the corresponding region of the more thermostable Onconase. The crystal structure of this chimeric variant (RNaseA-ONC) shows that its terminal loop size better adheres to the topological rules for the design of stabilized proteins, proposed by Baker and coworkers [43]. Indeed, RNaseA-ONC displays a thermal stability close to that of RNase A, despite the lack of Pro at position 114, which, due to its propensity to favor a cis peptide bond, has been identified as an important stabilizing factor of the native protein. Accordingly, RNaseA-ONC is significantly more stable than RNase A variants lacking Pro114; RNaseA-ONC also displays a higher propensity to form oligomers in native conditions when compared to either RNase A or Onconase. This finding demonstrates that modifications of terminal loops should to be carefully controlled in terms of size and sequence to avoid unwanted and/or potentially harmful aggregation processes.
Collapse
Affiliation(s)
- Luciana Esposito
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Federica Donnarumma
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | - Alessia Ruggiero
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Serena Leone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | - Luigi Vitagliano
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Delia Picone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy.
| |
Collapse
|
6
|
Cottee MA, Johnson S, Raff JW, Lea SM. A key centriole assembly interaction interface between human PLK4 and STIL appears to not be conserved in flies. Biol Open 2017; 6:381-389. [PMID: 28202467 PMCID: PMC5374404 DOI: 10.1242/bio.024661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A small number of proteins form a conserved pathway of centriole duplication. In
humans and flies, the binding of PLK4/Sak to STIL/Ana2 initiates
daughter centriole assembly. In humans, this interaction is mediated by an
interaction between the Polo-Box-3 (PB3) domain of PLK4 and the coiled-coil
domain of STIL (HsCCD). We showed previously that the
Drosophila Ana2 coiled-coil domain (DmCCD) is essential for
centriole assembly, but it forms a tight parallel tetramer in
vitro that likely precludes an interaction with PB3. Here, we show
that the isolated HsCCD and HsPB3 domains form a mixture of homo-multimers
in vitro, but these readily dissociate when mixed to form
the previously described 1:1 HsCCD:HsPB3 complex. In contrast, although
Drosophila PB3 (DmPB3) adopts a canonical polo-box fold, it
does not detectably interact with DmCCD in vitro. Thus,
surprisingly, a key centriole assembly interaction interface appears to differ
between humans and flies. Summary: PLK4 and STIL/Ana2 proteins interact to promote centriole
duplication. We show that these proteins may homo-multimerise in multiple ways,
and that their interaction is likely complex and may differ between species.
Collapse
Affiliation(s)
- Matthew A Cottee
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
7
|
Szilágyi A, Györffy D, Závodszky P. Segment swapping aided the evolution of enzyme function: The case of uroporphyrinogen III synthase. Proteins 2016; 85:46-53. [PMID: 27756106 DOI: 10.1002/prot.25190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 11/10/2022]
Abstract
In an earlier study, we showed that two-domain segment-swapped proteins can evolve by domain swapping and fusion, resulting in a protein with two linkers connecting its domains. We proposed that a potential evolutionary advantage of this topology may be the restriction of interdomain motions, which may facilitate domain closure by a hinge-like movement, crucial for the function of many enzymes. Here, we test this hypothesis computationally on uroporphyrinogen III synthase, a two-domain segment-swapped enzyme essential in porphyrin metabolism. To compare the interdomain flexibility between the wild-type, segment-swapped enzyme (having two interdomain linkers) and circular permutants of the same enzyme having only one interdomain linker, we performed geometric and molecular dynamics simulations for these species in their ligand-free and ligand-bound forms. We find that in the ligand-free form, interdomain motions in the wild-type enzyme are significantly more restricted than they would be with only one interdomain linker, while the flexibility difference is negligible in the ligand-bound form. We also estimated the entropy costs of ligand binding associated with the interdomain motions, and find that the change in domain connectivity due to segment swapping results in a reduction of this entropy cost, corresponding to ∼20% of the total ligand binding free energy. In addition, the restriction of interdomain motions may also help the functional domain-closure motion required for catalysis. This suggests that the evolution of the segment-swapped topology facilitated the evolution of enzyme function for this protein by influencing its dynamic properties. Proteins 2016; 85:46-53. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- András Szilágyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dániel Györffy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Assar Z, Nossoni Z, Wang W, Santos EM, Kramer K, McCornack C, Vasileiou C, Borhan B, Geiger JH. Domain-Swapped Dimers of Intracellular Lipid-Binding Proteins: Evidence for Ordered Folding Intermediates. Structure 2016; 24:1590-8. [PMID: 27524203 PMCID: PMC5330279 DOI: 10.1016/j.str.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/29/2022]
Abstract
Human Cellular Retinol Binding Protein II (hCRBPII), a member of the intracellular lipid-binding protein family, is a monomeric protein responsible for the intracellular transport of retinol and retinal. Herein we report that hCRBPII forms an extensive domain-swapped dimer during bacterial expression. The domain-swapped region encompasses almost half of the protein. The dimer represents a novel structural architecture with the mouths of the two binding cavities facing each other, producing a new binding cavity that spans the length of the protein complex. Although wild-type hCRBPII forms the dimer, the propensity for dimerization can be substantially increased via mutation at Tyr60. The monomeric form of the wild-type protein represents the thermodynamically more stable species, making the domain-swapped dimer a kinetically trapped entity. Hypothetically, the wild-type protein has evolved to minimize dimerization of the folding intermediate through a critical hydrogen bond (Tyr60-Glu72) that disfavors the dimeric form.
