1
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 PMCID: PMC12084679 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
2
|
Irie K, Oda Y, Sumikama T, Oshima A, Fujiyoshi Y. The structural basis of divalent cation block in a tetrameric prokaryotic sodium channel. Nat Commun 2023; 14:4236. [PMID: 37454189 PMCID: PMC10349818 DOI: 10.1038/s41467-023-39987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Divalent cation block is observed in various tetrameric ion channels. For blocking, a divalent cation is thought to bind in the ion pathway of the channel, but such block has not yet been directly observed. So, the behaviour of these blocking divalent cations remains still uncertain. Here, we elucidated the mechanism of the divalent cation block by reproducing the blocking effect into NavAb, a well-studied tetrameric sodium channel. Our crystal structures of NavAb mutants show that the mutations increasing the hydrophilicity of the inner vestibule of the pore domain enable a divalent cation to stack on the ion pathway. Furthermore, non-equilibrium molecular dynamics simulation showed that the stacking calcium ion repel sodium ion at the bottom of the selectivity filter. These results suggest the primary process of the divalent cation block mechanism in tetrameric cation channels.
Collapse
Affiliation(s)
- Katsumasa Irie
- Department of Biophysical Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama, 640-8156, Japan.
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| | - Yoshinori Oda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Takashi Sumikama
- PRESTO, JST, Kawaguchi, 332-0012, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, 501-11193, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory (CeSPL), Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510, Japan
- CeSPIA Inc., 2-1-1, Otemachi, Chiyoda, Tokyo, 100-0004, Japan
| |
Collapse
|
3
|
Choudhury K, Howard RJ, Delemotte L. An α-π transition in S6 shapes the conformational cycle of the bacterial sodium channel NavAb. J Gen Physiol 2022; 155:213748. [PMID: 36515966 PMCID: PMC9754703 DOI: 10.1085/jgp.202213214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels play an important role in electrical signaling in excitable cells. In response to changes in membrane potential, they cycle between nonconducting and conducting conformations. With recent advances in structural biology, structures of sodium channels have been captured in several distinct conformations, which are thought to represent different functional states. However, it has been difficult to capture the intrinsically transient open state. We recently showed that a proposed open state of the bacterial sodium channel NavMs was not conductive and that a conformational change involving a transition to a π-helix in the pore-lining S6 helix converted this structure into a conducting state. However, the relevance of this structural feature in other sodium channels, and its implications for the broader gating cycle, remained unclear. Here, we propose a comparable open state of another class of bacterial channel from Aliarcobacter butzleri (NavAb) with characteristic pore hydration, ion permeation, and drug binding properties. Furthermore, we show that a π-helix transition can lead to pore opening and that such a conformational change blocks fenestrations in the inner helix bundle. We also discover that a region in the C-terminal domain can undergo a disordering transition proposed to be important for pore opening. These results support a role for a π-helix transition in the opening of NavAb, enabling new proposals for the structural annotation and drug modulation mechanisms in this important sodium channel model.
Collapse
Affiliation(s)
- Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Rebecca J. Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden,Correspondence to Lucie Delemotte:
| |
Collapse
|
4
|
Irie K. The insights into calcium ion selectivity provided by ancestral prokaryotic ion channels. Biophys Physicobiol 2022; 18:274-283. [PMID: 35004101 PMCID: PMC8677417 DOI: 10.2142/biophysico.bppb-v18.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
Prokaryotic channels play an important role in the structural biology of ion channels. At the end of the 20th century, the first structure of a prokaryotic ion channel was revealed. Subsequently, the reporting of structures of various prokaryotic ion channels have provided fundamental insights into the structure of ion channels of higher organisms. Voltage-dependent Ca2+ channels (Cavs) are indispensable for coupling action potentials with Ca2+ signaling. Similar to other proteins, Cavs were predicted to have a prokaryotic counterpart; however, it has taken more than 20 years for one to be identified. The homotetrameric channel obtained from Meiothermus ruber generates the calcium ion specific current, so it is named as CavMr. Its selectivity filter contains a smaller number of negatively charged residues than mutant Cavs generated from other prokaryotic channels. CavMr belonged to a different cluster of phylogenetic trees than canonical prokaryotic cation channels. The glycine residue of the CavMr selectivity filter is a determinant for calcium selectivity. This glycine residue is conserved among eukaryotic Cavs, suggesting that there is a universal mechanism for calcium selectivity. A family of homotetrameric channels has also been identified from eukaryotic unicellular algae, and the investigation of these channels can help to understand the mechanism for ion selection that is conserved from prokaryotes to eukaryotes.
Collapse
Affiliation(s)
- Katsumasa Irie
- Department of Biophysical Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan.,Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Choudhury K, Kasimova MA, McComas S, Howard RJ, Delemotte L. An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine. Biophys J 2022; 121:11-22. [PMID: 34890580 PMCID: PMC8758419 DOI: 10.1016/j.bpj.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Voltage-gated sodium (Nav) channels play critical roles in propagating action potentials and otherwise manipulating ionic gradients in excitable cells. These channels open in response to membrane depolarization, selectively permeating sodium ions until rapidly inactivating. Structural characterization of the gating cycle in this channel family has proved challenging, particularly due to the transient nature of the open state. A structure from the bacterium Magnetococcus marinus Nav (NavMs) was initially proposed to be open, based on its pore diameter and voltage-sensor conformation. However, the functional annotation of this model, and the structural details of the open state, remain disputed. In this work, we used molecular modeling and simulations to test possible open-state models of NavMs. The full-length experimental structure, termed here the α-model, was consistently dehydrated at the activation gate, indicating an inability to conduct ions. Based on a spontaneous transition observed in extended simulations, and sequence/structure comparison to other Nav channels, we built an alternative π-model featuring a helix transition and the rotation of a conserved asparagine residue into the activation gate. Pore hydration, ion permeation, and state-dependent drug binding in this model were consistent with an open functional state. This work thus offers both a functional annotation of the full-length NavMs structure and a detailed model for a stable Nav open state, with potential conservation in diverse ion-channel families.
Collapse
Affiliation(s)
- Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Marina A. Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sarah McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca J. Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden,Corresponding author
| |
Collapse
|
6
|
An overview of the recent advances in cryo-electron microscopy for life sciences. Emerg Top Life Sci 2021; 5:151-168. [PMID: 33760078 DOI: 10.1042/etls20200295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Cryo-electron microscopy (CryoEM) has superseded X-ray crystallography and NMR to emerge as a popular and effective tool for structure determination in recent times. It has become indispensable for the characterization of large macromolecular assemblies, membrane proteins, or samples that are limited, conformationally heterogeneous, and recalcitrant to crystallization. Besides, it is the only tool capable of elucidating high-resolution structures of macromolecules and biological assemblies in situ. A state-of-the-art electron microscope operable at cryo-temperature helps preserve high-resolution details of the biological sample. The structures can be determined, either in isolation via single-particle analysis (SPA) or helical reconstruction, electron diffraction (ED) or within the cellular environment via cryo-electron tomography (cryoET). All the three streams of SPA, ED, and cryoET (along with subtomogram averaging) have undergone significant advancements in recent times. This has resulted in breaking the boundaries with respect to both the size of the macromolecules/assemblies whose structures could be determined along with the visualization of atomic details at resolutions unprecedented for cryoEM. In addition, the collection of larger datasets combined with the ability to sort and process multiple conformational states from the same sample are providing the much-needed link between the protein structures and their functions. In overview, these developments are helping scientists decipher the molecular mechanism of critical cellular processes, solve structures of macromolecules that were challenging targets for structure determination until now, propelling forward the fields of biology and biomedicine. Here, we summarize recent advances and key contributions of the three cryo-electron microscopy streams of SPA, ED, and cryoET.
