1
|
Ye S, Lehmann J. Genetic code degeneracy is established by the decoding center of the ribosome. Nucleic Acids Res 2022; 50:4113-4126. [PMID: 35325219 PMCID: PMC9023292 DOI: 10.1093/nar/gkac171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
The degeneracy of the genetic code confers a wide array of properties to coding sequences. Yet, its origin is still unclear. A structural analysis has shown that the stability of the Watson–Crick base pair at the second position of the anticodon–codon interaction is a critical parameter controlling the extent of non-specific pairings accepted at the third position by the ribosome, a flexibility at the root of degeneracy. Based on recent cryo-EM analyses, the present work shows that residue A1493 of the decoding center provides a significant contribution to the stability of this base pair, revealing that the ribosome is directly involved in the establishment of degeneracy. Building on existing evolutionary models, we show the evidence that the early appearance of A1493 and A1492 established the basis of degeneracy when an elementary kinetic scheme of translation was prevailing. Logical considerations on the expansion of this kinetic scheme indicate that the acquisition of the peptidyl transferase center was the next major evolutionary step, while the induced-fit mechanism, that enables a sharp selection of the tRNAs, necessarily arose later when G530 was acquired by the decoding center.
Collapse
Affiliation(s)
- Shixin Ye
- INSERM U1195 unit, University of Paris-Saclay, 94276 Le Kremlin Bicêtre, France
| | - Jean Lehmann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Kazantsev A, Ignatova Z. Constraints on error rate revealed by computational study of G•U tautomerization in translation. Nucleic Acids Res 2021; 49:11823-11833. [PMID: 34669948 PMCID: PMC8599798 DOI: 10.1093/nar/gkab947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
In translation, G•U mismatch in codon-anticodon decoding is an error hotspot likely due to transition of G•U from wobble (wb) to Watson-Crick (WC) geometry, which is governed by keto/enol tautomerization (wb-WC reaction). Yet, effects of the ribosome on the wb-WC reaction and its implications for decoding mechanism remain unclear. Employing quantum-mechanical/molecular-mechanical umbrella sampling simulations using models of the ribosomal decoding site (A site) we determined that the wb-WC reaction is endoergic in the open, but weakly exoergic in the closed A-site state. We extended the classical ‘induced-fit’ model of initial selection by incorporating wb-WC reaction parameters in open and closed states. For predicted parameters, the non-equilibrium exoergic wb-WC reaction is kinetically limited by the decoding rates. The model explains early observations of the WC geometry of G•U from equilibrium structural studies and reveals discrimination capacity for the working ribosome operating at non-equilibrium conditions. The equilibration of the exoergic wb-WC reaction counteracts the equilibration of the open-closed transition of the A site, constraining the decoding accuracy and potentially explaining the persistence of the G•U as an error hotspot. Our results unify structural and mechanistic views of codon-anticodon decoding and generalize the ‘induced-fit’ model for flexible substrates.
Collapse
Affiliation(s)
- Andriy Kazantsev
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
3
|
Girodat D, Blanchard SC, Wieden HJ, Sanbonmatsu KY. Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection. J Mol Biol 2020; 432:3064-3077. [PMID: 32061931 DOI: 10.1016/j.jmb.2020.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Selection of correct aminoacyl (aa)-tRNA at the ribosomal A site is fundamental to maintaining translational fidelity. Aa-tRNA selection is a multistep process facilitated by the guanosine triphosphatase elongation factor (EF)-Tu. EF-Tu delivers aa-tRNA to the ribosomal A site and participates in tRNA selection. The structural mechanism of how EF-Tu is involved in proofreading remains to be fully resolved. Here, we provide evidence that switch I of EF-Tu facilitates EF-Tu's involvement during aa-tRNA selection. Using structure-based and explicit solvent molecular dynamics simulations based on recent cryo-electron microscopy reconstructions, we studied the conformational change of EF-Tu from the guanosine triphosphate to guanine diphosphate conformation during aa-tRNA accommodation. Switch I of EF-Tu rapidly converts from an α-helix into a β-hairpin and moves to interact with the acceptor stem of the aa-tRNA. In doing so, switch I gates the movement of the aa-tRNA during accommodation through steric interactions with the acceptor stem. Pharmacological inhibition of the aa-tRNA accommodation pathway prevents the proper positioning of switch I with the aa-tRNA acceptor stem, suggesting that the observed interactions are specific for cognate aa-tRNA substrates, and thus capable of contributing to the fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA; New Mexico Consortium, Los Alamos, NM, 87544.
