1
|
Abramyan AM, Bochicchio A, Wu C, Damm W, Langley DR, Shivakumar D, Lupyan D, Wang L, Harder E, Oloo EO. Accurate Physics-Based Prediction of Binding Affinities of RNA- and DNA-Targeting Ligands. J Chem Inf Model 2025; 65:1392-1403. [PMID: 39883536 DOI: 10.1021/acs.jcim.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Accurate prediction of the affinity of ligand binding to nucleic acids represents a formidable challenge for current computational approaches. This limitation has hindered the use of computational methods to develop small-molecule drugs that modulate the activity of nucleic acids, including those associated with anticancer, antiviral, and antibacterial effects. In recent years, significant scientific and technological advances as well as easier access to compute resources have contributed to free-energy perturbation (FEP) becoming one of the most consistently reliable approaches for predicting relative binding affinities of ligands to proteins. Nevertheless, FEP's applicability to nucleic-acid targeting ligands has remained largely undetermined. In this work, we present a systematic assessment of the accuracy of FEP, as implemented in FEP+ software and facilitated by the OPLS4 force field, in predicting relative binding free energies of congeneric series of ligands interacting with a variety of DNA/RNA systems. The study encompassed more than 100 ligands exhibiting diverse binding modes, some partially exposed and others deeply buried. Using a consistent simulation protocol, more than half of the predictions are within 1 kcal/mol of the experimentally measured values. Across the data set, we report a combined average pairwise root-mean-square-error of <1.4 kcal/mol, which falls within one log unit of the experimentally measured dissociation constants. These results suggest that FEP+ has sufficient accuracy to guide the optimization of lead series in drug discovery programs targeting RNA and DNA.
Collapse
Affiliation(s)
- Ara M Abramyan
- Schrödinger Incorporated, San Diego, California 92121, United States
| | | | - Chuanjie Wu
- Schrödinger Incorporated, New York, New York 10036, United States
| | - Wolfgang Damm
- Schrödinger Incorporated, New York, New York 10036, United States
| | - David R Langley
- Arvinas Incorporated, New Haven, Connecticut 06511, United States
| | | | - Dmitry Lupyan
- Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States
| | - Lingle Wang
- Schrödinger Incorporated, New York, New York 10036, United States
| | - Edward Harder
- Schrödinger Incorporated, New York, New York 10036, United States
| | - Eliud O Oloo
- Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Marton Menendez A, Nesbitt DJ. Thermodynamic compensation to temperature extremes in B. subtilis vs T. maritima lysine riboswitches. Biophys J 2024; 123:3331-3345. [PMID: 39091026 PMCID: PMC11480769 DOI: 10.1016/j.bpj.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
T. maritima and B. subtilis are bacteria that inhabit significantly different thermal environments, ∼80 vs. ∼40°C, yet employ similar lysine riboswitches to aid in the transcriptional regulation of the genes involved in the synthesis and transport of amino acids. Despite notable differences in G-C basepair frequency and primary sequence, the aptamer moieties of each riboswitch have striking similarities in tertiary structure, with several conserved motifs and long-range interactions. To explore genetic adaptation in extreme thermal environments, we compare the kinetic and thermodynamic behaviors in T. maritima and B. subtilis lysine riboswitches via single-molecule fluorescence resonance energy transfer analysis. Kinetic studies reveal that riboswitch folding rates increase with lysine concentration while the unfolding rates are independent of lysine. This indicates that both riboswitches bind lysine through an induced-fit ("bind-then-fold") mechanism, with lysine binding necessarily preceding conformational changes. Temperature-dependent van't Hoff studies reveal qualitative similarities in the thermodynamic landscapes for both riboswitches in which progression from the open, lysine-unbound state to both transition states (‡) and closed, lysine-bound conformations is enthalpically favored yet entropically penalized, with comparisons of enthalpic and entropic contributions extrapolated to a common [K+] = 100 mM in quantitative agreement. Finally, temperature-dependent Eyring analysis reveals the TMA and BSU riboswitches to have remarkably similar folding/unfolding rate constants when extrapolated to their respective (40 and 80°C) environmental temperatures. Such behavior suggests a shared strategy for ligand binding and aptamer conformational change in the two riboswitches, based on thermodynamic adaptations in number of G-C basepairs and/or modifications in tertiary structure that stabilize the ligand-unbound conformation to achieve biocompetence under both hyperthermophilic and mesothermophilic conditions.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado; Department of Chemistry, University of Colorado Boulder, Boulder, Colorado.
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado; Department of Chemistry, University of Colorado Boulder, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
3
|
Olenginski LT, Spradlin SF, Batey RT. Flipping the script: Understanding riboswitches from an alternative perspective. J Biol Chem 2024; 300:105730. [PMID: 38336293 PMCID: PMC10907184 DOI: 10.1016/j.jbc.2024.105730] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.