Collapse
Affiliation(s)
- Zahra Assar
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Zahra Nossoni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wenjing Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kevin Kramer
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Colin McCornack
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Lee DS, Vonrhein C, Albarado D, Raman CS, Veeraraghavan S. A Potential Structural Switch for Regulating DNA-Binding by TEAD Transcription Factors. J Mol Biol 2016; 428:2557-2568. [PMID: 27016204 DOI: 10.1016/j.jmb.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/02/2016] [Accepted: 03/13/2016] [Indexed: 10/22/2022]
Abstract
TEA domain (TEAD) transcription factors are essential for the normal development of eukaryotes and are the downstream effectors of the Hippo tumor suppressor pathway. Whereas our earlier work established the three-dimensional structure of the highly conserved DNA-binding domain using solution NMR spectroscopy, the structural basis for regulating the DNA-binding activity remains unknown. Here, we present the X-ray crystallographic structure and activity of a TEAD mutant containing a truncated L1 loop, ΔL1 TEAD DBD. Unexpectedly, the three-dimensional structure of the ΔL1 TEAD DBD reveals a helix-swapped homodimer wherein helix 1 is swapped between monomers. Furthermore, each three-helix bundle in the domain-swapped dimer is a structural homolog of MYB-like domains. Our investigations of the DNA-binding activity reveal that although the formation of the three-helix bundle by the ΔL1 TEAD DBD is sufficient for binding to an isolated M-CAT-like DNA element, multimeric forms are deficient for cooperative binding to tandemly duplicated elements, indicating that the L1 loop contributes to the DNA-binding activity of TEAD. These results suggest that switching between monomeric and domain-swapped forms may regulate DNA selectivity of TEAD proteins.
Collapse
Affiliation(s)
- Dong-Sun Lee
- Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 690-756, South Korea
| | - Clemens Vonrhein
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, UK
| | - Diana Albarado
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - C S Raman
- University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA
| | - Sudha Veeraraghavan
- University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Xue Z, Jang R, Govindarajoo B, Huang Y, Wang Y. Extending Protein Domain Boundary Predictors to Detect Discontinuous Domains. PLoS One 2015; 10:e0141541. [PMID: 26502173 PMCID: PMC4621036 DOI: 10.1371/journal.pone.0141541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022] Open
Abstract
A variety of protein domain predictors were developed to predict protein domain boundaries in recent years, but most of them cannot predict discontinuous domains. Considering nearly 40% of multidomain proteins contain one or more discontinuous domains, we have developed DomEx to enable domain boundary predictors to detect discontinuous domains by assembling the continuous domain segments. Discontinuous domains are predicted by matching the sequence profile of concatenated continuous domain segments with the profiles from a single-domain library derived from SCOP and CATH, and Pfam. Then the matches are filtered by similarity to library templates, a symmetric index score and a profile-profile alignment score. DomEx recalled 32.3% discontinuous domains with 86.5% precision when tested on 97 non-homologous protein chains containing 58 continuous and 99 discontinuous domains, in which the predicted domain segments are within ±20 residues of the boundary definitions in CATH 3.5. Compared with our recently developed predictor, ThreaDom, which is the state-of-the-art tool to detect discontinuous-domains, DomEx recalled 26.7% discontinuous domains with 72.7% precision in a benchmark with 29 discontinuous-domain chains, where ThreaDom failed to predict any discontinuous domains. Furthermore, combined with ThreaDom, the method ranked number one among 10 predictors. The source code and datasets are available at https://github.com/xuezhidong/DomEx.