| |
Collapse
|
4
|
Wang Y, Zhu FC, He LS, Danchin A. Unique tRNA gene profile suggests paucity of nucleotide modifications in anticodons of a deep-sea symbiotic Spiroplasma. Nucleic Acids Res 2019; 46:2197-2203. [PMID: 29390076 PMCID: PMC5861454 DOI: 10.1093/nar/gky045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
The position 34 of a tRNA is always modified for efficient recognition of codons and accurate integration of amino acids by the translation machinery. Here, we report genomics features of a deep-sea gut symbiotic Spiroplasma, which suggests that the organism does not require tRNA(34) anticodon modifications. In the genome, there is a novel set of tRNA genes composed of 32 species for recognition of the 20 amino acids. Among the anticodons of the tRNAs, we witnessed the presence of both U34- and C34-containing tRNAs required to decode NNR (A/G) 2:2 codons as countermeasure of probable loss of anticodon modification genes. In the tRNA fragments detected in the gut transcriptome, mismatches expected to be caused by some tRNA modifications were not shown in their alignments with the corresponding genes. However, the probable paucity of modified anticodons did not fundamentally change the codon usage pattern of the Spiroplasma. The tRNA gene profile that probably resulted from the paucity of tRNA(34) modifications was not observed in other symbionts and deep-sea bacteria, indicating that this phenomenon was an evolutionary dead-end. This study provides insights on co-evolution of translation machine and tRNA genes and steric constraints of codon-anticodon interactions in deep-sea extreme environment.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Fang-Chao Zhu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France.,School of Biomedical Sciences, Li Kashing Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, SAR Hong Kong, China
| |
Collapse
|
5
|
Hoernes TP, Faserl K, Juen MA, Kremser J, Gasser C, Fuchs E, Shi X, Siewert A, Lindner H, Kreutz C, Micura R, Joseph S, Höbartner C, Westhof E, Hüttenhofer A, Erlacher MD. Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions. Nat Commun 2018; 9:4865. [PMID: 30451861 PMCID: PMC6242847 DOI: 10.1038/s41467-018-07321-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/25/2018] [Indexed: 01/16/2023] Open
Abstract
The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Elisabeth Fuchs
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Aaron Siewert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS UPR9002/University of Strasbourg, Strasbourg, 67084, France
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Rozov A, Wolff P, Grosjean H, Yusupov M, Yusupova G, Westhof E. Tautomeric G•U pairs within the molecular ribosomal grip and fidelity of decoding in bacteria. Nucleic Acids Res 2018; 46:7425-7435. [PMID: 29931292 PMCID: PMC6101523 DOI: 10.1093/nar/gky547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/27/2018] [Accepted: 06/06/2018] [Indexed: 11/14/2022] Open
Abstract
We report new crystallographic structures of Thermus thermophilus ribosomes complexed with long mRNAs and native Escherichia coli tRNAs. They complete the full set of combinations of Watson-Crick G•C and miscoding G•U pairs at the first two positions of the codon-anticodon duplex in ribosome functional complexes. Within the tight decoding center, miscoding G•U pairs occur, in all combinations, with a non-wobble geometry structurally indistinguishable from classical coding Watson-Crick pairs at the same first two positions. The contacts with the ribosomal grip surrounding the decoding center are all quasi-identical, except in the crowded environment of the amino group of a guanosine at the second position; in which case a G in the codons may be preferred. In vivo experimental data show that the translational errors due to miscoding by G•U pairs at the first two positions are the most frequently encountered ones, especially at the second position and with a G on the codon. Such preferred miscodings involve a switch from an A-U to a G•U pair in the tRNA/mRNA complex and very rarely from a G = C to a G•U pair. It is concluded that the frequencies of such occurrences are only weakly affected by the codon/anticodon structures but depend mainly on the stability and lifetime of the complex, the modifications present in the anticodon loop, especially those at positions 34 and 37, in addition to the relative concentration of cognate/near-cognate tRNA species present in the cellular tRNA pool.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS/University of Strasbourg, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67084, Strasbourg, France
| | - Henri Grosjean
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67084, Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS/University of Strasbourg, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS/University of Strasbourg, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Eric Westhof
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67084, Strasbourg, France
| |
Collapse
|
7
|
Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone. Proc Natl Acad Sci U S A 2018; 115:E6731-E6740. [PMID: 29967153 DOI: 10.1073/pnas.1721431115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During translation, the ribosome plays an active role in ensuring that mRNA is decoded accurately and rapidly. Recently, biochemical studies have also implicated certain accessory factors in maintaining decoding accuracy. However, it is currently unclear whether the mRNA itself plays an active role in the process beyond its ability to base pair with the tRNA. Structural studies revealed that the mRNA kinks at the interface of the P and A sites. A magnesium ion appears to stabilize this structure through electrostatic interactions with the phosphodiester backbone of the mRNA. Here we examined the role of the kink structure on decoding using a well-defined in vitro translation system. Disruption of the kink structure through site-specific phosphorothioate modification resulted in an acute hyperaccurate phenotype. We measured rates of peptidyl transfer for near-cognate tRNAs that were severely diminished and in some instances were almost 100-fold slower than unmodified mRNAs. In contrast to peptidyl transfer, the modifications had little effect on GTP hydrolysis by elongation factor thermal unstable (EF-Tu), suggesting that only the proofreading phase of tRNA selection depends critically on the kink structure. Although the modifications appear to have no effect on typical cognate interactions, peptidyl transfer for a tRNA that uses atypical base pairing is compromised. These observations suggest that the kink structure is important for decoding in the absence of Watson-Crick or G-U wobble base pairing at the third position. Our findings provide evidence for a previously unappreciated role for the mRNA backbone in ensuring uniform decoding of the genetic code.
Collapse
|
8
|
Noller HF. The parable of the caveman and the Ferrari: protein synthesis and the RNA world. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0187. [PMID: 28138073 DOI: 10.1098/rstb.2016.0187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/12/2022] Open
Abstract
The basic steps of protein synthesis are carried out by the ribosome, a very large and complex ribonucleoprotein particle. In keeping with its proposed emergence from an RNA world, all three of its core mechanisms-aminoacyl-tRNA selection, catalysis of peptide bond formation and coupled translocation of mRNA and tRNA-are embodied in the properties of ribosomal RNA, while its proteins play a supportive role.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA .,Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
9
|
Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0182. [PMID: 28138068 PMCID: PMC5311926 DOI: 10.1098/rstb.2016.0182] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
10
|
Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position. Molecules 2017; 22:molecules22091427. [PMID: 28850078 PMCID: PMC5753802 DOI: 10.3390/molecules22091427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5′- and 3′-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.
Collapse
|
11
|
Loveland AB, Demo G, Grigorieff N, Korostelev AA. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 2017; 546:113-117. [PMID: 28538735 PMCID: PMC5657493 DOI: 10.1038/nature22397] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by elongation factor Tu (EF-Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl-tRNA-binding site (A site) of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-centre nucleotide G530 stabilizes the cognate codon-anticodon helix, initiating step-wise 'latching' of the decoding centre. The resulting closure of the 30S subunit docks EF-Tu at the sarcin-ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and enabling accommodation of the aminoacyl-tRNA. By contrast, near-cognate complexes fail to induce the G530 latch, thus favouring open 30S pre-accommodation intermediates with inactive EF-Tu. This work reveals long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNAs that elucidate the mechanism of accurate decoding.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/ultrastructure
- Codon/chemistry
- Codon/genetics
- Codon/ultrastructure
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/ultrastructure
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/ultrastructure
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Models, Molecular
- Peptide Elongation Factor Tu/metabolism
- Peptide Elongation Factor Tu/ultrastructure
- Protein Biosynthesis
- Protein Domains
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Amino Acyl/ultrastructure
- Ribosome Subunits/chemistry
- Ribosome Subunits/metabolism
- Ribosome Subunits/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Anna B. Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Andrei A. Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| |
Collapse
|
12
|