Collapse
Affiliation(s)
| | | | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
4
|
Srivastava Y, Blau ME, Jenkins JL, Wedekind JE. Full-Length NAD +-I Riboswitches Bind a Single Cofactor but Cannot Discriminate against Adenosine Triphosphate. Biochemistry 2023; 62:3396-3410. [PMID: 37947391 PMCID: PMC10702441 DOI: 10.1021/acs.biochem.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Bacterial riboswitches are structured RNAs that bind small metabolites to control downstream gene expression. Two riboswitch classes have been reported to sense nicotinamide adenine dinucleotide (NAD+), which plays a key redox role in cellular metabolism. The NAD+-I (class I) riboswitch stands out because it comprises two homologous, tandemly arranged domains. However, previous studies examined the isolated domains rather than the full-length riboswitch. Crystallography and ligand binding analyses led to the hypothesis that each domain senses NAD+ but with disparate equilibrium binding constants (KD) of 127 μM (domain I) and 3.4 mM (domain II). Here, we analyzed individual domains and the full-length riboswitch by isothermal titration calorimetry to quantify the cofactor affinity and specificity. Domain I senses NAD+ with a KD of 24.6 ± 8.4 μM but with a reduced ligand-to-receptor stoichiometry, consistent with nonproductive domain self-association observed by gel-filtration chromatography; domain II revealed no detectable binding. By contrast, the full-length riboswitch binds a single NAD+ with a KD of 31.5 ± 1.5 μM; dinucleotides NADH and AP2-ribavirin also bind with one-to-one stoichiometry. Unexpectedly, the full-length riboswitch also binds a single ATP equivalent (KD = 11.0 ± 3.5 μM). The affinity trend of the full-length riboswitch is ADP = ATP > NAD+ = AP2-ribavirin > NADH. Although our results support riboswitch sensing of a single NAD+ at concentrations significantly below the intracellular levels of this cofactor, our findings do not support the level of specificity expected for a riboswitch that exclusively senses NAD+. Gene regulatory implications and future challenges are discussed.
Collapse
Affiliation(s)
- Yoshita Srivastava
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642, United States
| | - Maya E. Blau
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642, United States
| | - Jermaine L. Jenkins
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642, United States
| | - Joseph E. Wedekind
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642, United States
| |
Collapse
|
5
|
Hong KQ, Zhang J, Jin B, Chen T, Wang ZW. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Microb Cell Fact 2022; 21:56. [PMID: 35392910 PMCID: PMC8991567 DOI: 10.1186/s12934-022-01779-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background In vivo biosensors have a wide range of applications, ranging from the detection of metabolites to the regulation of metabolic networks, providing versatile tools for synthetic biology and metabolic engineering. However, in view of the vast array of metabolite molecules, the existing number and performance of biosensors is far from sufficient, limiting their potential applications in metabolic engineering. Therefore, we developed the synthetic glycine-ON and -OFF riboswitches for metabolic regulation and directed evolution of enzyme in Escherichia coli. Results The results showed that a synthetic glycine-OFF riboswitch (glyOFF6) and an increased-detection-range synthetic glycine-ON riboswitch (glyON14) were successfully screened from a library based on the Bacillus subtilis glycine riboswitch using fluorescence-activated cell sorting (FACS) and tetA-based dual genetic selection. The two synthetic glycine riboswitches were successfully used in tunable regulation of lactate synthesis, dynamic regulation of serine synthesis and directed evolution of alanine-glyoxylate aminotransferase in Escherichia coli, respectively. Mutants AGXT22 and AGXT26 of alanine-glyoxylate aminotransferase with an increase of 58% and 73% enzyme activity were obtained by using a high-throughput screening platform based on the synthetic glycine-OFF riboswitch, and successfully used to increase the 5-aminolevulinic acid yield of engineered Escherichia coli. Conclusions A synthetic glycine-OFF riboswitch and an increased-detection-range synthetic glycine-ON riboswitch were successfully designed and screened. The developed riboswitches showed broad application in tunable regulation, dynamic regulation and directed evolution of enzyme in E. coli. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01779-4.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Zhi-Wen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China. .,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Xu X, Rao ZM, Xu JZ, Zhang WG. Enhancement of l-Pipecolic Acid Production by Dynamic Control of Substrates and Multiple Copies of the pipA Gene in the Escherichia coli Genome. ACS Synth Biol 2022; 11:760-769. [PMID: 35073050 DOI: 10.1021/acssynbio.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Pipecolic acid is an important rigid cyclic nonprotein amino acid, which is obtained through the conversion of l-lysine catalyzed by l-lysine cyclodeaminase (LCD). To directly produce l-pipecolic acid from glucose by microbial fermentation, in this study, a recombinant Escherichia coli strain with high efficiency of l-pipecolic acid production was constructed. This study involves the dynamic regulation of the substrate concentration and the expression level of the l-lysine cyclodeaminase-coding gene pipA. In terms of substrate concentration, we adopted the l-lysine riboswitch to dynamically regulate the expression of lysP and lysO genes. As a result, the l-pipecolic acid yield was increased about 1.8-fold as compared with the control. In addition, we used chemically inducible chromosomal evolution (CIChE) to realize the presence of multiple copies of the pipA gene on the genome. The resultant E. coli strain XQ-11-4 produced 61 ± 3.4 g/L l-pipecolic acid with a productivity of 1.02 ± 0.06 g/(L·h) and a glucose conversion efficiency (α) of 29.6% in fermentation. This is the first report that discovered multiple copies of pipA gene expression on the genome that improves the efficiency of l-pipecolic acid production in an l-lysine high-producing strain, and these results give us new insight for constructing the other valuable biochemicals derived from l-lysine.