Collapse
Affiliation(s)
- Zhidong Xue
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- * E-mail: (ZX); (YW)
| | - Richard Jang
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Brandon Govindarajoo
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Yichu Huang
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yan Wang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- * E-mail: (ZX); (YW)
| |
Collapse
|
11
|
Arieti F, Gabus C, Tambalo M, Huet T, Round A, Thore S. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs. Nucleic Acids Res 2014; 42:6742-52. [PMID: 24748666 PMCID: PMC4041450 DOI: 10.1093/nar/gku277] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs—the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3–RRM4 block is the main platform mediating the stable association with the H12–H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP–RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions.
Collapse
Affiliation(s)
- Fabiana Arieti
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Caroline Gabus
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Margherita Tambalo
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Tiphaine Huet
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation and Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, Grenoble 38042, France
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
12
|
Xue Z, Xu D, Wang Y, Zhang Y. ThreaDom: extracting protein domain boundary information from multiple threading alignments. Bioinformatics 2013; 29:i247-56. [PMID: 23812990 PMCID: PMC3694664 DOI: 10.1093/bioinformatics/btt209] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Motivation: Protein domains are subunits that can fold and evolve independently. Identification of domain boundary locations is often the first step in protein folding and function annotations. Most of the current methods deduce domain boundaries by sequence-based analysis, which has low accuracy. There is no efficient method for predicting discontinuous domains that consist of segments from separated sequence regions. As template-based methods are most efficient for protein 3D structure modeling, combining multiple threading alignment information should increase the accuracy and reliability of computational domain predictions. Result: We developed a new protein domain predictor, ThreaDom, which deduces domain boundary locations based on multiple threading alignments. The core of the method development is the derivation of a domain conservation score that combines information from template domain structures and terminal and internal alignment gaps. Tested on 630 non-redundant sequences, without using homologous templates, ThreaDom generates correct single- and multi-domain classifications in 81% of cases, where 78% have the domain linker assigned within ±20 residues. In a second test on 486 proteins with discontinuous domains, ThreaDom achieves an average precision 84% and recall 65% in domain boundary prediction. Finally, ThreaDom was examined on 56 targets from CASP8 and had a domain overlap rate 73, 87 and 85% with the target for Free Modeling, Hard multiple-domain and discontinuous domain proteins, respectively, which are significantly higher than most domain predictors in the CASP8. Similar results were achieved on the targets from the most recently CASP9 and CASP10 experiments. Availability:http://zhanglab.ccmb.med.umich.edu/ThreaDom/. Contact:zhng@umich.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhidong Xue
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
13
|
Kumar A, Burns DC, Al-Abdul-Wahid MS, Woolley GA. A circularly permuted photoactive yellow protein as a scaffold for photoswitch design. Biochemistry 2013; 52:3320-31. [PMID: 23570450 DOI: 10.1021/bi400018h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Upon blue light irradiation, photoactive yellow protein (PYP) undergoes a conformational change that involves large movements at the N-terminus of the protein. We reasoned that this conformational change might be used to control other protein or peptide sequences if these were introduced as linkers connecting the N- and C-termini of PYP in a circular permutant. For such a design strategy to succeed, the circularly permuted PYP (cPYP) would have to fold normally and undergo a photocycle similar to that of the wild-type protein. We created a test cPYP by connecting the N- and C-termini of wild-type PYP (wtPYP) with a GGSGGSGG linker polypeptide and introducing new N- and C-termini at G115 and S114, respectively. Biophysical analysis indicated that this cPYP adopts a dark-state conformation much like wtPYP and undergoes wtPYP-like photoisomerization driven by blue light. However, thermal recovery of dark-state cPYP is ∼10-fold faster than that of wtPYP, so that very bright light is required to significantly populate the light state. Targeted mutations at M121E (M100 in wtPYP numbering) were found to enhance the light sensitivity substantially by lengthening the lifetime of the light state to ∼10 min. Nuclear magnetic resonance (NMR), circular dichroism, and UV-vis analysis indicated that the M121E-cPYP mutant also adopts a dark-state structure like that of wtPYP, although protonated and deprotonated forms of the chromophore coexist, giving rise to a shoulder near 380 nm in the UV-vis absorption spectrum. Fluorine NMR studies with fluorotryptophan-labeled M121E-cPYP show that blue light drives large changes in conformational dynamics and leads to solvent exposure of Trp7 (Trp119 in wtPYP numbering), consistent with substantial rearrangement of the N-terminal cap structure. M121E-cPYP thus provides a scaffold that may allow a wider range of photoswitchable protein designs via replacement of the linker polypeptide with a target protein or peptide sequence.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | | | | | | |
Collapse
|
14
|
Guardiani C, Procacci P. The conformational landscape of tartrate-based inhibitors of the TACE enzyme as revealed by Hamiltonian Replica Exchange simulation. Phys Chem Chem Phys 2013; 15:9186-96. [DOI: 10.1039/c3cp00108c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|