Ranjan N, Rodnina MV. Thio-Modification of tRNA at the Wobble Position as Regulator of the Kinetics of Decoding and Translocation on the Ribosome. J Am Chem Soc 2017; 139:5857-5864. [PMID: 28368583 DOI: 10.1021/jacs.7b00727] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uridine 34 (U34) at the wobble position of the tRNA anticodon is post-transcriptionally modified, usually to mcm5s2, mcm5, or mnm5. The lack of the mcm5 or s2 modification at U34 of tRNALys, tRNAGlu, and tRNAGln causes ribosome pausing at the respective codons in yeast. The pauses occur during the elongation step, but the mechanism that triggers ribosome pausing is not known. Here, we show how the s2 modification in yeast tRNALys affects mRNA decoding and tRNA-mRNA translocation. Using real-time kinetic analysis we show that mcm5-modified tRNALys lacking the s2 group has a lower affinity of binding to the cognate codon and is more efficiently rejected than the fully modified tRNALys. The lack of the s2 modification also slows down the rearrangements in the ribosome-EF-Tu-GDP-Pi-Lys-tRNALys complex following GTP hydrolysis by EF-Tu. Finally, tRNA-mRNA translocation is slower with the s2-deficient tRNALys. These observations explain the observed ribosome pausing at AAA codons during translation and demonstrate how the s2 modification helps to ensure the optimal translation rates that maintain proteome homeostasis of the cell.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
13
|
Schrode P, Huter P, Clementi N, Erlacher M. Atomic mutagenesis at the ribosomal decoding site. RNA Biol 2017; 14:104-112. [PMID: 27841727 PMCID: PMC5270523 DOI: 10.1080/15476286.2016.1256535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/21/2016] [Accepted: 10/30/2016] [Indexed: 10/26/2022] Open
Abstract
Ribosomal decoding is an essential process in every living cell. During protein synthesis the 30S ribosomal subunit needs to accomplish binding and accurate decoding of mRNAs. From mutational studies and high-resolution crystal structures nucleotides G530, A1492 and A1493 of the 16S rRNA came into focus as important elements for the decoding process. Recent crystallographic data challenged the so far accepted model for the decoding mechanism. To biochemically investigate decoding in greater detail we applied an in vitro reconstitution approach to modulate single chemical groups at A1492 and A1493. The modified ribosomes were subsequently tested for their ability to efficiently decode the mRNA. Unexpectedly, the ribosome was rather tolerant toward modifications of single groups either at the base or at the sugar moiety in terms of translation activity. Concerning translation fidelity, the elimination of single chemical groups involved in a hydrogen bonding network between the tRNA, mRNA and rRNA did not change the accuracy of the ribosome. These results indicate that the contribution of those chemical groups and the formed hydrogen bonds are not crucial for ribosomal decoding.
Collapse
Affiliation(s)
- Pius Schrode
- Division of Genomics and RNomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Huter
- Division of Genomics and RNomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Erlacher
- Division of Genomics and RNomics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016; 44:8020-40. [PMID: 27448410 PMCID: PMC5041475 DOI: 10.1093/nar/gkw608] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/11/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon-anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson-Crick pairs in the codon-anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon-anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids.
Collapse
Affiliation(s)
- Henri Grosjean
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
15
|
Billod JM, Saenz-Mendez P, Blomberg A, Eriksson LA. Structures, Properties, and Dynamics of Intermediates in eEF2-Diphthamide Biosynthesis. J Chem Inf Model 2016; 56:1776-86. [PMID: 27525663 DOI: 10.1021/acs.jcim.6b00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eukaryotic translation Elongation Factor 2 (eEF2) is an essential enzyme in protein synthesis. eEF2 contains a unique modification of a histidine (His699 in yeast; HIS) into diphthamide (DTA), obtained via 3-amino-3-carboxypropyl (ACP) and diphthine (DTI) intermediates in the biosynthetic pathway. This essential and unique modification is also vulnerable, in that it can be efficiently targeted by NAD(+)-dependent ADP-ribosylase toxins, such as diphtheria toxin (DT). However, none of the intermediates in the biosynthesis path is equally vulnerable against the toxins. This study aims to address the different susceptibility of DTA and its precursors against bacterial toxins. We have herein undertaken a detailed in silico study of the structural features and dynamic motion of different His699 intermediates along the diphthamide synthesis pathway (HIS, ACP, DTI, DTA). The study points out that DTA forms a strong hydrogen bond with an asparagine which might explain the ADP-ribosylation mechanism caused by the diphtheria toxin (DT). Finally, in silico mutagenesis studies were performed on the DTA modified protein, in order to hamper the formation of such a hydrogen bond. The results indicate that the mutant structure might in fact be less susceptible to attack by DT and thereby behave similarly to DTI in this respect.