Collapse
|
7
|
Liscano Y, Medina L, Oñate-Garzón J, Gúzman F, Pickholz M, Delgado JP. In Silico Selection and Evaluation of Pugnins with Antibacterial and Anticancer Activity Using Skin Transcriptome of Treefrog ( Boana pugnax). Pharmaceutics 2021; 13:578. [PMID: 33919639 PMCID: PMC8074116 DOI: 10.3390/pharmaceutics13040578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
In order to combat bacterial and cancer resistance, we identified peptides (pugnins) with dual antibacterial l-anticancer activity from the Boana pugnax (B. pugnax) skin transcriptome through in silico analysis. Pugnins A and B were selected owing to their high similarity to the DS4.3 peptide, which served as a template for their alignment to the B. pugnax transcriptome, as well as their function as part of a voltage-dependent potassium channel protein. The secondary peptide structure stability in aqueous medium was evaluated as well, and after interaction with the Escherichia coli (E. coli) membrane model using molecular dynamics. These pugnins were synthesized via solid-phase synthesis strategy and verified by Reverse phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry. Subsequently, their alpha-helix structure was determined by circular dichroism, after which antibacterial tests were then performed to evaluate their antimicrobial activity. Cytotoxicity tests against cancer cells also showed selectivity of pugnin A toward breast cancer (MFC7) cells, and pugnin B toward prostate cancer (PC3) cells. Alternatively, flow cytometry revealed necrotic cell damage with a major cytotoxic effect on human keratinocytes (HaCaT) control cells. Therefore, the pugnins found in the transcriptome of B. pugnax present dual antibacterial-anticancer activity with reduced selectivity to normal eukaryotic cells.
Collapse
Affiliation(s)
- Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 N° 62-00, Cali 760035, Colombia;
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 N° 62-00, Cali 760035, Colombia;
| | - Fanny Gúzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, 2374631 Av. Universidad, Curauma 330, Chile;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET-UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina;
| | - Jean Paul Delgado
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
8
|
Structural Pharmacology of Voltage-Gated Sodium Channels. J Mol Biol 2021; 433:166967. [PMID: 33794261 DOI: 10.1016/j.jmb.2021.166967] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.
Collapse
|
9
|
de Jong SI, van den Broek MA, Merkel AY, de la Torre Cortes P, Kalamorz F, Cook GM, van Loosdrecht MCM, McMillan DGG. Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles 2020; 24:923-935. [PMID: 33030592 PMCID: PMC7561548 DOI: 10.1007/s00792-020-01205-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
The aerobic thermoalkaliphile Caldalkalibacillus thermarum strain TA2.A1 is a member of a separate order of alkaliphilic bacteria closely related to the Bacillales order. Efforts to relate the genomic information of this evolutionary ancient organism to environmental adaptation have been thwarted by the inability to construct a complete genome. The existing draft genome is highly fragmented due to repetitive regions, and gaps between and over repetitive regions were unbridgeable. To address this, Oxford Nanopore Technology's MinION allowed us to span these repeats through long reads, with over 6000-fold coverage. This resulted in a single 3.34 Mb circular chromosome. The profile of transporters and central metabolism gives insight into why the organism prefers glutamate over sucrose as carbon source. We propose that the deamination of glutamate allows alkalization of the immediate environment, an excellent example of how an extremophile modulates environmental conditions to suit its own requirements. Curiously, plant-like hallmark electron transfer enzymes and transporters are found throughout the genome, such as a cytochrome b6c1 complex and a CO2-concentrating transporter. In addition, multiple self-splicing group II intron-encoded proteins closely aligning to those of a telomerase reverse transcriptase in Arabidopsis thaliana were revealed. Collectively, these features suggest an evolutionary relationship to plant life.
Collapse
Affiliation(s)
- Samuel I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Falk Kalamorz
- The New Zealand Institute for Plant and Food Research, Lincoln, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, The University of Otago, Dunedin, New Zealand
| | | | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
10
|
Zaucha J, Heinzinger M, Kulandaisamy A, Kataka E, Salvádor ÓL, Popov P, Rost B, Gromiha MM, Zhorov BS, Frishman D. Mutations in transmembrane proteins: diseases, evolutionary insights, prediction and comparison with globular proteins. Brief Bioinform 2020; 22:5872174. [PMID: 32672331 DOI: 10.1093/bib/bbaa132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein's functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.
Collapse
Affiliation(s)
- Jan Zaucha
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - A Kulandaisamy
- Department of Biotechnology of the IIT Bhupat and Jyoti Mehta School of BioSciences in Madras, India
| | - Evans Kataka
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Óscar Llorian Salvádor
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - Petr Popov
- Center for Computational and Data-Intensive Science and Engineering of the Skolkovo Institute of Science and Technology in Moscow, Russia
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology at the TUM Faculty of Informatics in Garching, Germany
| | | | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University in Hamilton, Canada
| | - Dmitrij Frishman
- Department of Bioinformatics at the TUM School of Life Sciences Weihenstephan in Freising, Germany
| |
Collapse
|
11
|
Shimomura T, Yonekawa Y, Nagura H, Tateyama M, Fujiyoshi Y, Irie K. A native prokaryotic voltage-dependent calcium channel with a novel selectivity filter sequence. eLife 2020; 9:52828. [PMID: 32093827 PMCID: PMC7041947 DOI: 10.7554/elife.52828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Voltage-dependent Ca2+ channels (Cavs) are indispensable for coupling action potentials with Ca2+ signaling in living organisms. The structure of Cavs is similar to that of voltage-dependent Na+ channels (Navs). It is known that prokaryotic Navs can obtain Ca2+ selectivity by negative charge mutations of the selectivity filter, but native prokaryotic Cavs had not yet been identified. We report the first identification of a native prokaryotic Cav, CavMr, whose selectivity filter contains a smaller number of negatively charged residues than that of artificial prokaryotic Cavs. A relative mutant whose selectivity filter was replaced with that of CavMr exhibits high Ca2+ selectivity. Mutational analyses revealed that the glycine residue of the CavMr selectivity filter is a determinant for Ca2+ selectivity. This glycine residue is well conserved among subdomains I and III of eukaryotic Cavs. These findings provide new insight into the Ca2+ selectivity mechanism that is conserved from prokaryotes to eukaryotes. Electrical signals in the brain and muscles allow animals – including humans – to think, make memories and move around. Cells generate these signals by enabling charged particles known as ions to pass through the physical barrier that surrounds all cells, the cell membrane, at certain times and in certain locations. The ions pass through pores made by various channel proteins, which generally have so-called “selectivity filters” that only allow particular types of ions to fit through. For example, the selectivity filters of a family of channels in mammals known as the Cavs only allow calcium ions to pass through. Another family of ion channels in mammals are similar in structure to the Cavs but their selectivity filters only allow sodium ions to pass through instead of calcium ions. Ion channels are found in all living cells including in bacteria. It is thought that the Cavs and sodium-selective channels may have both evolved from Cav-like channels in an ancient lifeform that was the common ancestor of modern bacteria and animals. Previous studies in bacteria found that modifying the selectivity filters of some sodium-selective channels known as BacNavs allowed calcium ions to pass through the mutant channels instead of sodium ions. However, no Cav channels had been identified in bacteria so far, representing a missing link in the evolutionary history of ion channels. Shimomura et al. have now found a Cav-like channel in a bacterium known as Meiothermus ruber. Like all proteins, ion channels are made from amino acids and comparing the selectivity filter of the M. ruber Cav with those of mammalian Cavs and the calcium-selective BacNav mutants from previous studies revealed one amino acid that plays a particularly important role. This amino acid is a glycine that helps select which ions may pass through the pore and is also present in the selectivity filters of many Cavs in mammals. Together these findings suggest that the Cav channel from M. ruber is similar to the mammal Cav channels and may more closely resemble the Cav-like channels thought to have existed in the common ancestor of bacteria and animals. Since other channel proteins from bacteria are useful genetic tools for studies in human and other animal cells, the Cav channel from M. ruber has the potential to be used to stimulate calcium signaling in experiments.