Collapse
Affiliation(s)
- Xin Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| |
Collapse
|
7
|
Marton Menendez A, Nesbitt DJ. Lysine-Dependent Entropy Effects in the B. subtilis Lysine Riboswitch: Insights from Single-Molecule Thermodynamic Studies. J Phys Chem B 2021; 126:69-79. [PMID: 34958583 DOI: 10.1021/acs.jpcb.1c07833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Riboswitches play an important role in RNA-based sensing/gene regulation control for many bacteria. In particular, the accessibility of multiple conformational states at physiological temperatures allows riboswitches to selectively bind a cognate ligand in the aptamer domain, which triggers secondary structural changes in the expression platform, and thereby "switching" between on or off transcriptional or translational states for the downstream RNA. The present work exploits temperature-controlled, single-molecule total internal reflection fluorescence (TIRF) microscopy to study the thermodynamic landscape of such ligand binding/folding processes, specifically for the Bacillus subtilis lysine riboswitch. The results confirm that the riboswitch folds via an induced-fit (IF) mechanism, in which cognate lysine ligand first binds to the riboswitch before structural rearrangement takes place. The transition state to folding is found to be enthalpically favored (ΔHfold‡ < 0), yet with a free-energy barrier that is predominantly entropic (-TΔSfold‡ > 0), which results in folding (unfolding) rate constants strongly dependent (independent) of lysine concentration. Analysis of the single-molecule kinetic "trajectories" reveals this rate constant dependence of kfold on lysine to be predominantly entropic in nature, with the additional lysine conferring preferential advantage to the folding process by the presence of ligands correctly oriented with respect to the riboswitch platform. By way of contrast, van't Hoff analysis reveals enthalpic contributions to the overall folding thermodynamics (ΔH0) to be surprisingly constant and robustly independent of lysine concentration. The results demonstrate the crucial role of hydrogen bonding between the ligand and riboswitch platform but with only a relatively modest fraction (45%) of the overall enthalpy change needed to access the transition state and initiate transcriptional switching.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Zhang G, Ren X, Liang X, Wang Y, Feng D, Zhang Y, Xian M, Zou H. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Wilt HM, Yu P, Tan K, Wang YX, Stagno JR. Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation. J Struct Biol 2021; 213:107703. [PMID: 33571639 DOI: 10.1016/j.jsb.2021.107703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Effective gene regulation by the tetrahydrofolate riboswitch depends not only on ligand affinity but also on the kinetics of ligand association, which involves two cooperative binding sites. We have determined a 1.9-Å resolution crystal structure of the ligand-free THF riboswitch aptamer. The pseudoknot binding site 'unwinds' in the absence of ligand, whereby the adjacent helical domains (P1, P2, and P3) become disjointed, resulting in rotation and misalignment of the gene-regulatory P1 helix with respect to P3. In contrast, the second binding site at the three-way junction, which is the first to fold, is structurally conserved between apo and holo forms. This suggests a kinetic role for this site, in which binding of the first ligand molecule to the stably folded three-way junction promotes formation of the regulatory pseudoknot site and subsequent binding of the second molecule. As such, these findings provide a molecular basis for both conformational switching and kinetic control.
Collapse
Affiliation(s)
- Haley M Wilt
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Drogalis LK, Batey RT. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. PLoS One 2020; 15:e0243155. [PMID: 33259551 PMCID: PMC7707468 DOI: 10.1371/journal.pone.0243155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Riboswitches, generally located in the 5'-leader of bacterial mRNAs, direct expression via a small molecule-dependent structural switch that informs the transcriptional or translational machinery. While the structure and function of riboswitch effector-binding (aptamer) domains have been intensely studied, only recently have the requirements for efficient linkage between small molecule binding and the structural switch in the cellular and co-transcriptional context begun to be actively explored. To address this aspect of riboswitch function, we have performed a structure-guided mutagenic analysis of the B. subtilis pbuE adenine-responsive riboswitch, one of the simplest riboswitches that employs a strand displacement switching mechanism to regulate transcription. Using a cell-based fluorescent protein reporter assay to assess ligand-dependent regulatory activity in E. coli, these studies revealed previously unrecognized features of the riboswitch. Within the aptamer domain, local and long-range conformational dynamics influenced by sequences within helices have a significant effect upon efficient regulatory switching. Sequence features of the expression platform including the pre-aptamer leader sequence, a toehold helix and an RNA polymerase pause site all serve to promote strong ligand-dependent regulation. By optimizing these features, we were able to improve the performance of the B. subtilis pbuE riboswitch in E. coli from 5.6-fold induction of reporter gene expression by the wild type riboswitch to over 120-fold in the top performing designed variant. Together, these data point to sequence and structural features distributed throughout the riboswitch required to strike a balance between rates of ligand binding, transcription and secondary structural switching via a strand exchange mechanism and yield new insights into the design of artificial riboswitches.