Collapse
Affiliation(s)
- Jean-Marc Billod
- Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC , 28040 Madrid, Spain
| | - Patricia Saenz-Mendez
- Computational Chemistry and Biology Group, Facultad de Química, Universidad de la República , 11800 Montevideo, Uruguay
| | | | | |
Collapse
|
16
|
Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G. New Structural Insights into Translational Miscoding. Trends Biochem Sci 2016; 41:798-814. [PMID: 27372401 DOI: 10.1016/j.tibs.2016.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023]
Abstract
The fidelity of translation depends strongly on the selection of the correct aminoacyl-tRNA that is complementary to the mRNA codon present in the ribosomal decoding center. The ribosome occasionally makes mistakes by selecting the wrong substrate from the pool of aminoacyl-tRNAs. Here, we summarize recent structural advances that may help to clarify the origin of missense errors that occur during decoding. These developments suggest that discrimination between tRNAs is based primarily on steric complementarity and shape acceptance rather than on the number of hydrogen bonds between the molding of the decoding center and the codon-anticodon duplex. They strengthen the hypothesis that spatial mimicry, due either to base tautomerism or ionization, drives infidelity in ribosomal translation.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Natalia Demeshkina
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS UPR9002/University of Strasbourg, Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Rozov A, Westhof E, Yusupov M, Yusupova G. The ribosome prohibits the G•U wobble geometry at the first position of the codon-anticodon helix. Nucleic Acids Res 2016; 44:6434-41. [PMID: 27174928 PMCID: PMC5291260 DOI: 10.1093/nar/gkw431] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/06/2016] [Indexed: 01/05/2023] Open
Abstract
Precise conversion of genetic information into proteins is essential to cellular health. However, a margin of error exists and is at its highest on the stage of translation of mRNA by the ribosome. Here we present three crystal structures of 70S ribosome complexes with messenger RNA and transfer RNAs and show that when a G•U base pair is at the first position of the codon-anticodon helix a conventional wobble pair cannot form because of inescapable steric clash between the guanosine of the A codon and the key nucleotide of decoding center adenosine 1493 of 16S rRNA. In our structure the rigid ribosomal decoding center, which is identically shaped for cognate or near-cognate tRNAs, forces this pair to adopt a geometry close to that of a canonical G•C pair. We further strengthen our hypothesis that spatial mimicry due either to base tautomerism or ionization dominates the translation infidelity mechanism.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Eric Westhof
- Architecture & Reactivity of RNA, University of Strasbourg, Institute of Molecular and Cellular Biology of the CNRS, UPR9002, 15 rue R. Descartes, 67084 Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
18
|
Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K, Lindner H, Hüttenhofer A, Erlacher MD. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res 2015; 44:852-62. [PMID: 26578598 PMCID: PMC4737146 DOI: 10.1093/nar/gkv1182] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023] Open
Abstract
Nucleotide modifications within RNA transcripts are found in every organism in all three domains of life. 6-methyladeonsine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) are highly abundant nucleotide modifications in coding sequences of eukaryal mRNAs, while m5C and m6A modifications have also been discovered in archaeal and bacterial mRNAs. Employing in vitro translation assays, we systematically investigated the influence of nucleotide modifications on translation. We introduced m5C, m6A, Ψ or 2′-O-methylated nucleotides at each of the three positions within a codon of the bacterial ErmCL mRNA and analyzed their influence on translation. Depending on the respective nucleotide modification, as well as its position within a codon, protein synthesis remained either unaffected or was prematurely terminated at the modification site, resulting in reduced amounts of the full-length peptide. In the latter case, toeprint analysis of ribosomal complexes was consistent with stalling of translation at the modified codon. When multiple nucleotide modifications were introduced within one codon, an additive inhibitory effect on translation was observed. We also identified the m5C modification to alter the amino acid identity of the corresponding codon, when positioned at the second codon position. Our results suggest a novel mode of gene regulation by nucleotide modifications in bacterial mRNAs.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Achenbach J, Nierhaus KH. The mechanics of ribosomal translocation. Biochimie 2015; 114:80-9. [DOI: 10.1016/j.biochi.2014.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/05/2014] [Indexed: 11/16/2022]
|
20
|
Structural insights into the translational infidelity mechanism. Nat Commun 2015; 6:7251. [PMID: 26037619 PMCID: PMC4468848 DOI: 10.1038/ncomms8251] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022] Open
Abstract
The decoding of mRNA on the ribosome is the least accurate process during genetic information transfer. Here we propose a unified decoding mechanism based on 11 high-resolution X-ray structures of the 70S ribosome that explains the occurrence of missense errors during translation. We determined ribosome structures in rare states where incorrect tRNAs were incorporated into the peptidyl-tRNA-binding site. These structures show that in the codon-anticodon duplex, a G·U mismatch adopts the Watson-Crick geometry, indicating a shift in the tautomeric equilibrium or ionization of the nucleobase. Additional structures with mismatches in the 70S decoding centre show that the binding of any tRNA induces identical rearrangements in the centre, which favours either isosteric or close to the Watson-Crick geometry codon-anticodon pairs. Overall, the results suggest that a mismatch escapes discrimination by preserving the shape of a Watson-Crick pair and indicate that geometric selection via tautomerism or ionization dominates the translational infidelity mechanism.