Collapse
Affiliation(s)
- Takushi Shimomura
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Nagoya, Japan.,Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yoshiki Yonekawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Nagura
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Nagoya, Japan
| | - Michihiro Tateyama
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Nagoya, Japan.,CeSPIA Inc, Tokyo, Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Nagoya, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Martinez-Ortiz W, Cardozo TJ. An Improved Method for Modeling Voltage-Gated Ion Channels at Atomic Accuracy Applied to Human Ca v Channels. Cell Rep 2019; 23:1399-1408. [PMID: 29719253 PMCID: PMC5957504 DOI: 10.1016/j.celrep.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Accepted: 04/04/2018] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated ion channels (VGICs) are associated with hundreds of human diseases. To date, 3D structural models of human VGICs have not been reported. We developed a 3D structural integrity metric to rank the accuracy of all VGIC structures deposited in the PDB. The metric revealed inaccuracies in structural models built from recent single-particle, non-crystalline cryo-electron microscopy maps and enabled the building of highly accurate homology models of human Cav channel α1 subunits at atomic resolution. Human Cav Mendelian mutations mostly located to segments involved in the mechanism of voltage sensing and gating within the 3D structure, with multiple mutations targeting equivalent 3D structural locations despite eliciting distinct clinical phenotypes. The models also revealed that the architecture of the ion selectivity filter is highly conserved from bacteria to humans and between sodium and calcium VGICs.
Collapse
Affiliation(s)
- Wilnelly Martinez-Ortiz
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Timothy J Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
13
|
Korkosh VS, Kiselev AM, Mikhaylov EN, Kostareva AA, Zhorov BS. Atomic Mechanisms of Timothy Syndrome-Associated Mutations in Calcium Channel Cav1.2. Front Physiol 2019; 10:335. [PMID: 30984024 PMCID: PMC6449482 DOI: 10.3389/fphys.2019.00335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Timothy syndrome (TS) is a very rare multisystem disorder almost exclusively associated with mutations G402S and G406R in helix IS6 of Cav1.2. Recently, mutations R518C/H in helix IIS0 of the voltage sensing domain II (VSD-II) were described as a cause of cardiac-only TS. The three mutations are known to decelerate voltage-dependent inactivation (VDI). Here, we report a case of cardiac-only TS caused by mutation R518C. To explore possible impact of the three mutations on interdomain contacts, we modeled channel Cav1.2 using as templates Class Ia and Class II cryo-EM structures of presumably inactivated channel Cav1.1. In both models, R518 and several other residues in VSD-II donated H-bonds to the IS6-linked α1-interaction domain (AID). We further employed steered Monte Carlo energy minimizations to move helices S4–S5, S5, and S6 from the inactivated-state positions to those seen in the X-ray structures of the open and closed NavAb channel. In the open-state models, positions of AID and VSD-II were similar to those in Cav1.1. In the closed-state models, AID moved along the β subunit (Cavβ) toward the pore axis and shifted AID-bound VSD-II. In all the models R518 retained strong contacts with AID. Our calculations suggest that conformational changes in VSD-II upon its deactivation would shift AID along Cavβ toward the pore axis. The AID-linked IS6 would bend at flexible G402 and G406, facilitating the activation gate closure. Mutations R518C/H weakened the IIS0-AID contacts and would retard the AID shift. Mutations G406R and G402S stabilized the open state and would resist the pore closure. Several Cav1.2 mutations associated with long QT syndromes are consistent with this proposition. Our results provide a mechanistic rationale for the VDI deceleration caused by TS-associated mutations and suggest targets for further studies of calcium channelopathies.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Artem M Kiselev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Anna A Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Woman and Child Health, Karolinska Institute, Stockholm, Sweden
| | - Boris S Zhorov
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Callahan KM, Roux B. Molecular Dynamics of Ion Conduction through the Selectivity Filter of the Na VAb Sodium Channel. J Phys Chem B 2018; 122:10126-10142. [PMID: 30351118 DOI: 10.1021/acs.jpcb.8b09678] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The determination of the atomic structures of voltage-gated bacterial sodium channels using X-ray crystallography has provided a first view of this family of membrane proteins. Molecular dynamics simulations offer one approach to clarify the underlying mechanism of permeation and selectivity in these channels. However, it appears that the intracellular gate of the pore domain is either closed or only open partially in the available X-ray structures. The lack of structure with a fully open intracellular gate poses a special challenge to computational studies aimed at simulating ion conduction. To circumvent this problem, we simulated a model of the NaVAb channel in which the transmembrane S5 and S6 helices of the pore domain have been truncated to provide direct open access to the intracellular entryway to the pore. Molecular dynamics simulations were carried out over a range of membrane potential and ion concentration of sodium and potassium. The simulations show that the NaVAb selectivity filter is essentially a cationic pore supporting the conduction of ions at a rate comparable to aqueous diffusion with no significant selectivity for sodium. Conductance and selectivity vary as a function of ion concentration for both cations. Permeation occurs primarily via a knock-on mechanism for both sodium and potassium, although the ion ordering in single file along the pore is not strictly maintained. The character of the outward current appears quite different from the inward current, with a buildup on ions in the selectivity filter prior to escape toward the extracellular side, indicating the presence of a rectification effect that is overcome by nonphysiological applied voltages.