Collapse
MESH Headings
- Adenine/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Escherichia coli K12/genetics
- Genes, Reporter
- Genetic Variation
- Ligands
- Models, Genetic
- Models, Molecular
- Mutagenesis
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Riboswitch/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Lea K. Drogalis
- Department of Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sun Y, Wang Y, Tan ZJ, Zhang W. Regulation mechanism of lysC riboswitch in gram-positive bacterium Bacillus subtilis. J Biomol Struct Dyn 2020; 38:2784-2791. [DOI: 10.1080/07391102.2019.1639546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuying Sun
- Department of Physics, Wuhan University, Wuhan, Hubei, P.R. China
| | - Yanli Wang
- Department of Physics, Wuhan University, Wuhan, Hubei, P.R. China
| | - Zhi-Jie Tan
- Department of Physics, Wuhan University, Wuhan, Hubei, P.R. China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
12
|
McCluskey K, Boudreault J, St-Pierre P, Perez-Gonzalez C, Chauvier A, Rizzi A, Beauregard PB, Lafontaine DA, Penedo JC. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2. Nucleic Acids Res 2020; 47:6478-6487. [PMID: 31045204 PMCID: PMC6614840 DOI: 10.1093/nar/gkz316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer–ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK
| | - Julien Boudreault
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Patrick St-Pierre
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Adrien Chauvier
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Adrien Rizzi
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Pascale B Beauregard
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | | | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, Scotland KY16 9ST, UK
| |
Collapse
|
13
|
Polaski JT, Kletzien OA, Drogalis LK, Batey RT. A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity. Nucleic Acids Res 2019; 46:9094-9105. [PMID: 29945209 PMCID: PMC6158498 DOI: 10.1093/nar/gky539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Riboswitches are structured mRNA sequences that regulate gene expression by directly binding intracellular metabolites. Generating the appropriate regulatory response requires the RNA rapidly and stably acquire higher-order structure to form the binding pocket, bind the appropriate effector molecule and undergo a structural transition to inform the expression machinery. These requirements place riboswitches under strong kinetic constraints, likely restricting the sequence space accessible by recurrent structural modules such as the kink turn and the T-loop. Class-II cobalamin riboswitches contain two T-loop modules: one directing global folding of the RNA and another buttressing the ligand binding pocket. While the T-loop module directing folding is highly conserved, the T-loop associated with binding is substantially less so, with no clear consensus sequence. To further understand the functional role of the binding-associated module, a functional genetic screen of a library of riboswitches with the T-loop and its interacting nucleotides was used to build an experimental phylogeny comprised of sequences that possess a wide range of cobalamin-dependent regulatory activity. Our results reveal conservation patterns of the T-loop and its interaction with the binding core that allow for rapid tertiary structure formation and demonstrate its importance for generating strong ligand-dependent repression of mRNA expression.
Collapse
Affiliation(s)
- Jacob T Polaski
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Otto A Kletzien
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Lea K Drogalis
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
15
|
Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat Chem Biol 2017; 13:295-301. [PMID: 28092358 PMCID: PMC5310984 DOI: 10.1038/nchembio.2278] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/21/2016] [Indexed: 12/05/2022]
Abstract
Allosteric RNA devices are increasingly viewed as important tools capable of monitoring enzyme evolution, optimizing engineered metabolic pathways, facilitating gene discovery and regulators of nucleic acid-based therapeutics. A key bottleneck in the development of these platforms is the availability of small molecule binding RNA aptamers that robustly function in the cellular environment. While aptamers can be raised against nearly any desired target by in vitro selection, many cannot be easily integrated into devices or do not reliably function in a cellular context. Here, we describe a new approach using secondary and tertiary structural scaffolds derived from biologically active riboswitches and small ribozymes. Applied to neurotransmitter precursors 5-hydroxytryptophan and 3,4-dihydroxyphenylalanine, this approach yields easily identifiable and characterizable aptamers predisposed for coupling to readout domains to engineer nucleic acid sensory devices that function in vitro and in the cellular context.
Collapse
|
16
|
Smith-Peter E, Lamontagne AM, Lafontaine DA. Role of lysine binding residues in the global folding of the lysC riboswitch. RNA Biol 2016; 12:1372-82. [PMID: 26403229 DOI: 10.1080/15476286.2015.1094603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Riboswitches regulate gene expression by rearranging their structure upon metabolite binding. The lysine-sensing lysC riboswitch is a rare example of an RNA aptamer organized around a 5-way helical junction in which ligand binding is performed exclusively through nucleotides located at the junction core. We have probed whether the nucleotides involved in ligand binding play any role in the global folding of the riboswitch. As predicted, our findings indicate that ligand-binding residues are critical for the lysine-dependent gene regulation mechanism. We also find that these residues are not important for the establishment of key magnesium-dependent tertiary interactions, suggesting that folding and ligand recognition are uncoupled in this riboswitch for the formation of specific interactions. However, FRET assays show that lysine binding results in an additional conformational change, indicating that lysine binding may also participate in a specific folding transition. Thus, in contrast to helical junctions being primary determinants in ribozymes and rRNA folding, we speculate that the helical junction of the lysine-sensing lysC riboswitch is not employed as structural a scaffold to direct global folding, but rather has a different role in establishing RNA-ligand interactions required for riboswitch regulation. Our work suggests that helical junctions may adopt different functions such as the coordination of global architecture or the formation of specific ligand binding site.