Collapse
|
21
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
22
|
Sanbonmatsu KY. Flipping through the Genetic Code: New Developments in Discrimination between Cognate and Near-Cognate tRNAs and the Effect of Antibiotics. J Mol Biol 2014; 426:3197-3200. [DOI: 10.1016/j.jmb.2014.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex. Nat Struct Mol Biol 2014; 21:817-24. [PMID: 25108354 DOI: 10.1038/nsmb.2869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/11/2014] [Indexed: 02/01/2023]
Abstract
During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G). Our results suggest that the interactions between the decoding center and the codon-anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2-mRNA movement on the 30S subunit.
Collapse
|
24
|
Westhof E, Yusupov M, Yusupova G. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000PRIME REPORTS 2014; 6:19. [PMID: 24765524 PMCID: PMC3974571 DOI: 10.12703/p6-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The natural bases of nucleic acids have a strong preference for one tautomer form, guaranteeing fidelity in their hydrogen bonding potential. However, base pairs observed in recent crystal structures of polymerases and ribosomes are best explained by an alternative base tautomer, leading to the formation of base pairs with Watson-Crick-like geometries. These observations set limits to geometric selection in molecular recognition of complementary Watson-Crick pairs for fidelity in replication and translation processes.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de Biologie Moléculaire et CellulaireCNRS, 15 rue René Descartes, F-67084 Strasbourg CedexFrance
| | - Marat Yusupov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS, INSERM, Université de Strasbourg, F-67400 IllkirchFrance
| | - Gulnara Yusupova
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS, INSERM, Université de Strasbourg, F-67400 IllkirchFrance
| |
Collapse
|
25
|
Yamamoto H, Qin Y, Achenbach J, Li C, Kijek J, Spahn CMT, Nierhaus KH. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat Rev Microbiol 2013; 12:89-100. [PMID: 24362468 DOI: 10.1038/nrmicro3176] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribosomes translate the codon sequence of an mRNA into the amino acid sequence of the corresponding protein. One of the most crucial events is the translocation reaction, which involves movement of both the mRNA and the attached tRNAs by one codon length and is catalysed by the GTPase elongation factor G (EF-G). Interestingly, recent studies have identified a structurally related GTPase, EF4, that catalyses movement of the tRNA2-mRNA complex in the opposite direction when the ribosome stalls, which is known as back-translocation. In this Review, we describe recent insights into the mechanistic basis of both translocation and back-translocation.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- 1] Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. [2]
| | - Yan Qin
- 1] Laboratory of noncoding RNA, Institute of Biophysics, Chinese Academy of Science; 15 Datun Road, Beijing 100101, China. [2]
| | - John Achenbach
- 1] NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany. [2]
| | - Chengmin Li
- Laboratory of noncoding RNA, Institute of Biophysics, Chinese Academy of Science; 15 Datun Road, Beijing 100101, China
| | - Jaroslaw Kijek
- Max Planck Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Knud H Nierhaus
- 1] Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. [2] Max Planck Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| |
Collapse
|
26
|
Ostankovitch M. Dynamic Mechanisms in the Life Cycle of an RNA Molecule. J Mol Biol 2013; 425:3747-9. [DOI: 10.1016/j.jmb.2013.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 11/26/2022]
|
27
|
Affiliation(s)
- Harry F Noller
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|