Collapse
Affiliation(s)
- Karen M Callahan
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
15
|
Kasimova MA, Yazici AT, Yudin Y, Granata D, Klein ML, Rohacs T, Carnevale V. A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. J Gen Physiol 2018; 150:1554-1566. [PMID: 30333107 PMCID: PMC6219692 DOI: 10.1085/jgp.201812124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
TRPV1 channels comprise four subunits containing six transmembrane segments (S1–S6) that surround a central pore. Kasimova et al. hypothesize that channel opening involves rotation of an S6 asparagine residue toward the pore, as well as associated pore hydration and external cavity dehydration. The transient receptor potential channel vanilloid type 1 (TRPV1) is activated by a variety of endogenous and exogenous stimuli and is involved in nociception and body temperature regulation. Although the structure of TRPV1 has been experimentally determined in both the closed and open states, very little is known about its activation mechanism. In particular, the conformational changes that occur in the pore domain and result in ionic conduction have not yet been identified. Here we suggest a hypothetical molecular mechanism for TRPV1 activation, which involves rotation of a conserved asparagine in S6 from a position facing the S4–S5 linker toward the pore. This rotation is associated with hydration of the pore and dehydration of the four peripheral cavities located between each S6 and S4–S5 linker. In light of our hypothesis, we perform bioinformatics analyses of TRP and other evolutionary related ion channels, evaluate newly available structures, and reexamine previously reported water accessibility and mutagenesis experiments. These analyses provide several independent lines of evidence to support our hypothesis. Finally, we show that our proposed molecular mechanism is compatible with the prevailing theory that the selectivity filter acts as a secondary gate in TRPV1.
Collapse
Affiliation(s)
- Marina A Kasimova
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Aysenur Torun Yazici
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Daniele Granata
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| |
Collapse
|
16
|
Du Y, Tikhonov DB, Nomura Y, Dong K, Zhorov BS. Mutational analysis of state-dependent contacts in the pore module of eukaryotic sodium channels. Arch Biochem Biophys 2018; 652:59-70. [PMID: 29936083 DOI: 10.1016/j.abb.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 02/04/2023]
Abstract
Voltage-gated sodium channels have residues that change or may change contacts upon gating. Contributions of individual contacts in stability of different states are incompletely understood. Pore-lining inner helices contain exceptionally conserved asparagines in positions i20. Here we explored how mutations in positions i20 and i29 affect electrophysiological properties of insect sodium channels. In repeat interfaces I/IV, III/II and IV/III, alanine substitutions caused positive activation shifts in positions i20 and i29, negative shifts of slow inactivation in positions i20 and positive shifts of slow inactivation in positions i29. The results support the hypothesis on open state inter-repeat H-bonding of residues i20 and i29. The shift magnitudes vary between interfaces, reflecting structural asymmetry of the channels. Mutations in positions i20 of repeats III and IV caused much longer recovery delay from the slow and fast inactivation than other mutations. In repeat IV, alanine substitution of tyrosine i30 rescued positive activation shift of mutation in position i29. Our data suggest that polar residues in positions i29 are involved in stabilization of both the open and slow-inactivated states. Transition between the states may involve switching of H-bonding partners of residues i29 from the conserved asparagines to currently unknown residues.
Collapse
Affiliation(s)
- Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
17
|
Buyan A, Sun D, Corry B. Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels. Proc Natl Acad Sci U S A 2018; 115:E3135-E3144. [PMID: 29467289 PMCID: PMC5889629 DOI: 10.1073/pnas.1714131115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Voltage-gated sodium channels are essential for carrying electrical signals throughout the body, and mutations in these proteins are responsible for a variety of disorders, including epilepsy and pain syndromes. As such, they are the target of a number of drugs used for reducing pain or combatting arrhythmias and seizures. However, these drugs affect all sodium channel subtypes found in the body. Designing compounds to target select sodium channel subtypes will provide a new therapeutic pathway and would maximize treatment efficacy while minimizing side effects. Here, we examine the binding preferences of nine compounds known to be sodium channel pore blockers in molecular dynamics simulations. We use the approach of replica exchange solute tempering (REST) to gain a more complete understanding of the inhibitors' behavior inside the pore of NavMs, a bacterial sodium channel, and NavPas, a eukaryotic sodium channel. Using these simulations, we are able to show that both charged and neutral compounds partition into the bilayer, but neutral forms more readily cross it. We show that there are two possible binding sites for the compounds: (i) a site on helix 6, which has been previously determined by many experimental and computational studies, and (ii) an additional site, occupied by protonated compounds in which the positively charged part of the drug is attracted into the selectivity filter. Distinguishing distinct binding poses for neutral and charged compounds is essential for understanding the nature of pore block and will aid the design of subtype-selective sodium channel inhibitors.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Delin Sun
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
18
|
Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K + channel. Nat Struct Mol Biol 2018; 25:320-326. [PMID: 29581567 PMCID: PMC6170002 DOI: 10.1038/s41594-018-0047-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/05/2018] [Indexed: 11/08/2022]
Abstract
Membrane potential regulates the activity of voltage-dependent ion channels via specialized voltage-sensing modules but the mechanisms involved in coupling voltage-sensor movement to pore opening remain unclear due to lack of resting state structures and robust methods to identify allosteric pathways. Here, using a newly developed interaction energy analysis, we probe the interfaces of the voltage-sensing and pore modules in the drosophila Shaker K+ channel. Our measurements reveal unexpectedly strong equilibrium gating interactions between contacts at the S4 and S5 helices in addition to those between S6 and S4–S5 linker. Network analysis of MD trajectories shows that the voltage-sensor and pore motions are linked by two distinct pathways- canonical one through the S4–S5 linker and a hitherto unknown pathway akin to rack and pinion coupling involving S4 and S5 helices. Our findings highlight the central role of the S5 helix in electromechanical transduction in the VGIC superfamily.
Collapse
|
19
|
Yang E, Zhi L, Liang Q, Covarrubias M. Electrophysiological Analysis of Voltage-Gated Ion Channel Modulation by General Anesthetics. Methods Enzymol 2018; 602:339-368. [PMID: 29588038 DOI: 10.1016/bs.mie.2018.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Voltage-gated ion channels (VGICs) of excitable tissues are emerging as targets likely involved in both the therapeutic and toxic effects of inhaled and intravenous general anesthetics. Whereas sevoflurane and propofol inhibit voltage-gated Na+ channels (Navs), sevoflurane potentiates certain voltage-gated K+ channels (Kvs). The combination of these effects would dampen neural excitability and, therefore, might contribute to the clinical endpoints of general anesthesia. As the body of work regarding the interaction of general anesthetics with VGICs continues to grow, a multidisciplinary approach involving functional, biochemical, structural, and computational techniques, many of which are detailed in other chapters, has increasingly become necessary to solve the molecular mechanism of general anesthetic action on VGICs. Here, we focus on electrophysiological and modeling approaches and methodologies to describe how our work has elucidated the biophysical basis of the inhibition Navs by propofol and the potentiation of Kvs by sevoflurane.
Collapse
Affiliation(s)
- Elaine Yang
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Lianteng Zhi
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Qiansheng Liang
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Physical basis of specificity and delayed binding of a subtype selective sodium channel inhibitor. Sci Rep 2018; 8:1356. [PMID: 29358762 PMCID: PMC5778059 DOI: 10.1038/s41598-018-19850-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Nerve and muscle signalling is controlled by voltage-gated sodium (Nav) channels which are the targets of local anesthetics, anti-epileptics and anti-arrythmics. Current medications do not selectively target specific types of Nav found in the body, but compounds that do so have the potential to be breakthrough treatments for chronic pain, epilepsy and other neuronal disorders. We use long computer simulations totaling more than 26 μs to show how a promising lead compound can target one Nav implicated in pain perception and specific channels found in bacteria, and accurately predict the affinity of the compound to different channel types. Most importantly, we provide two explanations for the slow kinetics of this class of compound that limits their therapeutic utility. Firstly, the negative charge on the compound is essential for high affinity binding but is also responsible for energetic barriers that slow binding. Secondly, the compound has to undergo a conformational reorientation during the binding process. This knowledge aids the design of compounds affecting specific eukaryotic and bacterial channels and suggests routes for future drug development.