Collapse
Affiliation(s)
- Erich Smith-Peter
- a Department of Biology ; Faculty of Science, RNA Group, Université de Sherbrooke , Sherbrooke ; Quebec , Canada
| | - Anne-Marie Lamontagne
- a Department of Biology ; Faculty of Science, RNA Group, Université de Sherbrooke , Sherbrooke ; Quebec , Canada
| | - Daniel A Lafontaine
- a Department of Biology ; Faculty of Science, RNA Group, Université de Sherbrooke , Sherbrooke ; Quebec , Canada
| |
Collapse
|
17
|
Perez-Gonzalez C, Grondin JP, Lafontaine DA, Carlos Penedo J. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:157-91. [PMID: 27193543 DOI: 10.1007/978-3-319-32189-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The last decade has witnessed the discovery of a variety of non-coding RNA sequences that perform a broad range of crucial biological functions. Among these, the ability of certain RNA sequences, so-called riboswitches, has attracted considerable interest. Riboswitches control gene expression in response to the concentration of particular metabolites to which they bind without the need for any protein. These RNA switches not only need to adopt a very specific tridimensional structure to perform their function, but also their sequence has been evolutionary optimized to recognize a particular metabolite with high affinity and selectivity. Thus, riboswitches offer a unique opportunity to get fundamental insights into RNA plasticity and how folding dynamics and ligand recognition mechanisms have been efficiently merged to control gene regulation. Because riboswitch sequences have been mostly found in bacterial organisms controlling the expression of genes associated to the synthesis, degradation or transport of crucial metabolites for bacterial survival, they offer exciting new routes for antibiotic development in an era where bacterial resistance is more than ever challenging conventional drug discovery strategies. Here, we give an overview of the architecture, diversity and regulatory mechanisms employed by riboswitches with particular emphasis on the biophysical methods currently available to characterise their structure and functional dynamics.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Jonathan P Grondin
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
18
|
Aboul-ela F, Huang W, Abd Elrahman M, Boyapati V, Li P. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:631-50. [PMID: 26361734 PMCID: PMC5049679 DOI: 10.1002/wrna.1300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 11/23/2022]
Abstract
The power of riboswitches in regulation of bacterial metabolism derives from coupling of two characteristics: recognition and folding. Riboswitches contain aptamers, which function as biosensors. Upon detection of the signaling molecule, the riboswitch transduces the signal into a genetic decision. The genetic decision is coupled to refolding of the expression platform, which is distinct from, although overlapping with, the aptamer. Early biophysical studies of riboswitches focused on recognition of the ligand by the aptamer-an important consideration for drug design. A mechanistic understanding of ligand-induced riboswitch RNA folding can further enhance riboswitch ligand design, and inform efforts to tune and engineer riboswitches with novel properties. X-ray structures of aptamer/ligand complexes point to mechanisms through which the ligand brings together distal strand segments to form a P1 helix. Transcriptional riboswitches must detect the ligand and form this P1 helix within the timescale of transcription. Depending on the cell's metabolic state and cellular environmental conditions, the folding and genetic outcome may therefore be affected by kinetics of ligand binding, RNA folding, and transcriptional pausing, among other factors. Although some studies of isolated riboswitch aptamers found homogeneous, prefolded conformations, experimental, and theoretical studies point to functional and structural heterogeneity for nascent transcripts. Recently it has been shown that some riboswitch segments, containing the aptamer and partial expression platforms, can form binding-competent conformers that incorporate an incomplete aptamer secondary structure. Consideration of the free energy landscape for riboswitch RNA folding suggests models for how these conformers may act as transition states-facilitating rapid, ligand-mediated aptamer folding.