Collapse
|
21
|
Irie K, Haga Y, Shimomura T, Fujiyoshi Y. Optimized expression and purification of NavAb provide the structural insight into the voltage dependence. FEBS Lett 2018; 592:274-283. [PMID: 29274127 DOI: 10.1002/1873-3468.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 01/05/2023]
Abstract
Voltage-gated sodium channels are crucial for electro-signalling in living systems. Analysis of the molecular mechanism requires both fine electrophysiological evaluation and high-resolution channel structures. Here, we optimized a dual expression system of NavAb, which is a well-established standard of prokaryotic voltage-gated sodium channels, for E. coli and insect cells using a single plasmid vector to analyse high-resolution protein structures and measure large ionic currents. Using this expression system, we evaluated the voltage dependence and determined the crystal structures of NavAb wild-type and two mutants, E32Q and N49K, whose voltage dependence were positively shifted and essential interactions were lost in voltage sensor domain. The structural and functional comparison elucidated the molecular mechanisms of the voltage dependence of prokaryotic voltage-gated sodium channels.
Collapse
Affiliation(s)
- Katsumasa Irie
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Japan
| | - Yukari Haga
- Graduate School of Pharmaceutical Sciences, Nagoya University, Japan
| | - Takushi Shimomura
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Japan.,CeSPIA Inc., Tokyo, Japan
| |
Collapse
|
22
|
Tikhonov DB, Zhorov BS. Conservation and variability of the pore-lining helices in P-loop channels. Channels (Austin) 2017; 11:660-672. [PMID: 29095093 DOI: 10.1080/19336950.2017.1395536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The family of P-loop channels, which play key roles in the cell physiology, is characterized by four membrane re-entering extracellular P-loops that connect eight transmembrane helices of the pore-forming domain. The X-ray and cryo-EM structures of the open- and closed-state channels show conserved state-dependent folding despite the sequences are very diverse. In sodium, calcium, TRPV and two-pore channels, the pore-lining helices contain conserved asparagines and may or may not include π-helix bulges. Comparison of the sequence- and 3D-alignemnts suggests that the asparagines appeared in evolution as insertions that are accommodated in two ways: by π-helix bulges, which preserve most of inter-segment contacts, or by twists of the C-terminal thirds and switch of inter-segment contacts. The two possibilities should be considered in homology modeling of ion channels and in structure-based interpretations of numerous experimental data on physiology, pathophysiology, pharmacology and toxicology of the channels.
Collapse
Affiliation(s)
- Denis B Tikhonov
- a Department of Biophysics of Synaptic Processes , Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS , St. Petersburg , Russia
| | - Boris S Zhorov
- a Department of Biophysics of Synaptic Processes , Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS , St. Petersburg , Russia.,b Department of Biochemistry & Biomedical Sciences , McMaster University , Hamilton , Canada
| |
Collapse
|
23
|
Vinekar RS, Sowdhamini R. Three-dimensional Modelling of the Voltage-gated Sodium Ion Channel from Anopheles gambiae Reveals Spatial Clustering of Evolutionarily Conserved Acidic Residues at the Extracellular Sites. Curr Neuropharmacol 2017; 15:1062-1072. [PMID: 27919210 PMCID: PMC5725538 DOI: 10.2174/1567201814666161205131213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/04/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The eukaryotic voltage-gated sodium channel(e-Nav) is a large asymmetric transmembrane protein with important functions concerning neurological function. No structure has been resolved at high resolution for this protein. METHODS A homology model of the transmembrane and extracellular regions of an Anopheles gambiae para-like channel with emphasis on the pore entrance has been constructed, based upon the templates provided by a prokaryotic sodium channel and a potassium two-pore channel. The latter provides a template for the extracellular regions, which are located above the entrance to the pore, which is likely to open at a side of a dome formed by these loops. RESULTS A model created with this arrangement shows a structure similar to low-resolution cryoelectron microscope images of a related structure. The pore entrance also shows favorable electrostatic interface. CONCLUSION Residues responsible for the negative charge around the pore have been traced in phylogeny to highlight their importance. This model is intended for the study of pore-blocking toxins.
Collapse
Affiliation(s)
- Rithvik S. Vinekar
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| |
Collapse
|
24
|
Obesity-associated gene TMEM18 has a role in the central control of appetite and body weight regulation. Proc Natl Acad Sci U S A 2017; 114:9421-9426. [PMID: 28811369 DOI: 10.1073/pnas.1707310114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An intergenic region of human chromosome 2 (2p25.3) harbors genetic variants which are among those most strongly and reproducibly associated with obesity. The gene closest to these variants is TMEM18, although the molecular mechanisms mediating these effects remain entirely unknown. Tmem18 expression in the murine hypothalamic paraventricular nucleus (PVN) was altered by changes in nutritional state. Germline loss of Tmem18 in mice resulted in increased body weight, which was exacerbated by high fat diet and driven by increased food intake. Selective overexpression of Tmem18 in the PVN of wild-type mice reduced food intake and also increased energy expenditure. We provide evidence that TMEM18 has four, not three, transmembrane domains and that it physically interacts with key components of the nuclear pore complex. Our data support the hypothesis that TMEM18 itself, acting within the central nervous system, is a plausible mediator of the impact of adjacent genetic variation on human adiposity.
Collapse
|
25
|
|
26
|
Voltage-gated sodium channels viewed through a structural biology lens. Curr Opin Struct Biol 2016; 45:74-84. [PMID: 27988421 DOI: 10.1016/j.sbi.2016.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
Voltage-gated sodium (Nav) channels initiate and propagate action potentials in excitable cells, and are frequently dysregulated or mutated in human disease. Despite decades of intense physiological and biophysical research, eukaryotic Nav channels have so far eluded high-resolution structure determination because of their biochemical complexity. Recently, simpler bacterial voltage-gated sodium (BacNav) channels have provided templates to understand the structural basis of voltage-dependent activation, inactivation, ion selectivity, and drug block in eukaryotic Nav and related voltage-gated calcium (Cav) channels. Further breakthroughs employing BacNav channels have also enabled visualization of bound small molecule modulators that can guide the rational design of next generation therapeutics. This review will highlight the emerging structural biology of BacNav channels and its contribution to our understanding of the gating, ion selectivity, and pharmacological regulation of eukaryotic Nav (and Cav) channels.
Collapse
|
27
|
Penny CJ, Rahman T, Sula A, Miles AJ, Wallace BA, Patel S. Isolated pores dissected from human two-pore channel 2 are functional. Sci Rep 2016; 6:38426. [PMID: 27941820 PMCID: PMC5150636 DOI: 10.1038/srep38426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 01/30/2023] Open
Abstract
Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels. In HeLa cells, each pore localised to the ER and caused Ca2+ depletion, whereas an ER-targeted pore mutated at a residue that inactivates full-length TPC2 did not. Additionally, one of the pores expressed at high levels in E. coli. When purified, it formed a stable, folded tetramer. Liposomes reconstituted with the pore supported Ca2+ and Na+ uptake that was inhibited by known blockers of full-length channels. Computational modelling of the pore corroborated cationic permeability and drug interaction. Therefore, despite divergence, both pores are constitutively active in the absence of their partners and retain several properties of the wild-type pore. Such symmetrical ‘pore-only’ proteins derived from divergent channel domains may therefore provide tractable tools for probing the functional architecture of complex ion channels.
Collapse
Affiliation(s)
- Christopher J Penny
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Andrew J Miles
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
28
|
Nannenga BL, Gonen T. MicroED opens a new era for biological structure determination. Curr Opin Struct Biol 2016; 40:128-135. [PMID: 27701014 PMCID: PMC5656569 DOI: 10.1016/j.sbi.2016.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/19/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
In 2013 we unveiled the cryo-electron microscopy (CryoEM) method of MicroED, or three-dimensional (3D) electron diffraction of microscopic crystals. Here tiny 3D crystals of biological material are used in an electron microscope for diffraction data collection under cryogenic conditions. The data is indexed, integrated, merged and scaled using standard X-ray crystallography software to determine structures at atomic resolution. In this review we provide an overview of the MicroED method and compare it with other CryoEM methods.
Collapse
Affiliation(s)
- Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
29
|
Ahern CA, Payandeh J, Bosmans F, Chanda B. The hitchhiker's guide to the voltage-gated sodium channel galaxy. ACTA ACUST UNITED AC 2016; 147:1-24. [PMID: 26712848 PMCID: PMC4692491 DOI: 10.1085/jgp.201511492] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Baron Chanda
- Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
30
|
Bagal SK, Marron BE, Owen RM, Storer RI, Swain NA. Voltage gated sodium channels as drug discovery targets. Channels (Austin) 2016; 9:360-6. [PMID: 26646477 PMCID: PMC4850042 DOI: 10.1080/19336950.2015.1079674] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter.
Collapse
Affiliation(s)
- Sharan K Bagal
- a Worldwide Medicinal Chemistry; Pfizer ; Great Abington , Cambridge , UK
| | - Brian E Marron
- b Worldwide Medicinal Chemistry; Pfizer ; Durham , NC USA
| | - Robert M Owen
- a Worldwide Medicinal Chemistry; Pfizer ; Great Abington , Cambridge , UK
| | - R Ian Storer
- a Worldwide Medicinal Chemistry; Pfizer ; Great Abington , Cambridge , UK
| | - Nigel A Swain
- a Worldwide Medicinal Chemistry; Pfizer ; Great Abington , Cambridge , UK
| |
Collapse
|
31
|
Vien TN, DeCaen PG. Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:39-64. [PMID: 27586280 DOI: 10.1016/bs.ctm.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This chapter describes the adaptive features found in voltage-gated sodium channels (NaVs) of prokaryotes and eukaryotes. These two families are distinct, having diverged early in evolutionary history but maintain a surprising degree of convergence in function. While prokaryotic NaVs are required for growth and motility, eukaryotic NaVs selectively conduct fast electrical currents for short- and long-range signaling across cell membranes in mammalian organs. Current interest in prokaryotic NaVs is stoked by their resolved high-resolution structures and functional features which are reminiscent of eukaryotic NaVs. In this chapter, comparisons between eukaryotic and prokaryotic NaVs are made to highlight the shared and unique aspects of ion selectivity, voltage sensitivity, and pharmacology. Examples of prokaryotic and eukaryotic NaV convergent evolution will be discussed within the context of their structural features.
Collapse
Affiliation(s)
- T N Vien
- Tufts University, Boston, MA, United States
| | - P G DeCaen
- Children's Hospital Boston, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Northwestern University, Chicago, IL, United States
| |
Collapse
|
32
|
Abe K, Fujiyoshi Y. Cryo-electron microscopy for structure analyses of membrane proteins in the lipid bilayer. Curr Opin Struct Biol 2016; 39:71-78. [DOI: 10.1016/j.sbi.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
33
|
Arrigoni C, Rohaim A, Shaya D, Findeisen F, Stein RA, Nurva SR, Mishra S, Mchaourab HS, Minor DL. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation. Cell 2016; 164:922-36. [PMID: 26919429 DOI: 10.1016/j.cell.2016.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/22/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel.
Collapse
Affiliation(s)
- Cristina Arrigoni
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ahmed Rohaim
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - David Shaya
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Felix Findeisen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shailika Reddy Nurva
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Shimomura T, Irie K, Fujiyoshi Y. Molecular determinants of prokaryotic voltage-gated sodium channels for recognition of local anesthetics. FEBS J 2016; 283:2881-95. [DOI: 10.1111/febs.13776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Takushi Shimomura
- Cellular and Structural Physiology Institute (CeSPI); Nagoya University; Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute (CeSPI); Nagoya University; Japan
- Graduate School of Pharmaceutical Science; Nagoya University; Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute (CeSPI); Nagoya University; Japan
- Graduate School of Pharmaceutical Science; Nagoya University; Japan
| |
Collapse
|
35
|
Naylor CE, Bagnéris C, DeCaen PG, Sula A, Scaglione A, Clapham DE, Wallace BA. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J 2016; 35:820-30. [PMID: 26873592 PMCID: PMC4972137 DOI: 10.15252/embj.201593285] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
Voltage‐gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na+ ≈ Li+ ≫ K+, Ca2+, Mg2+) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones.
Collapse
Affiliation(s)
- Claire E Naylor
- Institute of Structural and Molecular Biology, Birkbeck College University of London, London, UK
| | - Claire Bagnéris
- Institute of Structural and Molecular Biology, Birkbeck College University of London, London, UK
| | - Paul G DeCaen
- Department of Cardiology, Howard Hughes Medical Institute Boston Children's Hospital, Boston, MA, USA Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College University of London, London, UK
| | - Antonella Scaglione
- Department of Cardiology, Howard Hughes Medical Institute Boston Children's Hospital, Boston, MA, USA Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute Boston Children's Hospital, Boston, MA, USA Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College University of London, London, UK
| |
Collapse
|
36
|
Zhorov B, Tikhonov D. Computational Structural Pharmacology and Toxicology of Voltage-Gated Sodium Channels. NA CHANNELS FROM PHYLA TO FUNCTION 2016; 78:117-44. [DOI: 10.1016/bs.ctm.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Gawali V, Todt H. Mechanism of Inactivation in Voltage-Gated Na+ Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:409-50. [DOI: 10.1016/bs.ctm.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Kowal J, Chami M, Baumgartner P, Arheit M, Chiu PL, Rangl M, Scheuring S, Schröder GF, Nimigean CM, Stahlberg H. Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun 2015; 5:3106. [PMID: 24469021 PMCID: PMC4086158 DOI: 10.1038/ncomms4106] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/13/2013] [Indexed: 12/25/2022] Open
Abstract
Cyclic nucleotide-modulated ion channels are important for signal transduction and pacemaking in eukaryotes. The molecular determinants of ligand gating in these channels are still unknown, mainly because of a lack of direct structural information. Here we report ligand-induced conformational changes in full-length MloK1, a cyclic nucleotide-modulated potassium channel from the bacterium Mesorhizobium loti, analysed by electron crystallography and atomic force microscopy. Upon cAMP binding, the cyclic nucleotide-binding domains move vertically towards the membrane, and directly contact the S1–S4 voltage sensor domains. This is accompanied by a significant shift and tilt of the voltage sensor domain helices. In both states, the inner pore-lining helices are in an ‘open’ conformation. We propose a mechanism in which ligand binding can favour pore opening via a direct interaction between the cyclic nucleotide-binding domains and voltage sensors. This offers a simple mechanistic hypothesis for the coupling between ligand gating and voltage sensing in eukaryotic HCN channels. The molecular determinants underlying ligand gating of cyclic nucleotide-modulated ion channels remain unclear. Kowal et al. determine the conformational changes underlying cAMP binding to the bacterial channel MloK1, and propose a mechanism for coupling of ligand gating and voltage sensing in eukaryotic HCN channels.