Collapse
Affiliation(s)
- Fareed Aboul-ela
- Center for X-Ray Determination of the Structure of Matter, University of Science and Technology at Zewail City, Giza, Egypt
| | - Wei Huang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Maaly Abd Elrahman
- Center for X-Ray Determination of the Structure of Matter, University of Science and Technology at Zewail City, Giza, Egypt
- Therapeutical Chemistry Department, National Research Center, El Buhouth St., Dokki, Cairo, Egypt
| | - Vamsi Boyapati
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pan Li
- Department of Biological Sciences, University at Albany-SUNY, Albany, NY, USA
| |
Collapse
|
19
|
Wostenberg C, Ceres P, Polaski JT, Batey RT. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning. J Mol Biol 2015; 427:3473-3490. [PMID: 26343759 DOI: 10.1016/j.jmb.2015.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 01/24/2023]
Abstract
RNA folding in vivo is significantly influenced by transcription, which is not necessarily recapitulated by Mg(2+)-induced folding of the corresponding full-length RNA in vitro. Riboswitches that regulate gene expression at the transcriptional level are an ideal system for investigating this aspect of RNA folding as ligand-dependent termination is obligatorily co-transcriptional, providing a clear readout of the folding outcome. The folding of representative members of the SAM-I family of riboswitches has been extensively analyzed using approaches focusing almost exclusively upon Mg(2+) and/or S-adenosylmethionine (SAM)-induced folding of full-length transcripts of the ligand binding domain. To relate these findings to co-transcriptional regulatory activity, we have investigated a set of structure-guided mutations of conserved tertiary architectural elements of the ligand binding domain using an in vitro single-turnover transcriptional termination assay, complemented with phylogenetic analysis and isothermal titration calorimetry data. This analysis revealed a conserved internal loop adjacent to the SAM binding site that significantly affects ligand binding and regulatory activity. Conversely, most single point mutations throughout key conserved features in peripheral tertiary architecture supporting the SAM binding pocket have relatively little impact on riboswitch activity. Instead, a secondary structural element in the peripheral subdomain appears to be the key determinant in observed differences in regulatory properties across the SAM-I family. These data reveal a highly coupled network of tertiary interactions that promote high-fidelity co-transcriptional folding of the riboswitch but are only indirectly linked to regulatory tuning.
Collapse
Affiliation(s)
- Christopher Wostenberg
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, USA
| | - Pablo Ceres
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, USA
| | - Jacob T Polaski
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, USA.
| |
Collapse
|
20
|
Rau MJ, Hall KB. 2-Aminopurine Fluorescence as a Probe of Local RNA Structure and Dynamics and Global Folding. Methods Enzymol 2015; 558:99-124. [PMID: 26068739 DOI: 10.1016/bs.mie.2015.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The biology of an RNA is encoded in its structure and dynamics, whether that be binding to a protein, binding to another RNA, enzymatic catalysis, or becoming a substrate. In solution, most RNA molecules are sampling conformations, and their structures are best described as conformational ensembles. For larger RNAs, experiments that can describe the conformations of their domains can be particularly daunting, especially when the RNA is novel and not well characterized. Here, we explain how we have used site-specific 2-aminopurine as a fluorescent probe of the secondary and tertiary structures of a 60 nucleotide RNA, and what new findings we have about its Mg(2+)-dependent conformational changes. We focus on this RNA from prokaryotic ribosome as a proof of concept as well as a research project. Its tertiary structure is known from a cocrystal, and its secondary structure is modeled from phylogenetic conservation, but there are virtually no data describing the motions of its nucleotides in solution, or its folding kinetics. It is a perfect system to illustrate the unique information that comes from a comprehensive fluorescence study of this intricate RNA.
Collapse
Affiliation(s)
- Michael J Rau
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri, USA.
| |
Collapse
|
21
|
|
22
|
Marcano-Velázquez JG, Batey RT. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context. J Biol Chem 2014; 290:4464-75. [PMID: 25550163 DOI: 10.1074/jbc.m114.613497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Riboswitches are a broadly distributed form of RNA-based gene regulation in Bacteria and, more rarely, Archaea and Eukarya. Most often found in the 5'-leader sequence of bacterial mRNAs, they are generally composed of two functional domains: a receptor (aptamer) domain that binds an effector molecule and a regulatory domain (or expression platform) that instructs the expression machinery. One of the most studied riboswitches is the Bacillus subtilis adenine-responsive pbuE riboswitch, which regulates gene expression at the transcriptional level, up-regulating expression in response to increased intracellular effector concentrations. In this work, we analyzed sequence and structural elements that contribute to efficient ligand-dependent regulatory activity in a co-transcriptional and cellular context. Unexpectedly, we found that the P1 helix, which acts as the antitermination element of the switch in this RNA, supported ligand-dependent activation of a reporter gene over a broad spectrum of lengths from 3 to 10 bp. This same trend was also observed using a minimal in vitro single-turnover transcription assay, revealing that this behavior is intrinsic to the RNA sequence. We also found that the sequences at the distal tip of the terminator not directly involved in alternative secondary structure formation are highly important for efficient regulation. These data strongly support a model in which the switch is highly localized to the P1 helix adjacent to the ligand-binding pocket that likely presents a local kinetic block to invasion of the aptamer by the terminator.