Collapse
Affiliation(s)
- Julia Kowal
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Paul Baumgartner
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marcel Arheit
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martina Rangl
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille, France
| | - Gunnar F Schröder
- 1] Forschungszentrum Jülich, Institute of Complex Systems, ICS-6: Structural Biochemistry, 52425 Jülich, Germany [2] Department of Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Crina M Nimigean
- Departments of Anesthesiology, Physiology and Biophysics, and Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, New York 10065, USA
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
39
|
Remacle AG, Kumar S, Motamedchaboki K, Cieplak P, Hullugundi S, Dolkas J, Shubayev VI, Strongin AY. Matrix Metalloproteinase (MMP) Proteolysis of the Extracellular Loop of Voltage-gated Sodium Channels and Potential Alterations in Pain Signaling. J Biol Chem 2015; 290:22939-44. [PMID: 26283785 DOI: 10.1074/jbc.c115.671107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 12/19/2022] Open
Abstract
Congenital insensitivity to pain (CIP) or congenital analgesia is a rare monogenic hereditary condition. This disorder is characterized by the inability to perceive any form of pain. Nonsense mutations in Nav.1.7, the main pain signaling voltage-gated sodium channel, lead to its truncations and, consequently, to the inactivation of the channel functionality. However, a non-truncating homozygously inherited missense mutation in a Bedouin family with CIP (Nav1.7-R907Q) has also been reported. Based on our currently acquired in-depth knowledge of matrix metalloproteinase (MMP) cleavage preferences, we developed the specialized software that predicts the presence of the MMP cleavage sites in the peptide sequences. According to our in silico predictions, the peptide sequence of the exposed extracellular unstructured region linking the S5-S6 transmembrane segments in the DII domain of the human Nav1.7 sodium channel is highly sensitive to MMP-9 proteolysis. Intriguingly, the CIP R907Q mutation overlaps with the predicted MMP-9 cleavage site sequence. Using MMP-9 proteolysis of the wild-type, CIP, and control peptides followed by mass spectrometry of the digests, we demonstrated that the mutant sequence is severalfold more sensitive to MMP-9 proteolysis relative to the wild type. Because of the substantial level of sequence homology among sodium channels, our data also implicate MMP proteolysis in regulating the cell surface levels of the Nav1.7, Nav1.6, and Nav1.8 channels, but not Nav1.9. It is likely that the aberrantly accelerated MMP-9 proteolysis during neurogenesis is a biochemical rational for the functional inactivation in Nav1.7 and that the enhanced cleavage of the Nav1.7-R907Q mutant is a cause of CIP in the Bedouin family.
Collapse
Affiliation(s)
- Albert G Remacle
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Sonu Kumar
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | | | - Piotr Cieplak
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Swathi Hullugundi
- the Department of Anesthesiology, University of California San Diego, La Jolla, California 92093, and the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Jennifer Dolkas
- the Department of Anesthesiology, University of California San Diego, La Jolla, California 92093, and the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Veronica I Shubayev
- the Department of Anesthesiology, University of California San Diego, La Jolla, California 92093, and the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Alex Y Strongin
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
| |
Collapse
|
40
|
Catterall WA, Zheng N. Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic ancestors. Trends Biochem Sci 2015; 40:526-34. [PMID: 26254514 DOI: 10.1016/j.tibs.2015.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Voltage-gated sodium channels (NaVs) and calcium channels (CaVs) are involved in electrical signaling, contraction, secretion, synaptic transmission, and other physiological processes activated in response to depolarization. Despite their physiological importance, the structures of these closely related proteins have remained elusive because of their size and complexity. Bacterial NaVs have structures analogous to a single domain of eukaryotic NaVs and CaVs and are their likely evolutionary ancestor. Here we review recent work that has led to new understanding of NaVs and CaVs through high-resolution structural studies of their prokaryotic ancestors. New insights into their voltage-dependent activation and inactivation, ion conductance, and ion selectivity provide realistic structural models for the function of these complex membrane proteins at the atomic level.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA.
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Catterall WA, Swanson TM. Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels. Mol Pharmacol 2015; 88:141-50. [PMID: 25848093 PMCID: PMC4468632 DOI: 10.1124/mol.114.097659] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/06/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, muscle, and other electrically excitable cells. Voltage-gated calcium channels are activated by depolarization during action potentials, and calcium influx through them is the key second messenger of electrical signaling, initiating secretion, contraction, neurotransmission, gene transcription, and many other intracellular processes. Drugs that block sodium channels are used in local anesthesia and the treatment of epilepsy, bipolar disorder, chronic pain, and cardiac arrhythmia. Drugs that block calcium channels are used in the treatment of epilepsy, chronic pain, and cardiovascular disorders, including hypertension, angina pectoris, and cardiac arrhythmia. The principal pore-forming subunits of voltage-gated sodium and calcium channels are structurally related and likely to have evolved from ancestral voltage-gated sodium channels that are widely expressed in prokaryotes. Determination of the structure of a bacterial ancestor of voltage-gated sodium and calcium channels at high resolution now provides a three-dimensional view of the binding sites for drugs acting on sodium and calcium channels. In this minireview, we outline the different classes of sodium and calcium channel drugs, review studies that have identified amino acid residues that are required for their binding and therapeutic actions, and illustrate how the analogs of those key amino acid residues may form drug-binding sites in three-dimensional models derived from bacterial channels.
Collapse
Affiliation(s)
| | - Teresa M Swanson
- Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Pupo A, Baez-Nieto D, Martínez A, Latorre R, González C. Proton channel models filling the gap between experimental data and the structural rationale. Channels (Austin) 2015; 8:180-92. [PMID: 24755912 PMCID: PMC4203746 DOI: 10.4161/chan.28665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins.
Collapse
|
43
|
Abstract
Two-pore channels are members of the voltage-gated ion channel superfamily. They localise to the endolysosomal system and are likely targets for the Ca2+ mobilising messenger NAADP. In this brief review, we relate mutagenesis of the TPC pore to a recently published homology model and discuss how pore mutants are informing us of TPC function. Molecular physiology of these ubiquitous proteins is thus emerging.
Collapse
Affiliation(s)
- Christopher J Penny
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT
| |
Collapse
|
44
|
Stephens RF, Guan W, Zhorov BS, Spafford JD. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. Front Physiol 2015; 6:153. [PMID: 26042044 PMCID: PMC4436565 DOI: 10.3389/fphys.2015.00153] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022] Open
Abstract
How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel.