Collapse
Affiliation(s)
- Joan G Marcano-Velázquez
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0596
| | - Robert T Batey
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0596
| |
Collapse
|
23
|
Porter EB, Marcano-Velázquez JG, Batey RT. The purine riboswitch as a model system for exploring RNA biology and chemistry. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:919-930. [PMID: 24590258 PMCID: PMC4148472 DOI: 10.1016/j.bbagrm.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/11/2022]
Abstract
Over the past decade the purine riboswitch, and in particular its nucleobase-binding aptamer domain, has emerged as an important model system for exploring various aspects of RNA structure and function. Its relatively small size, structural simplicity and readily observable activity enable application of a wide variety of experimental approaches towards the study of this RNA. These analyses have yielded important insights into small molecule recognition, co-transcriptional folding and secondary structural switching, and conformational dynamics that serve as a paradigm for other RNAs. In this article, the current state of understanding of the purine riboswitch family and how this growing knowledge base is starting to be exploited in the creation of novel RNA devices are examined. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Ely B Porter
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Joan G Marcano-Velázquez
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
24
|
Henke PS, Mak CH. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping. J Chem Phys 2014; 141:064116. [DOI: 10.1063/1.4892059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Paul S. Henke
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Chi H. Mak
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
25
|
St-Pierre P, McCluskey K, Shaw E, Penedo JC, Lafontaine DA. Fluorescence tools to investigate riboswitch structural dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1005-1019. [PMID: 24863161 DOI: 10.1016/j.bbagrm.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/15/2022]
Abstract
Riboswitches are novel regulatory elements that respond to cellular metabolites to control gene expression. They are constituted of highly conserved domains that have evolved to recognize specific metabolites. Such domains, so-called aptamers, are folded into intricate structures to enable metabolite recognition. Over the years, the development of ensemble and single-molecule fluorescence techniques has allowed to probe most of the mechanistic aspects of aptamer folding and ligand binding. In this review, we summarize the current fluorescence toolkit available to study riboswitch structural dynamics. We fist describe those methods based on fluorescent nucleotide analogues, mostly 2-aminopurine (2AP), to investigate short-range conformational changes, including some key steady-state and time-resolved examples that exemplify the versatility of fluorescent analogues as structural probes. The study of long-range structural changes by Förster resonance energy transfer (FRET) is mostly discussed in the context of single-molecule studies, including some recent developments based on the combination of single-molecule FRET techniques with controlled chemical denaturation methods. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Kaley McCluskey
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - Euan Shaw
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - J C Penedo
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom; Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom.
| | - D A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
26
|
Firdaus-Raih M, Hamdani HY, Nadzirin N, Ramlan EI, Willett P, Artymiuk PJ. COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures. Nucleic Acids Res 2014; 42:W382-8. [PMID: 24831543 PMCID: PMC4086061 DOI: 10.1093/nar/gku438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hydrogen bonds are crucial factors that stabilize a complex ribonucleic acid (RNA) molecule's three-dimensional (3D) structure. Minute conformational changes can result in variations in the hydrogen bond interactions in a particular structure. Furthermore, networks of hydrogen bonds, especially those found in tight clusters, may be important elements in structure stabilization or function and can therefore be regarded as potential tertiary motifs. In this paper, we describe a graph theoretical algorithm implemented as a web server that is able to search for unbroken networks of hydrogen-bonded base interactions and thus provide an accounting of such interactions in RNA 3D structures. This server, COGNAC (COnnection tables Graphs for Nucleic ACids), is also able to compare the hydrogen bond networks between two structures and from such annotations enable the mapping of atomic level differences that may have resulted from conformational changes due to mutations or binding events. The COGNAC server can be accessed at http://mfrlab.org/grafss/cognac.
Collapse
Affiliation(s)
- Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Hazrina Yusof Hamdani
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Nurul Nadzirin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Effirul Ikhwan Ramlan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Peter Willett
- Information School, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Peter J Artymiuk
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
27
|
Peselis A, Serganov A. Themes and variations in riboswitch structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:908-918. [PMID: 24583553 DOI: 10.1016/j.bbagrm.2014.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 11/19/2022]
Abstract
The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
28
|
Trausch JJ, Batey RT. A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch. ACTA ACUST UNITED AC 2014; 21:205-16. [PMID: 24388757 DOI: 10.1016/j.chembiol.2013.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022]
Abstract
The tetrahydrofolate (THF) riboswitch regulates folate transport and metabolism in a number of Firmicutes by cooperatively binding two molecules of THF. To further understand this riboswitch's specificity for THF, binding and regulatory activity of a series of THF analogs and antifolates were examined. Our data reveal that although binding is dominated by the RNA's interactions with the pterin moiety, the para-aminobenzoic acid (pABA) moiety plays a significant role in transcriptional regulation. Further, we find that adenine and several other analogs bind with high affinity by an alternative binding mechanism. Despite a similar affinity to THF, adenine is a poor regulator of transcriptional attenuation. These results demonstrate that binding alone does not determine a compound's effectiveness in regulating the activity of the riboswitch-a complication in current efforts to develop antimicrobials that target these RNAs.
Collapse
Affiliation(s)
- Jeremiah J Trausch
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA.
| |
Collapse
|
29
|
Havrila M, Réblová K, Zirbel CL, Leontis NB, Šponer J. Isosteric and nonisosteric base pairs in RNA motifs: molecular dynamics and bioinformatics study of the sarcin-ricin internal loop. J Phys Chem B 2013; 117:14302-19. [PMID: 24144333 PMCID: PMC3946555 DOI: 10.1021/jp408530w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sarcin-ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, that is, in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of the SR motif. A SHAPE probing experiment was also performed to confirm the fidelity of the MD simulations. We identified 57 instances of the SR motif in a nonredundant subset of the RNA X-ray structure database and analyzed their base pairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large rRNA alignments to determine the frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with a highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Nonisosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. The MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that the inability to form stable cWW geometry is an important factor in the case of the first base pair of the flexible region of the SR motif. A comparison of structural, bioinformatics, SHAPE probing, and MD simulation data reveals that explicit solvent MD simulations neatly reflect the viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions.
Collapse
Affiliation(s)
- Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Craig L. Zirbel
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
30
|
Ceres P, Trausch JJ, Batey RT. Engineering modular 'ON' RNA switches using biological components. Nucleic Acids Res 2013; 41:10449-61. [PMID: 23999097 PMCID: PMC3905868 DOI: 10.1093/nar/gkt787] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Riboswitches are cis-acting regulatory elements broadly distributed in bacterial mRNAs that control a wide range of critical metabolic activities. Expression is governed by two distinct domains within the mRNA leader: a sensory 'aptamer domain' and a regulatory 'expression platform'. Riboswitches have also received considerable attention as important tools in synthetic biology because of their conceptually simple structure and the ability to obtain aptamers that bind almost any conceivable small molecule using in vitro selection (referred to as SELEX). In the design of artificial riboswitches, a significant hurdle has been to couple the two domains enabling their efficient communication. We previously demonstrated that biological transcriptional 'OFF' expression platforms are easily coupled to diverse aptamers, both biological and SELEX-derived, using simple design rules. Here, we present two modular transcriptional 'ON' riboswitch expression platforms that are also capable of hosting foreign aptamers. We demonstrate that these biological parts can be used to facilely generate artificial chimeric riboswitches capable of robustly regulating transcription both in vitro and in vivo. We expect that these modular expression platforms will be of great utility for various synthetic biological applications that use RNA-based biosensors.
Collapse
Affiliation(s)
- Pablo Ceres
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA
| | | | | |
Collapse
|
31
|
Ceres P, Garst AD, Marcano-Velázquez JG, Batey RT. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. ACS Synth Biol 2013; 2:463-72. [PMID: 23654267 DOI: 10.1021/sb4000096] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-based biosensors and regulatory devices have received significant attention for their potential in a broad array of synthetic biology applications. One of the primary difficulties in engineering these molecules is the lack of facile methods to link sensory modules, or aptamers, to readout domains. Such efforts typically require extensive screening or selection of sequences that facilitate interdomain communication. Bacteria have evolved a widespread form of gene regulation known as riboswitches that perform this task with sufficient fidelity to control expression of biosynthetic and transport proteins essential for normal cellular homeostasis. In this work, we demonstrate that select riboswitch readout domains, called expression platforms, are modular in that they can host a variety of natural and synthetic aptamers to create novel chimeric RNAs that regulate transcription both in vitro and in vivo. Importantly, this technique does not require selection of device-specific "communication modules" required to transmit ligand binding to the regulatory domain, enabling rapid engineering of novel functional RNAs.
Collapse
Affiliation(s)
- Pablo Ceres
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596,
Boulder, Colorado 80309-0596, United States
| | - Andrew D. Garst
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596,
Boulder, Colorado 80309-0596, United States
| | - Joan G. Marcano-Velázquez
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596,
Boulder, Colorado 80309-0596, United States
| | - Robert T. Batey
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596,
Boulder, Colorado 80309-0596, United States
| |
Collapse
|
32
|
Huang W, Kim J, Jha S, Aboul-ela F. The impact of a ligand binding on strand migration in the SAM-I riboswitch. PLoS Comput Biol 2013; 9:e1003069. [PMID: 23704854 PMCID: PMC3656099 DOI: 10.1371/journal.pcbi.1003069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/09/2013] [Indexed: 11/29/2022] Open
Abstract
Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (<500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joohyun Kim
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Shantenu Jha
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Fareed Aboul-ela
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
33
|
Stoddard CD, Widmann J, Trausch JJ, Marcano-Velázquez JG, Knight R, Batey RT. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. J Mol Biol 2013; 425:1596-611. [PMID: 23485418 DOI: 10.1016/j.jmb.2013.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 12/20/2022]
Abstract
Direct sensing of intracellular metabolite concentrations by riboswitch RNAs provides an economical and rapid means to maintain metabolic homeostasis. Since many organisms employ the same class of riboswitch to control different genes or transcription units, it is likely that functional variation exists in riboswitches such that activity is tuned to meet cellular needs. Using a bioinformatic approach, we have identified a region of the purine riboswitch aptamer domain that displays conservation patterns linked to riboswitch activity. Aptamer domain compositions within this region can be divided into nine classes that display a spectrum of activities. Naturally occurring compositions in this region favor rapid association rate constants and slow dissociation rate constants for ligand binding. Using X-ray crystallography and chemical probing, we demonstrate that both the free and bound states are influenced by the composition of this region and that modest sequence alterations have a dramatic impact on activity. The introduction of non-natural compositions result in the inability to regulate gene expression in vivo, suggesting that aptamer domain activity is highly plastic and thus readily tunable to meet cellular needs.
Collapse
Affiliation(s)
- Colby D Stoddard
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | | | | | | | | | | |
Collapse
|