Collapse
Affiliation(s)
| | - W Guan
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada ; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences St. Petersburg, Russia
| | - J David Spafford
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| |
Collapse
|
45
|
de Lera Ruiz M, Kraus RL. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem 2015; 58:7093-118. [PMID: 25927480 DOI: 10.1021/jm501981g] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tremendous therapeutic potential of voltage-gated sodium channels (Na(v)s) has been the subject of many studies in the past and is of intense interest today. Na(v)1.7 channels in particular have received much attention recently because of strong genetic validation of their involvement in nociception. Here we summarize the current status of research in the Na(v) field and present the most relevant recent developments with respect to the molecular structure, general physiology, and pharmacology of distinct Na(v) channel subtypes. We discuss Na(v) channel ligands such as small molecules, toxins isolated from animal venoms, and the recently identified Na(v)1.7-selective antibody. Furthermore, we review eight characterized ligand binding sites on the Na(v) channel α subunit. Finally, we examine possible therapeutic applications of Na(v) ligands and provide an update on current clinical studies.
Collapse
Affiliation(s)
- Manuel de Lera Ruiz
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
46
|
Dong B, Li C, Zhang X, Wang S, Cheng Z, Rong P. Electroacupuncture of neiguan (PC 6) inhibits enhanced voltage-gated sodium currents in ischemic ventricular myocytes. J TRADIT CHIN MED 2015; 34:710-5. [PMID: 25618976 DOI: 10.1016/s0254-6272(15)30086-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To examine the effect of electroacupuncture (EA) at bilateral Neiguan (PC 6) on voltage-gated Na+ currents (I(Na)) and channels (Na(v)) in ischemic ventricular myocytes. METHODS EA serum was prepared from six male adult Sprague-Dawley rats that had received EA at bilateral Neiguan (PC 6). Eighteen ventricular myocytes were prepared from six SD rats using an enzymolysis approach. Myocardial ischemia was mimicked by perfusion of ischemic solution. Whole-cell patch-clamping was used to record three currents evoked from isolated cells. The first current was the control, and recorded in absence of ischemic solution current. The second was the ischemic current, and recorded after perfusion of ischemic solution for 5 min, while the EA current was last, and recorded after perfusion of EA serum for 5 min. Na(v) kinetic curves were fitted using related formulas. RESULTS Compared with those in controls, in the presence of ischemic solution, peak amplitudes of I(Na) significantly increased from - 40 mV to +30 mV, and half-maximal inactivation potentials of Na(v) increased significantly, while half-maximal activation potentials, slope factors and the recovery time from inactivation to activation of Na(v) were unchanged. Compared with those in the ischemic solution, in the presence of EA serum, peak ischemic current amplitudes significantly reduced from - 40 mV to +40 mV, and half-maximal inactivation potentials were restored, while half-maximal activation potentials, slope factors and the recovery time from inactivation to activation of Na(v) were unchanged. CONCLUSION EA at bilateral Neiguan (PC 6) can reduce enhanced I(Na) via restoration of delayed Na(v) inactivation in ischemic ventricular myocytes.
Collapse
|
47
|
FUJIYOSHI Y. Development of the field of structural physiology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:447-468. [PMID: 26560835 PMCID: PMC4754503 DOI: 10.2183/pjab.91.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/08/2015] [Indexed: 06/05/2023]
Abstract
Electron crystallography is especially useful for studying the structure and function of membrane proteins - key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named "adhennels" based on structures analyzed using electron and X-ray crystallography.
Collapse
Affiliation(s)
- Yoshinori FUJIYOSHI
- Cellular and Structural Physiology Institute, Nagoya University, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
48
|
Bagnéris C, Naylor CE, McCusker EC, Wallace BA. Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. ACTA ACUST UNITED AC 2014; 145:5-16. [PMID: 25512599 PMCID: PMC4278185 DOI: 10.1085/jgp.201411242] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In excitable cells, the initiation of the action potential results from the opening of voltage-gated sodium channels. These channels undergo a series of conformational changes between open, closed, and inactivated states. Many models have been proposed for the structural transitions that result in these different functional states. Here, we compare the crystal structures of prokaryotic sodium channels captured in the different conformational forms and use them as the basis for examining molecular models for the activation, slow inactivation, and recovery processes. We compare structural similarities and differences in the pore domains, specifically in the transmembrane helices, the constrictions within the pore cavity, the activation gate at the cytoplasmic end of the last transmembrane helix, the C-terminal domain, and the selectivity filter. We discuss the observed differences in the context of previous models for opening, closing, and inactivation, and present a new structure-based model for the functional transitions. Our proposed prokaryotic channel activation mechanism is then compared with the activation transition in eukaryotic sodium channels.
Collapse
Affiliation(s)
- Claire Bagnéris
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - Claire E Naylor
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - Emily C McCusker
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| |
Collapse
|
49
|
DeCaen PG, Takahashi Y, Krulwich TA, Ito M, Clapham DE. Ionic selectivity and thermal adaptations within the voltage-gated sodium channel family of alkaliphilic Bacillus. eLife 2014; 3. [PMID: 25385530 PMCID: PMC4225499 DOI: 10.7554/elife.04387] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022] Open
Abstract
Entry and extrusion of cations are essential processes in living cells. In alkaliphilic prokaryotes, high external pH activates voltage-gated sodium channels (Nav), which allows Na(+) to enter and be used as substrate for cation/proton antiporters responsible for cytoplasmic pH homeostasis. Here, we describe a new member of the prokaryotic voltage-gated Na(+) channel family (NsvBa; <underline>N</underline>on-<underline>s</underline>elective <underline>v</underline>oltage-gated, <underline>B</underline>acillus <underline>a</underline>lcalophilus) that is nonselective among Na(+), Ca(2+) and K(+) ions. Mutations in NsvBa can convert the nonselective filter into one that discriminates for Na(+) or divalent cations. Gain-of-function experiments demonstrate the portability of ion selectivity with filter mutations to other Bacillus Nav channels. Increasing pH and temperature shifts their activation threshold towards their native resting membrane potential. Furthermore, we find drugs that target Bacillus Nav channels also block the growth of the bacteria. This work identifies some of the adaptations to achieve ion discrimination and gating in Bacillus Nav channels.
Collapse
Affiliation(s)
- Paul G DeCaen
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Yuka Takahashi
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Terry A Krulwich
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| |
Collapse
|
50
|
Payandeh J, Minor DL. Bacterial voltage-gated sodium channels (BacNa(V)s) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol 2014; 427:3-30. [PMID: 25158094 DOI: 10.1016/j.jmb.2014.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels (Na(V)s) provide the initial electrical signal that drives action potential generation in many excitable cells of the brain, heart, and nervous system. For more than 60years, functional studies of Na(V)s have occupied a central place in physiological and biophysical investigation of the molecular basis of excitability. Recently, structural studies of members of a large family of bacterial voltage-gated sodium channels (BacNa(V)s) prevalent in soil, marine, and salt lake environments that bear many of the core features of eukaryotic Na(V)s have reframed ideas for voltage-gated channel function, ion selectivity, and pharmacology. Here, we analyze the recent advances, unanswered questions, and potential of BacNa(V)s as templates for drug development efforts.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 93858-2330, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|